
Statistically
Meaningful Approximation: a Case Study on

Approximating Turing Machines with Transformers

Colin Wei Yining Chen Tengyu Ma

Department of Computer Science
Stanford University

{colinwei,cynnjjs,tengyuma}@cs.stanford.edu

Abstract

A common lens to theoretically study neural net architectures is to analyze the func-
tions they can approximate. However, the constructions from approximation theory
often have unrealistic aspects, for example, reliance on infinite precision to memorize
target function values. To address this issue, we propose a formal definition of statisti-
cally meaningful approximation which requires the approximating network to exhibit
good statistical learnability. We present case studies on statistically meaningful ap-
proximation for two classes of functions: boolean circuits and Turing machines. We
show that overparameterized feedforward neural nets can statistically meaningfully
approximate boolean circuits with sample complexity depending only polynomially
on the circuit size, not the size of the approximating network. In addition, we show
that transformers can statistically meaningfully approximate Turing machines with
computation time bounded by T , requiring sample complexity polynomial in the
alphabet size, state space size, and logpT q. Our analysis introduces new tools for gen-
eralization bounds that provide much tighter sample complexity guarantees than the
typical VC-dimension or norm-based bounds, which may be of independent interest.

1 Introduction

Dating back to the seminal works on universal approximation [16, 25, 40, 31], a common way to
theoretically study neural nets has been through their expressivity, which measures the ability of
neural nets to approximate well-behaved functions. This perspective has shaped how researchers
perceive different types of deep learning architectures: a basic way to theoretically justify new
architectures is to study their approximation capabilities. This has led to a number of analyses studying
universal approximation capabilities for various widely-used architectures, such as recurrent neural
nets (RNNs) [47], graph neural nets [46], convolutional networks [3, 64, 59], residual networks [32],
transformers [61], and neural ODEs [51, 63].

However, approximation theoretic results often misalign with more meaningful end-to-end guaran-
tees, because models constructed in the literature often exhibit unrealistic properties. For exam-
ple, a common technique in the universal approximation literature is to rely strongly on infinite-
precision weights and activations, or exponentially many parameters to encode the desired function
values [25, 16, 31, 32, 61, 44]. This issue even arises outside of universal approximation, e.g., various
papers demonstrate the ability of RNNs and transformers to simulate various computational models
such as Turing machines and automata, but require strong reliance on arbitrary precision [48, 42, 29, 9].
Infinite precision can inflate the expressivity of an architecture (function class) in a unrealistic and
misleading way: for example, finite width RNNs with infinite precision can simulate Turing machines,
but finite-precision, finite-width RNNs cannot. This is implied by streaming lower bounds [1] – any
finite-precision, finite-width RNN induces a finite-space streaming algorithm corresponding to running

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

the RNN on the inputs. However, streaming lower bounds tell us that finite-space streaming algorithms
are not powerful enough to simulate Turing machines, and hence finite-precision, finite-width RNNs
cannot either. As another example, Park et al. [41] exploit infinite precision in the parameters to show
that a neural net with parameter count sublinear in n can memorize n arbitrary input-label pairs. How-
ever, a simple counting argument reveals that this result cannot be proven using finite precision networks
– there are 2n input-labeling pairs, but only 2opnq finite precision networks with opnq parameters.

More broadly, the ideal theoretical perspective should consider not only whether target functions
can be expressed, but also whether the approximating functions can plausibly be obtained by fitting
a neural network to a finite training sample, as is the case in practical deep learning settings. The latter
question can be decomposed into studying optimization and generalization. Unfortunately, a rigorous
analysis of optimization is unresolved even for simple two-layer nets [35, 33]. Global optimization
analyses such as NTK do exist [18, 26], but there is a large body of theoretical and empirical work
showing that neural networks can generalize much better than NTK analyses can hope to prove [20, 57].
Generalization is more tractable, so we propose to study expressivity and generalization together.

Towards studying more meaningful notions of approximation, this work proposes statistically
meaningful (SM) approximation. This definition requires not only the existence of an approximating
network, but also that it has good statistical properties. Consider a setting where the aim is to fit
the target function G using the approximating family F and a finite sample of training data. SM
approximation requires existence of a loss whose empirical risk minimizer in F leads to a model with
low approximation error in fittingG. We define the sample complexity of the approximation as the
number of training samples needed to guarantee ε approximation error and study SM approximation
with low sample complexity bounds. SM approximation essentially eliminates statistical concerns
about fitting the target function with a finite sample (optimization concerns can remain).

We present two case studies on SM approximation. First, we demonstrate that overparameterized
feedforward neural nets can SM approximate boolean circuits with a low sample complexity that
depends only on the intrinsic circuit size. Though it is simple to construct neural nets to approximate
boolean circuits, bounding the sample complexity of the approximation is challenging. For example,
standard norm-based generalization bounds for the naive construction scale exponentially in
depth [5, 6]. Furthermore, VC dimension-based bounds would scale polynomially in the number of
parameters in the network [23], which is problematic because for practical optimization concerns,
neural nets are typically overparameterized in terms of width [62]. In contrast, our sample complexity
bound for SM approximation depends only on the intrinsic circuit size, up to logarithmic factors.

Our second case study is on SM approximating Turing machines with transformers. We consider
a class of Turing machines with bounded computation time T and construct encoder-decoder
transformers [53] which SM approximate these Turing machines. The sample complexity of the
approximation depends on a polynomial in logT and the sizes of the state space and the alphabet of the
Turing machine. Though constructions for approximating Turing machines from prior work [48, 42, 9]
have not been formally studied from a sample complexity perspective, existing bounds would depend
at least linearly on T . Furthermore, our construction only uses loglogT precision, compared to at
least logT in prior works, resulting in the exponential improvement in the sample complexity.

Proving sample complexity guarantees for our SM approximation results is nontrivial and requires
additional insights. To obtain our sample complexity bounds, we leverage a recent generalization
bound which depends on data-dependent Lipschitzness [56]. We develop theoretical tools to convert
a broad class of neural nets, with possibly large Lipschitzness, into ones with small Lipschitzness
on the training data, by introducing a number of new layers that is linear in depth. Our result applies
to neural nets where each entry in the hidden representations on the training data takes values from
a finite set (e.g., binary entries), and may be of independent interest.

In summary, our conceptual contribution is to propose a new notion of statistically meaningful
approximation, intended to provide more meaningful guarantees by requiring that the approximating
family have good statistical learnability. Technically, 1) we prove that feedforward neural nets can
meaningfully approximate boolean circuits with sample complexity that depends polynomially on
the width and depth of the circuit; and 2) we show that transformers can meaningfully approximate
Turing machines with sample complexity logarithmic in the computation time.

1.1 Related works

Classifical approximation theory for neural networks has a long history. Hornik et al. [25], Cybenko
[16], and Leshno et al. [31] show that neural nets with one hidden layer are universal approximators
but require the hidden layer size to grow exponentially in input dimension. Barron [4] uses the Fourier

2

transform to write target functions as infinite-width networks and subsamples neurons to obtain widths
which depend only on target function properties. Lee et al. [30], Ji et al. [27] prove recent related
developments in this direction of universal approximation.

Many works study benefits of deep networks over shallow ones [8, 2, 50, 19, 17, 11, 10]. Bengio and
Delalleau [8] show separation for exact representation, whereas Telgarsky [50] shows separation for ap-
proximate representations with univariate inputs. Eldan and Shamir [19] demonstrate high-dimensional
functions that can be approximated by two-layer polynomial-sized neural networks, but cannot be
approximated by one-layer neural nets with subexponential hidden units. Via reduction to certain com-
plexity theoretic questions, Vardi and Shamir [52] show that proving constant depth separations may be
hard. Malach et al. [34] analyze the relationship between optimization and approximability, showing in
various settings that deeper networks cannot be optimized if shallow networks cannot approximate them.
This demonstrates that depth separation results [50] from approximation theory can be misleading since
gradient descent anyways cannot optimize the deep networks used to construct the approximation.

Another area of study is on the ability of deep networks to memorize training data [62, 60, 41, 54]. Yun
et al. [60] show that Θpnqparameters are sufficient to memorize Θpnq training points for ReLU nets with
at least 3 layers, and Park et al. [41] reduce the parameter requirement to sublinear in n. Similar results
have been proven for residual architectures [22] and convolutional nets [39]. Bartlett et al. [7] analyze the
VC-dimension of neural nets, leading to bounds on the parameter count needed to fit training data. Other
works study expressivity via connections to tensor approximation and sum-product networks [14, 15].

There is a long line of work on studying the ability of neural nets to recognize and represent formal
languages. The seminal work of Siegelmann and Sontag [48] shows that RNNs are Turing complete
but leverages infinite precision in the hidden activations. Chen et al. [12] extend this result to ReLU
activations and study implications in language modeling. Many variants of transformers are shown
to be Turing-complete, but these constructions also rely on arbitrary precision [42, 9]. Recent works
have also proven results for generating or recognizing formal languages with finite-precision neural
nets [58, 29, 24], but these results do not consider Turing machines or analyze statistical properties of
their constructions. Concurrent work [13] proves Turing completeness of RNNs with finite precision,
relying on a dynamically growing memory module in the architecture (which serves the same purpose as
the long decoder sequences in our Transformer construction). However, they do not analyze statistical
properties, which requires additional complications in both the construction and statistical analysis.

1.2 Notation

Let f ˝ g denote the composition of functions f and g. For a family of functions G, let
f ˝G fi tf ˝g : g P Gu denote the family of compositions between f and functions in G. For a set S
and function f :SÑY , let fpSq denote the set tfpsq :sPSuĎY . We use 1d to denote the all-one’s
vector in d dimensions, with the subscripted omitted if clear. For iPrds, we let 1dpiq denote the one-hot
embedding in d-dimensions, which is 1 at index i and 0 everywhere else. We use the notation rOp¨q to
hide poly-logarithmic factors in the argument. The notationÀ,Á indicates the existence of a constant
factor such that the inequality holds, and— denotes that theÁ andÀ relations simultaneously hold. We
use polyp¨q to indicate the existence of a polynomial in the argument which makes the equation true. For
a set A (e.g., the set of alphabet symbols for a Turing machine) let A˚ denote the set of all sequences of
elements ofA, where sequence length can vary. LetP denote a distribution over a space of inputsX . Let
ξ1,...,ξn ben i.i.d. Rademacher variables sampled from t´1,`1u. The expectedn-sample Rademacher
complexity of F on P is as follows: Radn,P pFqfiE

pxiqni“1
i.i.d
„ P

“

Eξ1,...,ξn
“

supFPF
1
n

řn
i“1ξiF pxiq

‰‰

,

where pxiqni“1 denotes n i.i.d. samples from P .

2 Statistically meaningful approximation

We consider settings where we wish to approximate every memberG in a real-valued function class
G with some function F in function class F . Functions in both G and F map input space X to R. In
this work, F is some family of neural networks. Fix a loss ` :RˆRÑr0,1s. The classical notion of
ε-approximation [43] is as follows:

Definition 2.1 (Classical ε-approximation). We say a function class F ε-approximates a function
class G with respect to loss ` and input distribution P , if for any givenGPG, there exists F PF such
that Ex„P r`pF pxq,Gpxqqsďε.

3

The issue with this classical notion of approximation is that it allows solutions which use infinite preci-
sion (or other potential unrealistic characteristics). Because of these drawbacks, even ifF approximates
G, it does not mean that we can use F to fit the target function from G with a good sample complexity.

This work studies a stronger notion of approximation, statistically meaningful (SM) approximation,
to eliminate statistical issues with fittingG on a finite sample. SM-approximation requires that G is
learnable via empirical risk minimization using models from F , when data is generated from P .

Definition 2.2 (ε-SM-approximation). We say a function class F ε-SM-approximates a function class
G with respect to evaluation loss ` and input distribution P with sample complexity n if there exists
a surrogate loss s` :FˆXˆRÑr0,1s such that for any givenGPG, the following holds:

With probability 0.99 over the randomness of n examples pxiqni“1 drawn from P , the empirical risk
minimizer of s`, pF fiargminFPF

1
n

řn
i“1

s`pF,xi,Gpxiqq, approximatesG: Ex„P r`p pF pxq,Gpxqqsďε.

Definition 2.2 requires that the empirical risk minimizer of s` overF on a finite sample pxi,Gpxiqqni“1 is
guaranteed to ε-approximateG on the population. Note that the surrogate loss s` and evaluation loss ` can
differ, and that s` takes the modelF as an argument, allowing the empirical risk to include regularization.

Though Definition 2.2 may be reminiscent of PAC-learnability, there is a major conceptual difference:
SM approximation unifies expressivity and generalization, whereas PAC-learnability is only concerned
with generalization. For example, in the realizable PAC-learning case, there is no notion of an
approximating family F – the setting only cares about fundamental learnability of G. Furthermore,
in agnostic PAC-learning (non-realizable) settings, the main focus is achieving a low loss relative to the
best function in the hypothesis class. In contrast, SM approximation also requires proving that the best
function in F achieves near-zero loss, whereas there is no such requirement in PAC-learning settings.

2.1 Background and tools

To prove SM-approximation guarantees, Definition 2.2 requires a loss surrogate s` such that the
empirical risk minimizer of s` on the training data can approximate functions in G. The following
proposition, which is motivated by classical generalization theory, provides several conditions on
s`which lead to SM-approximation guarantees.

Proposition 2.3. For loss function ` :RˆRÑr0,1s and input distribution P , suppose there exists
a surrogate loss s` :FˆXˆRÑr0,1s satisfying the following properties:

1) For all F PF , xPX , yPR, s`pF,x,yqě`pF pxq,yq.

2) For anyGPG, consider the function class LGfi tx ÞÑ s`pF,x,Gpxqq :F PFu. Then the n-sample
Rademacher complexity of LG is bounded: Radn,P pLGqďε.

3) For anyGPG, there exists F PF with small surrogate loss: Ex„P rs`pF,x,Gpxqqsďε.

Then, the function class F O
´

ε` 1?
n

¯

-SM-approximates G with respect to loss ` and input distribution
P with sample complexity n.

By Proposition 2.3, it suffices that s` upper bounds the target loss ` and has low complexity, and
F approximates G with respect to ps`,P q in the classical sense. The proof follows from standard
techniques for bounding generalization based on Rademacher complexity and is provided in Section A.

All-layer margin loss. We introduce one particular construction for s` used in subsequent sections,
which is motivated by the all-layer margin generalization bound proposed by [56]. This bound is based
on data-dependent Lipschitzness measures [36, 55], and can provide stronger guarantees than classical
norm-based bounds [37, 6, 38, 21].

We focus on the binary classification setting, whereGpxqPt0,1u, and study approximation with respect
to the 0-1 loss `0-1pz,yqfi1ppy´0.5qzď0qwhere yPt0,1u is assumed to be a binary label, and the aim
is to output a negative prediction z for y“0 and positive for y“1. We consider a family of functions F
parameterized by p-dimensional parameters θPΘĎRp, such that F“tx ÞÑF px,θq :θPΘu, where we
abuse notation and letF denote a general parameterized functionF :XˆRpÑR. We sometimes use θ
to identify an element of F . Throughout the paper, we define Θ as a set with }¨}1-norm bounded by α:

4

}θ}1ďα, @θPΘ. We define the parameter-based all-layer margin ρF :RpˆXˆt0,1uÑR as follows:

ρF pθ,x,yqfimin
δ
}δ}2

subject to py´0.5q¨F px,θ`δqď0
(2.1)

We omit F from the subscript of ρwhen it is clear from context. This quantity measures the stability
of the model around an input x in parameter space. As is the case for the standard output margin, a
larger all-layer margin, or better stability, tends to imply better generalization.

We modified the definition in [56] to consider perturbations δ in parameter space, whereas Wei and
Ma [56] consider perturbations to the hidden layers. The parameter-space formulation is simpler and
subsumes the results in [56]. Our formulation also accounts for weight sharing, which is important
for our Turing machine results, whereas the formulation of [56] could not.

A key and immediate property of the all-layer margin is that it is strictly positive if and only if F px,θq
predicts the correct label. We can leverage this property to construct a surrogate loss. For some
parameter γ intended to lowerbound the all-layer margins, we define the loss s`γ as follows:

s`γpθ,x,yq“

$

&

%

1 if ρpθ,x,yqď0

1´ ρpθ,x,yq
γ if 0ăρpθ,x,yqďγ

0 if ρpθ,x,yqěγ
(2.2)

Note that s`γ composes the classical ramp loss, which is used to prove margin-based generalization
complexity bounds, with the value of the all-layer margin. By our construction, it immediately follows
that s`γpθ,x,Gpxqqě`0-1pF px,θq,Gpxqq, as is required of a surrogate loss.

We show that to obtain sample complexity bounds for SM-approximation ofG in a classification setting,
it suffices to prove that functions in F can fit labels ofGPG with large all-layer margin. Our argument
uses s`γ as the loss surrogate in the definition of SM approximation. Though s`γ is computationally
intractable to optimize, Wei and Ma [56] demonstrate that heuristically minimizing s`γ also leads to
improved generalization empirically.

Lemma 2.4. Fix any parameterized function F :XˆRpÑR, and define Fαfitx ÞÑF px,θq :θPΘu,
where we assume ΘĎRp is such that }θ}1ďα for all θPΘ. Fix εě0. Suppose that for allGPG, there
exists θPΘ such that the following holds:

Ex„P r1pρF pθ,x,Gpxqqăγqsďε (2.3)

Then,Fα ε-SM-approximates G with respect to p`0-1,P qwith sample complexity rO
´

1
ε2

´

α2logppq
γ2 `1

¯¯

.

Here rO hides poly-logarithmic factors in the arguments, in this case, polylogpα
2logppq
γ2ε2 q factors. The

proof follows [56] and is deferred to Section A. In Section A, we also state a generalization bound
for 0-1 loss based on (2.1), which may be of independent interest. We use (2.2) and Lemma 2.4 to
prove that neural nets can SM-approximate Boolean circuits and Turing machines.

3 SM approximation of Boolean circuits with feedforward nets

This section shows that feedforward neural nets can SM-approximate Boolean circuits with sample
complexity that depends polynomially on the size of the circuit. A boolean circuitG :t0,1umÑt0,1u
on m inputs bits is described by a directed acyclic graph, with vertices of this graph referred to as
“gates”. The graph contains m input gates of indegree 0, which are identified with the input bits.
The remaining gates each compute a boolean function taking values at their parents as arguments,
and a designated output gate produces the output of the entire circuit. We consider boolean circuits
consisting of AND, OR, and NOT gates, which compute the corresponding boolean functions on 2,
2, and 1 inputs, respectively and are sufficient to compute any boolean function [45]. We also allow
identity (ID) gates, which take 1 input and output the same value.

We consider layered circuits, where we can partition the gates into layers such that the only edges
in the graph occur from gates in layer i to gates in layer i`1 for some i. Note that we can transform
any boolean circuit into a layered one by adding ID gates. Letting q denote the number of layers and
r the maximum number of gates in any layer, we say that the circuit has depth q and width r. We say

5

that a circuit with s total gates has size s. Our convention will be that the set of input gates is considered
a layer, so rěm. We consider the following class of boolean circuits:

Gq,r,s“tG :t0,1umÑt0,1u :G computed by circuit with depth q, size s, and width ru
We will approximate Gq,r,s using a family of width w, depth d feedforward ReLU nets pa-
rameterized by linear weights and biases θ “ pW0, b0, ... , Wd, bdq computed as follows:
Fw,dpx, θq “ WdφpWd´1φp¨¨¨ φpW0x ` b0q ¨¨¨ q ` bd´1q ` bd, where all intermediate layers
have widthw for simplicity andφ denotes the coordinate-wise ReLU activation. The weight parameters
are set so that for 1ď iď d´ 1, Wi P Rwˆw, W0 P Rwˆm, and Wd P R1ˆw. The bias parameters
are such that bi PRw for 0ď iďd´1, and bd PR. To control the sample complexity, we restrict our
attention to parameters with total }¨}1-norm bounded by α, giving the following function class:

Fw,d,α“tx ÞÑFw,dpx,θq :}θ}1ďαu

The following theorem states that feedforward neural nets can statistically meaningfully approximate
boolean circuits with sample complexity polynomial in the circuit size.
Theorem 3.1. Consider the class Gq,r,s of size-s,width-r, and depth-q layered boolean circuits, and
the class Fw,d,α of neural nets above. SupposewÁr, α—s, and d—q.

Then, for all εą0 and any input distributionP over t0,1um, Fw,d,α ε-SM-approximates G with respect

to p`0-1,P qwith sample complexity polypsq rO
´

logpwdq
ε2

¯

.

We note that the bound in Theorem 3.1 only scales logarithmically in the widthw of the network, even
ifw is arbitrarily greater than the circuit width r. This ensures that even heavily overparameterized
nets will have low sample complexity of the approximation.

For this setting, the all-layer margin loss in (2.2) is essential for proving tight sample complexity
bounds, as other surrogate losses s`would give weaker results. For example, if we choose `0-1 as the
surrogate loss, VC-dimension bounds [23] imply that Fw,d,α statistically meaningfully approximates
Gq,r,s with sample complexity scaling in polypwqq under the conditions of Theorem 3.1. This suffers
a polynomial dependence on the overparameterized widthw, which is not ideal for realistic settings,
where neural nets are often wider than necessary to facilitate optimization. In contrast, our dependence
onw is logarithmic. Another possible surrogate loss is the output margin-based ramp loss, which can
be used to prove norm-based sample complexities [6]. However, these bounds depend on

śd
i“1}Wi}op

(or related quantities), which would be exponentially large in d for the naive construction in Section 3.1.

3.1 Proof sketch for Theorem 3.1

There are two key steps in the proof. First, given any layered circuitGPG, we construct a neural net
that directly simulatesG by computing the layers ofG one-by-one, which is simple to do by directly
constructing ReLU and linear layers to simulate the AND, OR, NOT, and ID gates.
Lemma 3.2. In the setting of Theorem 3.1, letG denote the layered boolean circuit, which we aim to
compute using a neural net. Let gi :t0,1uri´1Ñt0,1uri denote function computed between the i´1-th
and i-th layers ofG, which we assume have ri´1 and ri gates, respectively, soG“gq´1˝¨¨¨˝g1.

Then there exist functions f1,...,fq´1, where each fi is computed by a feedforward ReLU net with two
linear and activation layers, such that for all iPrq´1s and xPt0,1um, fi˝¨¨¨˝f1pxq“gi˝¨¨¨˝g1pxq.
Thus, the composition F p¨,θqfi fq´1 ˝¨¨¨˝f1 satisfies F px,θq “Gpxq for all x P t0,1um. Note that
we omitted the dependency of fq´1,...,f1 on parameters θ for simplicity.

Lower bounding all-layer margin. The next step for proving SM-approximation is to construct a
loss s` so that the empirical risk minimizer of s` on the training data has good sample complexity. This
crucially requires the all-layer margin tool developed in Section 2.1, as other complexity measures
(e.g. norm-based) would not give good sample complexity bounds.

Recall that the all-layer margin ρF pθ, x, Gpxqq measures the stability of the output F px, θq to
perturbations in to θ, and, by Lemma 2.4, it suffices to show that F has large all-layer margin on
x P t0,1um. Unfortunately, we cannot guarantee that the naive construction from Lemma 3.2 has
large all-layer margin without further modifications. To remedy this issue, Theorem D.6 introduces
a generic way to convert the model F p¨,θq, with possibly small all-layer margin on xPt0,1um, into
a new architecture and parameter set F 1p¨,θ1q, with provably large all-layer margin on xPt0,1um, such
that F 1px,θ1q“F px,θq on all inputs x P t0,1um. The construction relies on introducing new layers
to F to obtain F 1 and increases the total number of layers by only a constant factor. This step of the
proof is formally stated in the following lemma.

6

Lemma 3.3. In the setting of Lemma 3.2, let F p¨,θq“fq´1˝¨¨¨˝f1 be the neural net with parameters
θ constructed to compute the circuit G. There exist “correction functions” ζ1,...,ζq´2, where ζi is
computed by a neural net with two activation and linear layers, such that the composition F 1p¨,θ1qfi
fq´1˝ζq´2˝fq´2˝¨¨¨˝ζ1˝f1 has large all-layer margin:ρF 1pθ1,x,Gpxqqě 1

polypsq for all xPt0,1um.
Here θ1 denotes the collection of all parameters, and dependency of fi,ζi on θ1 is omitted for simplicity.

We convey the core intuitions for Lemma 3.3 in a simplified toy setting as follows. Consider the
case where we start with an initial architecture f computing fpx,pW1,...,Wdqq“

´

śd
i“1Wi

¯

x´0.5,
whereWi PR. In this simplified setting, we considerWi“1 @i. For input x“1 and target y“1, the
all-layer margin is small: ρf pp1,...,1q,1,1qÀ 1?

d
, where the architecture is in the subscript. Indeed,

choosing δi“ 3
d , we have fp1,p1´ 3

d ,...,1´
3
d qq“ p1´

3
d q
d´0.5« expp´3q´0.5ă0. Thus, by the

definition of all-layer margin, ρf pp1,...,1q,1,1qď
a

ř

iδ
2
i À

1?
d

.

Now we will insert ReLU layers in f to increase the all-layer margin to Ωp1q. We use ReLU layers
to implement the round function, which has the key property that roundpzq“1 @zě2{3.

Proposition 3.4. For any zPR, we can implement the function roundpzq“

$

&

%

0 if ză1{3
3x´1 if 1{3ďză2{3
1 if zě2{3

via a feedforward ReLU net, as follows: roundpzq“3φpz´1{3q´3φpz´2{3q.

We consider the following function rf , which inserts round between every layer in f :

rfpx,pW1,...,Wdqq“ roundpWdroundpWd´1¨¨¨roundpW1xq¨¨¨qq´0.5 (3.1)

For this demonstration, we ignore the parameters of round, though the actual proof considers them.
The following claim shows that (3.1) preserves the output of f while increasing the all-layer margin:

Claim 3.5. In the setting above, rfp1,p1,...,1qq“fp1,p1,...,1qq and ρ
rf pp1,...,1q,1,1qě

1
3 .

This reflects a significant increase in the all-layer margin, while only increasing depth by a constant
factor. The proof is simple: we observe that if δi ď 1

3 for all i, the function output will not change
because roundpzq“1 @zě 2

3 . This immediately gives the all-layer margin lower bound 1
3 .

To apply this construction more generally, we note that round corrects errors in previous layers.
In the more general setting, we insert “correction functions” ζ between each layer satisfying the
key property that ζph1q “ h if h is the intended output of the layer and h1 is any perturbed value
satisfying }h1´h}2ď 1

3 . Since intended outputs of layers in the function constructed by Lemma 3.2
are binary-valued in t0,1uw because F simulates a boolean circuit, we can simply apply the function
round constructed in Proposition 3.4 elementwise as the correction function. By the construction,
this can be implemented by adding two additional feedforward ReLU layers per correction function.
Following the intuition for Claim 3.5, we prove that inserting these correction functions guarantees
a large all-layer margin (Theorem D.6) on all xPt0,1um. This leads to the proof of Lemma 3.3. We
can complete the proof of Theorem 3.1 by invoking Lemma 2.4, as shown in Section B.

4 SM approximation of Turing machines with transformers

In this section, we show that transformers SM-approximate Turing machines with computation time
bounded by T , using sample complexity polynomial in logpT q and the state space and alphabet sizes of
the Turing machine. Constructions from prior work would require the approximation sample complexity
to be linear in T [48, 12, 42, 9]. Thus, we obtain an exponential improvement in the dependency on T .

We briefly describe a Turing machine; see [49] for a more thorough survey. A Turing machine is a
model for computation specified by a tuple pZ,A,S,Ztermq containing a set of states Z , a tape alphabet
A, a transition function S :ZˆAÑZˆAˆt´1,`1u, and set of terminal states Zterm indicating
accept or reject. For simplicity, we assume the Turing machine has a single tape, as any single-tape
Turing machine can simulate a multi-tape one with only quadratic increase in runtime [49]. Given
an input xPA˚ recorded on the left-most part of the tape, the Turing machine performs computation
in a sequence of timesteps. In each timestep, the machine determines the next state, symbol to write,
and direction to move the head via the transition function.

7

We let TMpZ,A,S,Ztermq denote the function computed by the Turing machine, which produces an
output in t0,1u (if the machine halts). Fixing the alphabet A, we consider the class of binary functions
computed by Turing machines with at most k states terminating in T steps:

Gk,T fitx ÞÑTMpZ,A,S,Ztermqpxq : |Z|ďk, and @xPX ,TMpZ,A,S,Ztermq terminates in T steps u (4.1)

Note that we can assume the input sequences x also have length at most T , as this is the maximum com-
putation time of the Turing machine and the maximum amount of symbols the Turing machine can read.

4.1 Transformer architecture for SM-approximating Turing machines

We study approximation of G with a family of architectures consisting of both an encoder and decoder
component [53], described as follows. The encoder architecture is simple and only performs an embed-
ding of the input symbols, using learnable symbol embeddingsE PRwˆ|A| and fixed positional encod-
ings βp1q,βp2q,...PRw. Given input xPA˚ withm symbols, the encoder producesm output vectors
in Rw via Encipx,Eq“E:,xi`βpiq, where Enci denotes the output of the encoder at the i-th position.

The decoder iteratively computes an output, running for T steps. We define a transformer layer of the
decoder as a sequence of modules consisting of decoder self-attention, followed by encoder-decoder
attention, followed by three feedforward ReLU layers.

Attention layers. Attention layers consist of key, value, and query functionsK,V,Q, each, computing
a linear transformation. We omit parameters here for simplicity. For a single decoder timestep, the
attention layer takes two types of inputs: a sequence of previously-computed representations h1,...,hi,
and a current input representation h1. The layer applies the key, value, and query functions as follows:

τ0,τ1,...,τi“Qph
1qJK0,Qph

1qJKph1q,...,Qph
1qJKphiq

v0,v1,...,vi“V0,V ph1q,...,V phiq

where K0 and V0 are fixed “null” key and value vectors which are learned parameters of the layer.
Letting J denote the set of indices tj : τj “maxtτ0,...,τiuu, the attention layer performs hard-max
attention [42] to compute the output, as follows: Attnph1,ph1,...,hiqq“h

1` 1
|J |

ř

jPJ vj .

Our theory also applies to the standard softmax attention used in practice, but we focus on the
hard-max case for a simpler proof. Let hpjqt denote the representation computed by the j-th layer
of the decoder at timestep t. At timestep i, decoder self-attention at the pj`1q-th layer computes
Attnphpjqi ,ph

pjq
1 ,...,h

pjq
i qq. Letting e1,...,em denote the encoder outputs, encoder-decoder self-attention

at the pj`1q-th layer and i-th step would compute Attnphpjqi ,pe1,...,emqq.

Transformer layers. We use feedforward layers which apply 3 standard ReLU layers, as follows:
FFphq“φpW3φpW2φpW1h`b1q`b2q`b3q. Our theory also allows for residual feedforward layers,
and the architecture here is chosen mainly to simplify the construction.

A transformer layer applies these constructions in sequence. Letting Hpjqi “ ph
pjq
1 ,...,h

pjq
i q denote

the output after the j-th transformer layer for timesteps 1ď tď i, and θpjq the parameters, we compute

h
pj`1,decq
i “Attnphpjqi ,H

pjq
i ,θ(j + 1, dec-attn)q

h
pj`1,encq
i “Attnphpj`1,decq

i ,pe1,...,emq,θ
(j + 1, enc-attn)q

Trphpjqi ,H
pjq
i ,pe1,...,emq,θ

pj`1qq“FFphpj`1,encq,θpj + 1, ffqq

Note that we included the explicit dependence of the attention layers on the parameters for
completeness. We now set hpj`1q

i “Trphpjqi ,H
pjq
i ,pe1,...,emq,θ

pj`1qq.

Decoder outputs. We considerd-layer decoders, so oifih
pdq
i denotes the output of the decoder at time i,

which is also inputted to the decoder at time i`1 as follows: hp0qi`1“h
pdq
i `βpi`1q. The initial decoder

input hp0q0 is a trainable parameter. The decoder runs for a fixed number of timesteps T 1 and outputs pre-
diction θJclsh

pdq
T 1 . For simplicity, we assume T 1“T , the computation time of the Turing machine family.

Note that our architecture allows long (length T) decoding sequences, whereas typical architectures
in practice use decoding sequences with roughly the same length as the input [53]. The architecture
we study is similar to ones studied by [42, 9].

8

We use x ÞÑ Fw,d,T px, θq to denote the described transformer architecture with parameters θ,
w-dimensional hidden layers, d transformer layers in the decoder, and T decoder steps. This leads to
the following class of transformer functions: Fw,d,α,T “tx ÞÑFw,d,T px,θq :}θ}1ďαu. The following
theorem states that this class of transformers SM-approximates the Turing machine family G defined
in (4.1) with sample complexity polynomial in logT , k and |A|.
Theorem 4.1. In the setting above, consider the class G of functions computed by Turing machines
with at most k states, alphabet A, and computation time bounded by T steps for inputs xPX . Suppose
thatwÁk|A|`logT , d— logT , and α“polypk,|A|,logT q.

Then, for all εą0 and any input distribution P over X , Fw,d,α,T ε-SM-approximates G with respect

to p`0-1,P qwith sample complexity polypk,|A|,logT q rO
´

logpwdq
ε2

¯

.

As with Section 3, we set the surrogate loss s` in Definition 2.2 to be the all-layer margin loss defined
in Section 2.1. Commonly-used alternatives for the surrogate loss would not suffice for either our
construction or ones in prior work [48, 12, 42, 9]. First, the VC dimension of Fw,d,α,T is at least
ΩpwT q. This is because transformer architectures which contain a decoder component can express
RNNs, which by lower bounds have VC dimension at leastwT [28]. This indicates that using `0-1 as
the surrogate loss would lead to sample complexities that are suboptimal in both the overparameterized
widthw and the computation T . Second, the correct norm-based Rademacher complexity bound to
use for transformers is unclear; however, the RNN-based equivalent would scale with the T -th power
of some parameter norm, or exponentially in T . Thus, as in Section 3, the all-layer margin surrogate
loss (2.2) is essential for obtaining our sample complexity bounds.

4.2 Proof sketch for Theorem 4.1

Following Lemma 2.4, our goal is to construct a transformer which can simulate Turing machines with
large all-layer margin, namely, Ω

´

1
polypk,|A|,logT q

¯

. The fundamental limitation of prior work [42]

towards attaining this is that the positional embeddings are required to store values as small as 1
polypT q .

Our construction cannot afford to rely on values this small – informally, if the construction relies
on the exact values of these small entries, then the all layer margin would be at most 1

polypT q because
perturbing the layer by the small entries could change the prediction. Instead, we propose using Binpiq,
the binary encoding of i in rlogT s bits, as the positional encoding for timestep i. This allows us to
use unique positional encodings for each timestep which do not rely on arbitrary precision.

We describe the construction. Fix a Turing machineGPG. We first require notation to describe the
computation ofG. For input xPX , let zipxq, aipxq denote the Turing machine state and symbol under
the tape head at the end of step i. We let lipxq denote the location of the Turing machine head at the
conclusion of step i. During the timestep, the Turing machine computes Spzi´1pxq,ai´1pxqq, writes a
new symbol under the head at location li´1pxq, and moves the head either left or right. Let uipxq denote
the symbol written during timestep i, and qipxqPtleft,rightu the movement direction of the head.

Following [42] with several key modifications, we simulate the Turing machine using the transformer
as follows. Each timestep will maintain the invariance that oi contains an encoding of zipxq,aipxq,
and lipxq. Given that this invariance holds until timestep i, the transformer simulates timestep i`1
of the Turing machine with the following steps:

1) Use feedforward layers to apply transition S on zipxq and aipxq, which can be read from
oi, to obtain zi`1pxq, ui`1pxq, and movement direction qi`1pxqPtleft, rightu.

2) Using feedforward layers, compute li`1pxq from qi`1pxq and the encoding of lipxq in oi.
3) Compute ai`1pxq. We use decoder self-attention to search over past timesteps which wrote

to li`1pxq. Our aim is to find ui1pxq, where i1 “maxtj ď i`1 : lj´1pxq “ li`1pxqu. We
implement a binary search over past timesteps j, which is needed to find the largest jď i`1
where lj´1pxq “ li`1pxq. The binary search is performed over the bits of i1 and can be
implemented with OprlogT sq decoder self-attention layers, and the construction ensures
large all-layer margin.

4) If no such i1 from the previous timestep existed, we check whether li`1pxq contained an input
symbol using encoder-decoder attention and copy this input symbol if so.

5) If no symbols were found in 3) or 4), li`1pxq must contain the blank symbol (meaning
it wasn’t visited yet by the head). Thus, we have computed ai`1pxq, so we have all the
information needed to compute the new embedding oi`1.

9

To lower bound the all-layer margin of the constructed transformer, we use Theorem D.6, which
requires existence of a “correction function” which can correct outputs in previous layers. Since we
construct a network with intermediate layer entries in t0,1u, we can use the same correction function
as Section 3.1, which rounds to the nearest bit. The full proof is provided in Section C.

5 Conclusion

This work proposes a new definition of approximation, statistically meaningful approximation, which
ensures that the approximating family not only has sufficient expressivity, but also exhibits good
statistical learnability. Towards a first analysis with this definition, we show approximability of two
function classes: boolean circuits and Turing machines, with strong sample complexity guarantees
depending only on the intrinsic properties of these function classes. There are several interesting
directions to extend our study of statistically meaningful approximation. Examples include proving
more upper and lower bounds for statistically meaningful approximation for different target functions
and neural net architectures, and using our definition as a lens to compare architectures.

Limitations

One potential limitation is that the “correction function” machinery discussed in Lemma 3.3 relies on
the discrete nature of boolean circuits and Turing machines, and so additional work and insight would
be required to prove analogous SM-approximation results for continuous functions. One important
property of discrete functions, which we suspect may be leveraged more generally, is that it is easy to
correct errors in intermediate computations of discrete functions (by rounding). It would be interesting
to see whether this property has a continuous analog which can be analyzed.

Acknowledgements

CW was supported by a NSF Graduate Research Fellowship. YC is supported by Stanford Graduate
Fellowship and NSF IIS 2045685. TM acknowledges support of Google Faculty Award, NSF IIS
2045685, and JD.com.

References
[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. Journal of Computer and system sciences, 58(1):137–147, 1999.
[2] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with

rectified linear units. arXiv preprint arXiv:1611.01491, 2016.
[3] C. Bao, Q. Li, Z. Shen, C. Tai, L. Wu, and X. Xiang. Approximation analysis of convolutional

neural networks. work, 65, 2014.
[4] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE

Transactions on Information theory, 39(3):930–945, 1993.
[5] P. Bartlett. For valid generalization the size of the weights is more important than the size of

the network. Advances in neural information processing systems, 9, 1996.
[6] P. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural

networks. arXiv preprint arXiv:1706.08498, 2017.
[7] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight vc-dimension and

pseudodimension bounds for piecewise linear neural networks. The Journal of Machine Learning
Research, 20(1):2285–2301, 2019.

[8] Y. Bengio and O. Delalleau. On the expressive power of deep architectures. In International
conference on algorithmic learning theory, pages 18–36. Springer, 2011.

[9] S. Bhattamishra, A. Patel, and N. Goyal. On the computational power of transform-
ers and its implications in sequence modeling. In Proceedings of the 24th Conference
on Computational Natural Language Learning, pages 455–475, Online, Nov. 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.conll-1.37. URL
https://www.aclweb.org/anthology/2020.conll-1.37.

[10] V. Chatziafratis, S. G. Nagarajan, I. Panageas, and X. Wang. Depth-width trade-offs for relu
networks via sharkovsky’s theorem. arXiv preprint arXiv:1912.04378, 2019.

10

https://www.aclweb.org/anthology/2020.conll-1.37

[11] V. Chatziafratis, S. G. Nagarajan, and I. Panageas. Better depth-width trade-offs for neural
networks through the lens of dynamical systems. In International Conference on Machine
Learning, pages 1469–1478. PMLR, 2020.

[12] Y. Chen, S. Gilroy, A. Maletti, J. May, and K. Knight. Recurrent neural networks as weighted
language recognizers. In NAACL-HLT, 2018.

[13] S. Chung and H. Siegelmann. Turing completeness of bounded-precision recurrent neural
networks. Advances in Neural Information Processing Systems, 34, 2021.

[14] N. Cohen and A. Shashua. Convolutional rectifier networks as generalized tensor decompositions.
In International Conference on Machine Learning, pages 955–963. PMLR, 2016.

[15] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on learning theory, pages 698–728. PMLR, 2016.

[16] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[17] A. Daniely. Depth separation for neural networks. In S. Kale and O. Shamir, edi-
tors, Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceed-
ings of Machine Learning Research, pages 690–696. PMLR, 07–10 Jul 2017. URL
http://proceedings.mlr.press/v65/daniely17a.html.

[18] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[19] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference
on learning theory, pages 907–940. PMLR, 2016.

[20] B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Limitations of lazy training of two-layers
neural network. In Advances in Neural Information Processing Systems, pages 9108–9118, 2019.

[21] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural
networks. In Conference On Learning Theory, pages 297–299. PMLR, 2018.

[22] M. Hardt and T. Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231, 2016.
[23] N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight vc-dimension bounds for piecewise linear

neural networks. In Conference on Learning Theory, pages 1064–1068. PMLR, 2017.
[24] J. Hewitt, M. Hahn, S. Ganguli, P. Liang, and C. D. Manning. Rnns can generate bounded

hierarchical languages with optimal memory. arXiv preprint arXiv:2010.07515, 2020.
[25] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366, 1989.
[26] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in

neural networks. In Advances in neural information processing systems, pages 8571–8580, 2018.
[27] Z. Ji, M. Telgarsky, and R. Xian. Neural tangent kernels, transportation mappings, and

universal approximation. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=HklQYxBKwS.

[28] P. Koiran and E. D. Sontag. Vapnik-chervonenkis dimension of recurrent neural networks.
Discrete Applied Mathematics, 86(1):63–79, 1998.

[29] S. A. Korsky and R. C. Berwick. On the computational power of rnns. arXiv preprint
arXiv:1906.06349, 2019.

[30] H. Lee, R. Ge, T. Ma, A. Risteski, and S. Arora. On the ability of neural nets to express
distributions. In S. Kale and O. Shamir, editors, Proceedings of the 2017 Conference on Learning
Theory, volume 65 of Proceedings of Machine Learning Research, pages 1271–1296. PMLR,
07–10 Jul 2017. URL http://proceedings.mlr.press/v65/lee17a.html.

[31] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural networks, 6(6):
861–867, 1993.

[32] H. Lin and S. Jegelka. Resnet with one-neuron hidden layers is a universal approximator. arXiv
preprint arXiv:1806.10909, 2018.

[33] T. Ma. Why do local methods solve nonconvex problems? Beyond the Worst-Case Analysis
of Algorithms, page 465, 2020.

[34] E. Malach, G. Yehudai, S. Shalev-Shwartz, and O. Shamir. The connection between approxima-
tion, depth separation and learnability in neural networks. arXiv preprint arXiv:2102.00434, 2021.

11

http://proceedings.mlr.press/v65/daniely17a.html
https://openreview.net/forum?id=HklQYxBKwS
http://proceedings.mlr.press/v65/lee17a.html

[35] S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layers
neural networks. Proceedings of the National Academy of Sciences, pages E7665–E7671, 2018.

[36] V. Nagarajan and J. Z. Kolter. Deterministic pac-bayesian generalization bounds for deep
networks via generalizing noise-resilience. arXiv preprint arXiv:1905.13344, 2019.

[37] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376–1401. PMLR, 2015.

[38] B. Neyshabur, S. Bhojanapalli, and N. Srebro. A pac-bayesian approach to spectrally-normalized
margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.

[39] Q. Nguyen and M. Hein. Optimization landscape and expressivity of deep cnns. In International
conference on machine learning, pages 3730–3739. PMLR, 2018.

[40] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function networks.
Neural computation, 3(2):246–257, 1991.

[41] S. Park, J. Lee, C. Yun, and J. Shin. Provable memorization via deep neural networks using
sub-linear parameters. arXiv preprint arXiv:2010.13363, 2020.

[42] J. Pérez, J. Marinković, and P. Barceló. On the turing completeness of modern neural network
architectures. arXiv preprint arXiv:1901.03429, 2019.

[43] M. J. D. Powell et al. Approximation theory and methods. Cambridge university press, 1981.
[44] A. Sannai, Y. Takai, and M. Cordonnier. Universal approximations of permutation invari-

ant/equivariant functions by deep neural networks. arXiv preprint arXiv:1903.01939, 2019.
[45] J. Savage. Models of computation - exploring the power of computing. 1998.
[46] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. Computational capa-

bilities of graph neural networks. IEEE Transactions on Neural Networks, 20(1):81–102, 2008.
[47] A. M. Schäfer and H.-G. Zimmermann. Recurrent neural networks are universal approximators.

International journal of neural systems, 17(04):253–263, 2007.
[48] H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets. Journal of

computer and system sciences, 50(1):132–150, 1995.
[49] M. Sipser. Introduction to the Theory of Computation. Course Technology, Boston, MA, third

edition, 2013. ISBN 113318779X.
[50] M. Telgarsky. benefits of depth in neural networks. In V. Feldman, A. Rakhlin, and O. Shamir,

editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1517–1539, Columbia University, New York, New York, USA, 23–26
Jun 2016. PMLR. URL http://proceedings.mlr.press/v49/telgarsky16.html.

[51] T. Teshima, K. Tojo, M. Ikeda, I. Ishikawa, and K. Oono. Universal approximation property
of neural ordinary differential equations. arXiv preprint arXiv:2012.02414, 2020.

[52] G. Vardi and O. Shamir. Neural networks with small weights and depth-separation barriers.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 19433–19442. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
e1fe6165cad3f7f3f57d409f78e4415f-Paper.pdf.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[54] R. Vershynin. Memory capacity of neural networks with threshold and relu activations. arXiv
preprint arXiv:2001.06938, 2020.

[55] C. Wei and T. Ma. Data-dependent sample complexity of deep neural networks via lipschitz
augmentation. arXiv preprint arXiv:1905.03684, 2019.

[56] C. Wei and T. Ma. Improved sample complexities for deep networks and robust classification
via an all-layer margin. arXiv preprint arXiv:1910.04284, 2019.

[57] C. Wei, J. D. Lee, Q. Liu, and T. Ma. Regularization matters: Generalization and optimization of
neural nets vs their induced kernel. Advances in Neural Information Processing Systems, 32, 2019.

[58] G. Weiss, Y. Goldberg, and E. Yahav. On the practical computational power of finite precision
rnns for language recognition. arXiv preprint arXiv:1805.04908, 2018.

[59] D. Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, pages 1–68, 2021.

12

http://proceedings.mlr.press/v49/telgarsky16.html
https://proceedings.neurips.cc/paper/2020/file/e1fe6165cad3f7f3f57d409f78e4415f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e1fe6165cad3f7f3f57d409f78e4415f-Paper.pdf

[60] C. Yun, S. Sra, and A. Jadbabaie. Small relu networks are powerful memorizers: a tight analysis
of memorization capacity. arXiv preprint arXiv:1810.07770, 2018.

[61] C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar. Are transformers universal
approximators of sequence-to-sequence functions? arXiv preprint arXiv:1912.10077, 2019.

[62] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[63] H. Zhang, X. Gao, J. Unterman, and T. Arodz. Approximation capabilities of neural odes
and invertible residual networks. In International Conference on Machine Learning, pages
11086–11095. PMLR, 2020.

[64] D.-X. Zhou. Universality of deep convolutional neural networks. Applied and computational
harmonic analysis, 48(2):787–794, 2020.

13

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information
on how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were

chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Proofs for Section 2

We prove Proposition 2.3 and Lemma 2.4.

Proof of Proposition 2.3. Let pxiqni“1 denote a n i.i.d. training examples drawn from P and fix
G P G. Define LpF qfiEx„P rs`pF,x,Gpxqqs and pLpF qfi 1

n

řn
i“1

s`pF,xi,Gpxiqq. Let pF PF denote
argminFPF pLpF q, the empirical risk minimizer of pL, which we aim to show has population loss for
fittingG bounded byOpε` 1?

n
q. By standard arguments using Rademacher complexity, we have with

probability 1´δ,

sup
FPF

|LpF q´pLpF q|ď2Radn,P pLGq`
c

logp2{δq

n

ď2ε`

c

logp2{δq

n
(A.1)

Now note that by the condition 3) on s`, there exists F ‹ withLpF ‹qďε. Now we have

Lp pF q´LpF ‹qďpLp pF q´pLp pF qq`ppLp pF q´pLpF ‹qq`ppLpF ‹q´LpF ‹qq

We bound the first and last term in parenthesis by applying (A.1), and the middle term is bounded
by 0, by definition of pF . It follows that

Lp pF q´LpF ‹qď4ε`2

c

logp2{δq

n

ùñ Lp pF qď5ε`2

c

logp2{δq

n

where we used LpF ‹q ď ε. Finally, we use the fact that s` upper bounds `, so
Ex„P r`p pF pxq,GpxqqsďLp pF q. Plugging in δ“0.01 gives the desired result.

Proof of Lemma 2.4. We first observe that s`γpθ,x,yqď1pρpθ,x,yqăγq by definition, so by (2.3), for
allGPG we have

inf
θPΘ

Ex„P rs`pθ,x,Gpxqqsďε

Thus, it remains to check the Rademacher complexity condition for applying Proposition 2.3. Fixing
anyGPG, define the function class LG as in Definition 2.2.

We first observe that following the same argument as Claim A.4 of [56] (except we apply the
perturbations to the parameters, rather than the hidden layers), |ρpθ,x,yq´ρpθ1,x,yq|ď}θ´θ1}2 for
any θ,θ1 PRp. Let N}¨}2pε,Θq denote the ε-covering number of Θ in } ¨ }2-norm, and N}¨}8pε,LGq
the ε-covering number of LG in the norm defined by }H´H 1}8“maxxPX |Hpxq´H

1pxq| for any
H,H 1 PLG. The arguments of [56] imply that logN}¨}8pε,LGqď logN}¨}2pγε,ΘqďO

´Y

α2logppq
γ2ε2

]¯

,
where the last inequality is from standard covering number bounds for }¨}1 balls. Now we can apply
this covering number bound in the Dudley entropy integral, another standard step to bound Rademacher

complexity, to obtain that for all n, Radn,P pLGq À
αlogn

?
logppq

γ
?
n

(see arguments in [56] for more
detail). Solving for n such that the r.h.s. of this equation is bounded by ε gives the desired result.

Note that from the proof of Lemma 2.4, we would also obtain the following parameter-space all-layer
margin generalization bound as a corollary, which may be of independent interest:
Corollary A.1. In the setting of Lemma 2.4, let Q denote a distribution over px, yq pairs, with
pxi,yiq

n
i“1 denoting a set of n i.i.d. training samples from Q. With probability 1´δ over the draw

of the training samples, all classifiers F p¨,θqPF which achieve zero 0-1 training loss satisfy

Ex„Qr`0-1pF px,θq,yqsďO

¨

˝

α
a

logppq
?
n

g

f

f

e

1

n

n
ÿ

i“1

1

ρpθ,xi,yiq2

˛

‚`ξ (A.2)

where ξÀO
´

logp1{δq`logpnq
?
n

¯

is a low-order term.

15

The proof of Corollary A.1 simply follows by plugging in the coverning number bound on ρ derived
in the proof of Lemma 2.4 into Lemma 2.2 of [56].

B Proofs for Section 3

This section completes the proof of Section 3. The following lemma formally states that we can
construct the neural net to simulate the circuit layerwise.
Lemma B.1. In the setting of Theorem 3.1, letG denote the layered boolean circuit, which we aim
to compute using a neural net. Let Gi : t0,1uri´1 Ñt0,1uri denote function computed between the
i´1-th and i-th layers ofG, which we assume have ri´1 and ri gates, respectively. Let f denote the
following 2-layer neural net architecture, parameterized by θ“pW1,b1,W2,b2q:

fph,θq“φpW2φpW1h`b1q`b2q

Then there exist θ with }θ}1“Opriq such that for any hPt0,1uri´1 ,

fprh,θq“ČGiphq

where rh takes h and appendsw´ri´1 zeros, and likewise for ĂGiphq.

We note that the proof of Lemma 3.2 follows by applying Lemma B.1 q´1 times. Using Lemma B.1,
we can complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Our proof will construct a neural network to compute any boolean circuit with
all-layer margin lower bound 1

polypr,qq . By Lemma 2.4, this will be sufficient to guarantee meaningful
approximation.

There are two steps in our construction: first, given any layered circuitGPGq,r,s, we construct a neural
net that directly simulatesG by computing the layers ofG one-by-one. Our construction shows that
we can compute every layer inG using two feedforward ReLU layers, and results in a neural net pF
computingG, but with possibly small all-layer margin. The next step is to convert pF into a neural net
with large all-layer margin, i.e., implement Lemma 3.3. To do this, we insert “correction functions”
(Definition D.1) between every group of layers in pF . These correction layers leverage the knowledge
that unperturbed outputs of these layers should be contained in t0,1uw and perform elementwise round-
ing to map perturbed values back to t0,1uw. Theorem D.6 formally shows that by introducing these
correction layers can guarantee a lower bound on the all-layer margin roughly depending on the Lip-
schitz constants of each individual layer. Furthermore, each correction layer can be computed via two
feedforward ReLU layers, so introducing the correction layers only increases depth by a constant factor.

We implement the proof plan by first applying Lemma B.1 q times in order to obtain the function pF
computingG (with padding) mentioned above. The total }¨}1-norm of the parameters so far is at most
s. Now we use the correction function described in Proposition 3.4, which we apply coordinate-wise on
non-padding coordinates. We apply the correction functions after each layer constructed in Lemma B.1.
Note that each correction function requires at most double the width of the corresponding layer in
the circuit, and the parameters for all correction functions add total }¨}1-norm at mostOpsq.

Note that at this point, minor modifications are still required in order to apply Theorem D.6. The neural
net output is in t0,1uw, not t´1,1u; we can remedy this by setting the last layer to compute the linear
transformation z ÞÑ2z´1 on the single non-padding coordinate corresponding to the output. Second,
to make the depth of the architecture consistently d, we can add sequences of identity functions before
this last linear layer just constructed, followed by correction layers, until each of the constructed
approximating functions reaches the desired fixed depth d. This finally gives us parameters θ with
}¨}1-norm boundOps`dq, so that the set of constructed functions is contained in Fw,d,α. Thus, we
showed that forGPGq,r,s, there exists θ such that F px,θq“2Gpxq´1 for all xPt0,1um.

Finally, it is straightforward to check that Condition D.3 for Theorem D.6 is satisfied for Lipschitzness
parameters which are polynomial in the circuit width r. Thus, we apply Theorem D.6 to obtain a lower
bound pγ“ 1

polypr,qq ě
1

polypsq on the all-layer margin for every input x P t0,1um. Finally, we directly
apply Lemma 2.4 using γ“pγ to obtain the desired result.

The following proposition will be used to construct basic gates in the circuit with a simple feedforward
ReLU network.

16

Proposition B.2. Let x “
„

x1

x2



P t0,1u2 be binary inputs to AND and OR gates. The following

feedforward ReLU networks compute the AND and OR functions: FANDpxq “ φpx1`x2´1q, and
FORpxq“1´φp1´x1´x2q.

Proof of Lemma B.1. Each row ofW1 and value in b1 will correspond to a single entry in the output
of ĂGi. The same applies forW2,b2. W2 will be set to a diagonal matrix with entries in t´1,0,1u. For
the 0 entries which only serve to pad the dimension, we set corresponding values inW1,b1,W2,b2 to be
0. For the remainder of the entries of ĂGi corresponding to actual gates in the circuit, in the case that the
gates compute AND or OR, we fill in the values of corresponding rows inW1,b1,W2,b2 to implement
the constructions for AND and OR in Proposition B.2. The construction for ID and NOT are even
simpler. For example, to implement NOTpzq“1´z for zPt0,1u on coordinate j, we can set the j-th
row of W1 to have -1 on the diagonal and 0 everywhere else, pb1qj “ 1, pb2qj “ 0, and pW2qj,j “ 1.
It is easy to check that }θ}1“Opriqwith this construction.

C Proof of Theorem 4.1

C.1 Additional setup and notation

We fix any Turing machineGPG and construct a transformer which can simulateG. Throughout this
section, a superscript will be used to index layer indices, and a subscript to index timesteps.

We assume that the initial state of the tape has the input written at the left-most positions. The Turing
machine always starts at a fixed initial state zinit. We let r∅s P A denote the blank symbol, which
initially fills all positions on the tape which aren’t part of the input. We construct a transformer that
simulates the Turing machine up until it reaches a terminal state in Zterm, at which the transformer
will loop in that state until it hits a computation time T .

We introduce some notation which will appear throughout the construction. Define wpos firlog2T s.
We use wpos to denote the effective dimension of the position embedding, as only wpos coordinates
will be non-zero. For 0ď iďT , define BinpiqPRwpos to be the vector containing the binary encoding
of i: Binpiqj“1 if the binary representation of i contains 1 in the j-th bit and 0 otherwise.

For simplicity, the proof will focus on the setting without overparameterization, where we choose
the dimension w “ wTM fi |Z| ` 2|A| ` 3wpos`wscr for storing all the hidden representations of
the model, where wscr “ Opwpos ` |A| ` |Z|q. We can extend our analysis to allow for arbitrary
over-parameterization using wąwTM by designating a certain subset of the coordinates to always
equal 0, and performing calculations using only a subset of wTM coordinates. We group the wTM
coordinates using the following symbols: st for encoding the state, sym1, sym2 for encoding symbols,
pos1 and pos2, pos3 for encoding position, and scr, which is used as scratch space. Thus, for hPRw,
we can index its coordinates via the groups as follows:

h“

»

—

—

—

—

—

—

—

–

hst PR|Z|
hsym1 PR|A|
hsym2 PR|A|
hpos1 PRwpos

hpos2 PRwpos

hpos3 PRwpos

hscr PRwscr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

When the meaning is clear from context, we use the superscript to index coordinate groups as described.

The position embedding βpiq is defined formally so that βpiqpos1 “Binpiq, and βpiq is 0 in all other
coordinates. The encoder embedding matrixE is such that

Encipxqsym1“1|A|pxq

Encipxqpos1“Binpiq
(C.1)

where Encipxq has 0’s at all other coordinates. embedding function e : AÑ Rd for the encoder is
defined such that epxqsym1“1|A|pxq, the one-hot encoding for xPA, and 0 everywhere else. We use
o1,...,oT to refer to the output embeddings of the decoder. Our construction maintains the invariant

17

that the output embedding oi encodes zipxq, aipxq, lipxq for each i. To achieve this, we maintain

ost
i “1|Z|pzipxqq

o
sym1
i “1|A|paipxqq

o
pos2
i “Binplipxqq

(C.2)

and oi has 0 at all other coordinates. Thus, the input oi`βpi`1q to the decoder at step i`1 is of the form

poi`βpi`1qqst“1|Z|pzipxqq

poi`βpi`1qqsym1“1|A|paipxqq

poi`βpi`1qqpos1“Binpiq
poi`βpi`1qqpos2“Binplipxqq

(C.3)

C.2 Completing the proof

We implement the first step 1) in Section 4.2 using the following lemma. Note that the lemma uses
two consecutive feedforward ReLU layers, but in our actual proof we will simulate this using two trans-
former layers where the attention parameters are all 0, and only the feedforward layers are instantiated.
Lemma C.1. Let O denote the set of decoder inputs in the form (C.3) encoding zi´1pxq, ai´1pxq,
li´1pxq for some timestep i. For parameters θ “ pW1,b1,W2,b2q, consider the following function
computing a sequence of two feedforward ReLU layers: fph,θq “ φpW2φpW1h`b1q`b2q. There
exist parameters θ such that for decoder inputs hPO,

fph,θqst“1|Z|pzipxqq

fph,θqsym2“1|A|puipxqq

fph,θqpos1“Binpiq
fph,θqpos2“Binpli´1pxqq

(C.4)

Furthermore, fph,θqscr will contain a one-hot encoding for qipxq, and besides this, fph,θq is 0 at all
other coordinates. The parameters satisfy }θ}1“Op|Z||A|`wposq.

Proof. We follow the construction used in Lemma B.2 of [42]. The first layer computes a one-hot
encoding of the state, symbol input pair. We chooseW1 :RwTMÑR|Z||A|`wTM so that the first |Z|A|
rows are described by:

pW1q
st
pz,aq,:“1|Z|pzq

pW1q
sym1

pz,aq,:“1|A|paq

and 0 everywhere else. The remaining rows of wTM rows of W1 simply implement the identity
mapping. We choose b1 so that its first |Z||A| entries are -1, and all other entries are 0. We observe
that from this construction, for all hPO where h encodes zi´1pxq,ai´1pxq,

φpW1h`b1q“

„

1|Z||A|ppzi´1pxq,ai´1pxqqq
h



This is because before the ReLU, the first |Z||A| entries ofW1hwill have 2 on the pzi´1pxq,ai´1pxqq-
th entry and be bounded by 1 everywhere else, so adding α1 and applying the activation will zero out
all but one entry.

Now it is simple to pickW2 so that fph,θq is as desired because we can construct it to exactly encode
the output of Spz,aq for each of its first pz,aq columns and copy over the other necessary entries of
h as needed by (C.4).

The next lemma demonstrates that we can use an additional sequence of feedforward ReLU layers
to produce Binplipxqq, given Binpli´1pxqq and qipxq.
Lemma C.2. In the setting of Theorem 4.1 and Lemma C.1 above, there is a function f parameterized
by θ composed of Opwposq feedforward ReLU layers such that for any h computed by the function

18

in Lemma C.1 in the form (C.4) at timestep i,

fph,θqst“1|Z|pzipxqq

fph,θqsym2“1|A|puipxqq

fph,θqpos1“Binpiq
fph,θqpos2“Binpli´1pxqq

fph,θqpos3“Binplipxqq

(C.5)

At all other coordinates, F ph, θq takes value 0. Furthermore, the parameters satisfy
}θ}1“Opwposp|Z|`|A|`wposqq.

Proof. As the construction of Lemma C.1 encoded qipxq, the movement direction of the head, we can
use feedforward ReLU layers to implement binary addition to either add or subtract 1 from li´1pxq.
Let v1,v2 denote the bits in the scratch dimensions indicating the head movement, where v1“1,v2“0
indicates left and v1“0,v2“1 indicates right. Then more specifically, we first useOpwposq feedforward
ReLU layers to compute li´1pxq´v1, and thenOpwposq additional feedforward ReLU layers to compute
li´1pxq´v1`v2. Note that the output would always be lipxq by the definition of v1,v2.

It remains to implement a module which computes Binpj´v1q given v1,Binpjq, and Binpj`v2q given
v2,Binpjq for any j PrT s. We can express the binary addition by a depth-Opwposq binary circuit, which
can in turn be expressed by a neural net withOpwposq layers where each weight matrix has }¨}1-norm
p|Z|` |A|`wposq (which is required to implement the identity mapping to copy forward the other
dimensions of hwhich aren’t involved in the binary addition). This gives the desired total }¨}1-norm
bound.

The next lemmas implement steps 3), 4), 5) in Section 4.2. For the following lemmas, it will be helpful
to further index the scratch dimensions as follows: for a vector hPwscr,

hscr“

»

—

–

hscr1 PR|A|
hscr2 PR|A|
hscr3 PRwpos

hscr4 PR3

fi

ffi

fl

Lemma C.3. In the setting of Theorem 4.1 and Lemma C.2 above, fix any timestep i and define
i1“maxt1ď tď i : lt´1pxq“ lipxqu. If j such that lt´1pxq“ lipxq exists, we define i1“0 otherwise.
Consider anyHi“ph1,...,hiq, where ht is computed by the layer in Lemma C.2 for timestep t, and
in the form (C.5). There is a function f parameterized by θ consisting ofOpwposq total self-attention
and linear layers such that for all suchHi, the following holds:

fphi,Hi,θq
st“1|Z|pzipxqq

fphi,Hi,θq
sym2“1|A|puipxqq

fphi,Hi,θq
pos1“Binpiq

fphi,Hi,θq
pos2“Binpli´1pxqq

fphi,Hi,θq
pos3“Binplipxqq

fphi,Hi,θq
scr1“

"

1|A|pui1pxqq if i1ą0

0 otherwise

F phi,Hi,θq
scr4
1 “1pi1ą0q

(C.6)

At all other coordinates, F pH, θq takes value 0. Furthermore, the parameters satisfy
}θ}1“Opwposp|Z|`|A|`wposqq.

The proof plan will roughly implement a binary search to find i1, leveraging the attention layers. The
first step in the binary search is to verify whether i1ą0, described below.
Claim C.4. In the setting of Lemma C.3, letHi“h1,...,hi be the input representations for timesteps
1,...,i. Suppose that each ht for 1ď tď i satisfies the following:

h
pos1
t “Binptq

h
pos2
t “Binplt´1pxqq

(C.7)

19

Additionally, suppose that hi is of the form in (C.5). Then there is a function f p0q parameterized by
θ such that

f p0qphi,Hi,θq
scr1“0

f p0qphi,Hi,θq
scr3“0

f p0qphi,Hi,θq
scr4
1 “1pi1ą0q

(C.8)

The function f p0q can be computed by a single decoder self-attention layer with }θ}1“Opwposq.

Next, we implement the binary search itself, usingwpos self-attention layers. Each step of the binary
search reveals a single bit of i1, so the j-th attention layer will compute a representation storing the
j most significant bits of i1. We let Binjplq P t0,1uwpos to denote the binary encoding of the j most
significant bits of l: pBinjplqqj1 “ pBinplqqj1 for 1ď j1 ď j, and pBinjplqqj1 “ 0 for j1 ą j. We also
set Bin0plq“0. We use the superscript pjq to indicate the j-th set of layers in the binary search. The
following claim implements each step of the binary search rigorously.

Claim C.5. In the setting above and of Lemma C.3, let Hpjqi “ h
pjq
1 ,...,h

pjq
i be the representations

computed after the j-th group of layers for timesteps 1 through i, for 0ď jďwpos´1. Suppose that
each hpjqt for 1ď tď i satisfies the following:

h
pjq,pos1
t “Binptq

h
pjq,pos2
t “Binplt´1pxqq

(C.9)

In addition, suppose that hpjqi satisfies:

h
pjq,scr1
i “0

h
pjq,scr3
i “

"

Binjpi1q if i1ą0
0 otherwise

ph
pjq,scr4
i q1“1pi

1ą0q

(C.10)

with all other coordinates matching the quantities prescribed in (C.5). Then there is a function f pj`1q

parameterized by θ such that

f pj`1qph
pjq
i ,H

pjq
i ,θqscr1“0

f pj`1qph
pjq
i ,H

pjq
i ,θqscr3“

"

Binj`1pi
1q if i1ą0

0 otherwise

f pj`1qph
pjq
i ,H

pjq
i ,θqscr4

1 “1pi1ą0q

(C.11)

with all other coordinates matching those prescribed in (C.5). We note that f pj`1q consists of a single de-
coder self-attention layer followed by single feedforward ReLU layer, with }θ}1“Op|Z|`|A|`wposq.

At the end of the wpos-th application of the binary search, we would have found Binpi1q exactly. It
remains to apply another attention layer which attends directly to timestep i1 and copies ui1pxq.
Claim C.6. In the setting above and of Lemma C.3, letHi“h1,...,hi be the representations computed
after thewpos-th group of layers constructed in Claim C.5 for timesteps 1 through i. Suppose that each
ht for 1ď tď i satisfies the following:

h
sym2
t “1|A|putpxqq

h
pos1
t “Binptq

h
pos2
t “Binplt´1pxqq

(C.12)

In addition, suppose that hi satisfies:

hscr1
i “0

hscr3
i “

"

Binpi1q if i1ą0
0 otherwise

phscr4
i q1“1pi

1ą0q

(C.13)

20

with all other coordinates matching the quantities prescribed in (C.5). Then there is a function f pwpos`1q

parameterized by θ such that f pwpos`1qphi,Hi,θq computes the desired output in (C.6). Furthermore,
f pwpos`1q consists of a single decoder self-attention layer followed by a single feedforward ReLU layer,
and }θ}1“Op|Z|`|A|`wposq.

Putting these together, we complete the proof of Lemma C.3.

Proof of Lemma C.3. For the purposes of this proof, we index the layers by a superscript to avoid
confusion with indexing timesteps. We set f p0q to be the function defined in Claim C.4. We note
that layers output by f p0q satisfy the condition of Claim C.5, so we can apply Claim C.5 inductively
to obtain layers f p1q, ... , f pwposq where their applying their composition results in representations
satisfying (C.12) and (C.13). Now we set f pwpos`1q to be the function constructed in Claim C.5,
which gives the desired output. Finally, we note that by summing the }¨}1 bounds for the parameters
constructed in each layer, we can finally obtain }θ}1“Opwposp|Z|`|A|`wposqq.

We fill in the proofs of Claims C.4, C.5, and C.6 below.

Proof of Claim C.4. To construct the decoder self-attention, the query function will be of the form
Qphq“WQh`bQ andKphq“WKh`bK , whereWQ,WK PRpwpos`1qˆw and bQ,bK PRwpos`1. We
choose the parameters such that the following equations hold:

Qphq1:wpos“2hpos3´1

Qphqwpos`1“1

and

Kphq1:wpos“2hpos2´1

Kphqwpos`1“0

The value function V phq is such that V phqscr4
1 “ 1, and V phq`“ 0 on all other coordinates `, which

can be implemented by a linear transformer. Finally, we set the null key K0 and value V0 such
that pK0qwpos`1 “ wpos´ 1, with 0 everywhere else, and V0 “ 0. Letting θattn denote the attention
parameters, the layer is of the form

f p0qphi,Hi,θq“Attnphi,Hi,θq

To see that f p0q satisfies (C.8), observe that if i1ą0,QphiqJKphi1q“wpos by (C.7) and construction
ofQ,K. On the other hand,QphiqJK0“wpos´1. Thus, argmaxtQphiq

JKphtqPris, which implies
that f p0qphi,Hi,θq

scr4
1 “ 1 by the construction of V . In the other case where i1 “ 0, we note that

Qphiq
JKphtqďwpos´2 for all 1ď tď i, so the null position is attended to. By construction of V0,

this implies f p0qphi,Hi,θq
scr4
1 “0. As V,V0 are 0 on all other coordinates, it follows that (C.8) holds.

It’s also easy to observe that the }θ}1 is as desired.

Proof of Claim C.5. The first layer in f pj`1q computes decoder self-attention. The query function
is of the form Qphq “WQh` bQ, and the key function is of the form Kphq “WKh` bh, where
WQ,WK PRpwpos`j`2qˆw and bQ,bK PRpwpos`j`2q. We choose the parameters so that the following
equations hold:

Qphq1:wpos“2hpos3´1

Qphqwpos`1:wpos`j“2hscr3
1:j ´1

Qphqwpos`j`1“1

Qphqwpos`j`2“1

and

Kphq1:wpos“2hpos2´1

Kphqwpos`1:wpos`j`1“2h
pos1
1:j`1´1

Kphqwpos`j`2“0

21

Both of these functions can be constructed via linear transformations of h, with }WQ}1`}WK}1`

}bQ}1 ` }bK}1 “ Opwposq. Now we construct the value function V phq “ WV h ` bV such that
V phqscr4

3 “ 1 and V phq` “ 0 on all other coordinates, which is also easily implemented by a linear
layer. For the attention, the last quantities to construct are the null keyK0 and value V0. K0 will satisfy
pK0qwpos`j`2“wpos`j, with 0 everywhere else. V0 will simply be 0 on all coordinates. Letting θattn“

pWQ,bQ,WK ,bK ,WV ,bV ,K0,V0qdenote the attention parameters, the first layer will now be in the form

f pj`1q,1ph
pjq
i ,H

pjq
i ,θattnq“Attnphpjqi ,H

pjq
i ,θattnq

where Attn uses the constructed key, value, and query functions. We claim that f pj`1q,1ph
pjq
i ,H

pjq
i ,θattnq

satisfies the following:

f pj`1q,1ph
pjq
i ,H

pjq
i ,θattnq

scr4
3 “

"

1 if i1ą0 and has pj`1q-th bit 1
0 otherwise

(C.14)

For all other coordinates `, f pj`1q,1ph
pjq
i ,H

pjq
i ,θattnq` “ ph

pjq
i q`. To see this, we first observe that

Qph
pjq
i q

JK0 “wpos` j. Next, we observe that Qphpjqi q1:wpos produces the encoding of lipxq using

binary t´1,`1u bits, and Kphpjqt q1:wpos produces the encoding of lt´1pxq using binary t´1,`1u

bits by (C.9). In addition, Qphpjqi qwpos`1:wpos`j “ 2Binjpi1q´ 1 if i1 ą 0 and all 0’s otherwise, and

Kph
pjq
t qwpos`1:wpos`j`1“2Binj`1ptq´1. Note that by our construction, the maximum possible value

ofQphpjqi q
JKph

pjq
t q iswpos`j`1, and the next largest possible value iswpos`j´1. Now there are

3 cases:

Case 1: i1 “ 0. In this case, we note that lipxq never matches lt´1pxq for 1 ď t ď i. Thus, by
construction of the firstwpos coordinates ofQ andK, the largest possible value ofQphpjqi q

JKph
pjq
t q

is wpos`j´1, so the attention will always only attend to the null position, so the layer adds V0“0

to hpjqi , preserving its value. Note that phpjq,scr4
i q3“0 in this case, which matches the desired behavior.

Case 2: i1 ą 0, and has pj ` 1q-th bit 0. In this case, we note that for all t ą i1,
Qph

pjq
i q

JKph
pjq
t q ď wpos ` j ´ 1, because by definition such t must satisfy lt´1pxq ‰ lipxq,

so the firstwpos coordinates contribute at mostwpos´2 to the dot product. On the other hand, if tď i1,
t must have pj`1q-th bit 0, so Kphpjqt qwpos`j`1 “´1. This doesn’t match the pwpos`j`1q-th bit

of the query, soQphpjqi q
JKph

pjq
t qďwpos`j´1 again. Thus, in this case, the null position is attended

to again. The same reasoning as Case 1 then applies.

Case 3: i1ą0 and has pj`1q-th bit 1. In this case, maxtQph
pjq
i q

JKph
pjq
t q“wpos`j`1: for example,

t“ i1 achieves this maximum by our construction. As a result, the null position is not attended to. All
the values in the positions attended to satisfy V phpjqt q

scr4
3 “ 1, which matches the pj`1q-th bit of i1.

Thus, (C.14) holds.

Finally, to complete the proof we simply append an additional feedforward ReLU layer which copies
the value f pj`1q,1ph

pjq
i ,H

pjq
i ,θattnq

scr4
3 to the output bit corresponding to the position indexed by ¨scr3

j`1.
This layer will also set the output bit corresponding to ¨scr4

3 to 0. Note that these operations can be
implemented with a linear layer, and applying a ReLU activation after won’t change the output, which
is in t0,1uw. By (C.10), the constructed function will thus satisfy (C.11). It’s also easy to observe
that }θ}1 is as desired.

Proof of Claim C.6. The attention layer uses key and query functions which each compute linear
transformations fromRw toR2wpos`1. The value function is also linear. We choose parameters such that

Qphq1:wpos“2hpos3´1

Qphqwpos`1:2wpos“2hscr3´1

Qphq2wpos`1“1

and
Kphq1:wpos“2hpos2´1

Kphqwpos`1:2wpos“2hpos1´1

Kphq2wpos`1“0

22

and

V phqscr1“hsym2

Furthermore, we choose null keys and positions such that pK0q2wpos`1“ 2wpos´1, and V0“0. To
follow the attention layer, we construct a linear layer which simply zeros out coordinates indexed
by ¨scr3 and preserves all other coordinates. Note that because all outputs are either 0 or 1, applying a
ReLU activation won’t change the result. To see that this construction computes (C.6), we observe that
if i1ą0,QphiqJKphi1q“2wpos. Otherwise, if i1“0,QphiqJKphtqď2wpos´2 for all 1ď tď i. On
the other hand, it always hold thatQphiqJK0“2wpos´1. Thus, if i1ą0, the attention attends exactly
to i1, so the value function satisfies V phi1q“1|A|pui1pxqq, which would produce the output in (C.6),
as desired. On the other hand, if i1“0, the attention attends to the null position, so the attention layer
sets f pwpos`1qphi,Hi,θq

scr1“0. Thus, f pwpos`1q also produces the desired output in this case. It’s also
easy to observe that the }θ}1 is as desired.

The next step is to complete step 4) in Section 4.2 using encoder-decoder attention. The following
lemma provides this construction.
Lemma C.7. In the setting of Theorem 4.1 and Lemma C.3, consider any timestep i and let h denote
an output of the function constructed in Lemma C.3, in the form (C.6). Let e1, ... ,em denote the
outputs of the encoder, in the form (C.1). There is a function f with parameter θ consisting of a single
encoder-decoder attention layer such that for all such h in the form (C.6), the following holds:

fph,pe1,...,emq,θq
st“1|Z|pzipxqq

fph,pe1,...,emq,θq
sym2“1|A|puipxqq

fph,pe1,...,emq,θq
pos1“Binpiq

fph,pe1,...,emq,θq
pos2“Binpli´1pxqq

fph,pe1,...,emq,θq
pos3“Binplipxqq

fph,pe1,...,emq,θq
scr1“

"

1|A|pui1pxqq if i1ą0

0 otherwise

fph,pe1,...,emq,θq
scr2“

"

1|A|pxlipxqq if lipxqďm
0 otherwise

fph,pe1,...,emq,θq
scr4
1 “1pi1ą0q

fph,pe1,...,emq,θq
scr4
2 “1plipxqďmq

(C.15)

At all other coordinates, fph, pe1, ... , emq, θq takes value 0. Furthermore, the parameters satisfy
}θ}1“Op|A|`wposq.

Proof. We choose the encoder-decoder attention layer so that the key, value, and query functions are
linear transformations. The key and query functions map Rw to Rwpos`1 and compute the following:

Qphq1:wpos“2hpos3´1

Qphqwpos`1“1

and

Kphq1:wpos“2hpos1´1

Kphqwpos`1“0

The value function computes

V phqscr2“hsym1

V phqscr4
2 “1

with 0’s in all other coordinates. The null keyK0 satisfies pK0qwpos`1“wpos´1, with 0’s in all other
coordinates. The null value V0 satisfies V0“0. We set

fph,pe1,...,emq,θq“Attnph,pe1,...,emq,θq

where Attn is the decoder-encoder attention using the key, value, and query described above. Now we
observe that from this construction, if h is in the form provided in (C.6), thenQphq1:wpos“Binplipxqq.

23

In addition, we haveKpejq1:wpos “ e
pos1
j “Binpjq for 1ď jďm. Thus, by construction of V,K0,V0,

if lipxq ďm, the attention attends to position lipxq in the embedding. The value function for this
position satisfies V pelipxqq

scr2“e
sym1

lipxq
“1|A|pxlipxqq. Thus, in this case F ph,θq computes the desired

output in (C.15). On the other hand, if lipxqąm, then the attention will attend to the null position,
as QphqJK0 “ wpos ´ 1, and the largest possible score for all other positions is wpos ´ 2. In this
case, (C.15) holds again. It is also easy to check that the desired bound on }θ}1 would hold.

Finally, we implement step 5) of the outline in Section 4.2 in the following lemma.
Lemma C.8. In the setting of Theorem 4.1 and Lemma C.7, consider any timestep i and any h output
by the function in Lemma C.7 taking the form in (C.15). Then there is a function f with parameters
θ consisting of a constant number of feedforward ReLU layers satisfying the following:

fph,θqst“1|Z|pzipxqq

fph,θqsym1“1|A|paipxqq

fph,θqpos2“Binplipxqq

(C.16)

At all other coordinates, F ph, θq takes values 0. Furthermore, the parameters satisfy
}θ}1“Op|Z|`|A|`wposq.

Proof. It suffices to construct a sequence of layers which performs the following operations:

1) Compute the following vector vPR3:

v“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

»

–

1
0
0

fi

fl if hscr4
1 “1

»

–

0
hscr4

2

1´hscr4
2

fi

fl if hscr4
1 “0

Note that v encodes the location of the symbol aipxq, as aipxq“ui1pxq if i1ą0, aipxq“xlipxq
if i1“0 and lipxqďm, and aipxq“r∅s otherwise. The vector v is a one-hot vector indicating
which of these three cases holds.

2) We can take v1 and compute AND with all bits of hscr1 , which computes
1|A|pui1pxqq“1|A|paipxqq if i1ą0, and 0 otherwise.

3) We take v2 and compute AND with all bits of hscr2 , which computes 1|A|pxlipxqq if v2“ 1,
and 0 otherwise.

4) We take v3 and compute AND with all bits of 1|A|pr∅sq, which computes 1|A|paipxqq if
v3“1.

5) We add the outputs of 2), 3), and 4) together, which gives 1|A|paipxqq. We copy this quantity
into the output coordinates indexed by ¨sym1 . Then we set coordinates not listed in (C.16)
to 0, producing the desired output.

Each of these operations can be computed by a constant number of feedforward ReLU layers, with
total parameter norm satisfying }θ}1“Op|Z|`|A|`wposq.

Proof of Theorem 4.1. We construct a neural net to compute any Turing machine with all-layer margin
lower bound 1

polypk,|A|,logT q and apply Lemma 2.4 to turn this into a statement about statistically
meaningful approximation.

For our Turing machine construction, we follow the outline laid out in Section 4.2. Fix anyGPG. As
mentioned, we first consider the case wherew“wTM exactly, as overparameterization is easy to deal
with by always designating some subset of extra coordinates to be 0. We construct a transformer pF
to computeG. First, we note that Lemma C.1 constructs a layer to compute the functionality described
in 1). Next, the layer in Lemma C.2 performs the functionality in 2). Likewise, Lemmas C.3, C.7, C.8
construct layers which perform 3), 4), and 5). Thus, by applying the layers constructed from these

24

lemmas in sequence, we obtain a transformer such that the output oT contains an onehot encoding
for zT pxq: 1|Z|pzT pxqq. We can now apply a linear weight vector θcls on the output to obtain θJclsoT ,
where pθclsqz“1 for accept states zPZterm and pθclsqz“´1 for reject states. For inputs xPX , by our
construction this computes the desired TMpxq. Next, following Theorem 3.1, we insert correction
functions (Definition D.1) between every group of constructed layers, which can be implemented via
two feedforward ReLU layers following Proposition 3.4. The parameters for all correction functions
add total }¨}1-norm at most polypk,|A|,logT q. Let pF px,pθq denote the transformer constructed this
way, with parameters pθ. Note that for all xPX , pF px,pθq“2Gpxq´1.

Next, there are several steps remaining to convert pF into the fixed architecture F tr
w,d,T . First, we need

to convert the layers in pF into transformer layers. This is achievable because every single decoder
self-attention or encoder-decoder attention layer or feedforward ReLU module can be converted into a
transformer layer by setting the two unused modules in the transformer layer to implement the identity
function. This only increases the }¨}1-norm by polypk,|A|,logT q. Note that in particular, we can per-
form this conversion such that the correction functions form the last 2 feedforward ReLU layers in every
transformer layer. The first 3 layers in the transformer layer correspond to ones constructed in the lem-
mas. Second, we need to expand the dimension to a consistent widthw. This is achievable by padding
each layer with coordinates designated to be 0, without affecting any of the }¨}1-norm bounds on the pa-
rameters. Third, we need to expand the depth to a fixed depth d. We can achieve this by appending trans-
former layers which compute the identity function (and also include correction functions) as needed.

Now we aim to apply Theorem D.6 by viewing the transformer as a very deep network with depth
d“OpT logT q, by applying each of the steps in the transformer computation in sequence. Note that
our construction for the transformer layers is such that we can view the self-attention, encoder-decoder
attention, and single feedforward ReLU layer as a single function in the setting of Theorem D.6. The cor-
rection function corresponds to the last 2 feedforward ReLU layers in the transformer layer. (We observe
that there are actuallym layers which depend on the inputx, not a single layer f0 as in the setting of The-
orem D.6, but this is a minor difference where the same argument of Theorem D.6 still easily applies.)
Note that this network uses layer-based weight sharing, which is handled by Theorem D.6. Furthermore,
the depth of this network doesn’t affect the all-layer margin because Theorem D.6 doesn’t depend on
the number of layers. We also observe that Condition D.4 holds for λ“polyp|Z|,|A|,logT q, because
all of the intermediate layers are sparse binary vectors with at most |Z|`|A|`logT nonzero entries.

Finally, it remains to check that Condition D.3 can hold for all of the defined layers for parameters
that are polynomial in |Z|,|A|,logT . This is straightforward to check for transformer layers where the
attention layers have parameters 0, as standard results on the Lipschitzness of a single ReLU network
would apply. For layers where the functionality comes from the attention mechanism, we observe that
for valid inputsxPX , the largest attention score is always greater than the second largest by a margin of 1.
Furthermore, ties only occur when all of the value vectors for the attended positions are already the same.
As a result, the positions attended to by the layer will not change unless we perturb the parameters and
inputs by Ωppoly´1

p|Z|,|A|,logT qq. This reasoning can be used to conclude that Condition D.3 with
Lipschitz constants polyp|Z|,|A|,logT q, and distance parameters Ωppoly´1

p|Z|,|A|,logT qq holds. As
a result, the all-layer margin bound from applying Theorem D.6 will also be Ωppoly´1

p|Z|,|A|,logT qq,
as desired. Finally, applying Lemma 2.4 with γ“Ωppoly´1

p|Z|,|A|,logT qq and using the fact that
the parameter }¨}1-norms are bounded by α gives the desired result.

D All-layer margin lower bounds via correction functions

We consider a generalized architecture for a d-layer network as follows. Let f0 :XˆΘ0ÑRw map
space of inputs x PX and parameters θ PΘ0 to w-dimensional space. For simplicity we assume all
intermediate layers have dimension w, and let fi :RwˆΘiÑRw be the i-th function in the neural
net for dą iě1. We define fd to output values in R. Let θ“pθ0,...,θdqPΘ denote the full vector of
parameters. The i-th hidden layer hi computes the following value, defined recursively:

h0px,θq“f0px,θ0q

hipx,θq“fiph0px,θq,...,hi´1px,θq,θiq

The model computes output hdpx,θq. We will assume the existence of “correction” functions ζ
parameterized by ξ“pξ0,...,ξd´1qPΞ0ˆ¨ˆΞd´1 which correct errors in the model output for inputsX :
Definition D.1 (Correction functions). Let F 1 :XÑR be a model defined by layer functions f0,...,fd.
Then ζ0,...,ζd´1 :RwÑRw, ξ is a set of correction functions and parameters for F 1, θ with radius

25

σζ if for all iPrd´1s,xPX and phPRX satisfying }ph´hipx,θq}2ďσζ ,

ζipph,ξiq“hipx,θq

We now define the function output F with correction layers recursively by

g0px,θ,ξq“f0px,θ0q

rhipx,θ,ξq“ζipgi´1px,θ,ξq,ξiq @0ď iďd´1

gipx,θ,ξq“fiprh0px,θ,ξq,...,rhi´1px,θ,ξq,θi,ξiq @1ď iďd

F px,θ,ξq“gdpx,θ,ξq

(D.1)

We note that for all xPX , F px,θ,ξq“hdpx,θq.

The key observation is that by adding correction layers to the model, we can transform a model with
possibly small all-layer margin on the input data to one with large all-layer margin. We first need to
characterize the Lipschitzness of the individual layers.
Definition D.2. We say that a function fp¨,θq :DÑDout is pκθ,µ,σh,σθq-nice on HĎD with respect
to |||¨||| if the following hold:

}fph,θq´fph,pθq}2ďκθ}θ´pθ}2maxt|||h|||,1u @}θ´pθ}ďσθ,hPH

}fph,pθq´fpph,pθq}2ďµ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
h´ph

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
@

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
h´ph

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ďσh,}θ´pθ}ďσθ,hPH

We will focus on the following norm on tuples of inputs pv1,...,viq, where hj PRw for all j Pris:

|||pv1,...,viq|||“max
j
}vj}2 (D.2)

We analyze the function F output by a model with correction layers satisfying the following
assumptions:
Condition D.3. There are constants κθ,κξ,µ,σh,σθ,σζ such that the following hold.

For iě1, suppose that fi is pκθ,µ,σh,σθq-nice at θi on ph0,...,hi´1qpX qwith respect to |||¨|||.

In addition, suppose that f0 satisfies }f0px,θq´f0px,pθq}2ďµ0}θ´pθ}2 for all xPX ,θPΘ0.

Furthermore, suppose that for all i, ζi satisfies }ζiph,ξiq´ζiph,pξq}2ďκξmaxt}h}2,1u}ξi´pξ}2 for
all pξ with }ξi´pξ}2ďσξ and hPRw.

These conditions are all standard Lipschitzness-based conditions on the individual layer functions.
Our lower bound for the all-layer margin will be expressed in terms of the constants here.

We will also need to assume a bound λ on the norms of each of the layers computed by hi.
Condition D.4. The norms of the true layer values are bounded, that is, Dλ such that for all 0ď iďd
and xPX ,

maxt}hipx,θq}2,1uďλ (D.3)

We will also consider models with weight sharing, which allows our analysis to apply to architectures
such as the transformer in Section 4.
Definition D.5 (Layer-based weight sharing). Let Θ1ĎRw1 , Θ0ĎRw0 ,...,ΘdĎRwd be some spaces
of real-valued parameters. Suppose we wish to perform copying on parameters θ1 PΘ1 to produce
parameters θ“pθ0,...θdqPΘ“Θ0ˆ¨¨¨Θd, where θi is the set of parameters given to layer function
fi. We say that a tuple of functions τ “pτ0,...,τdq : Θ1ÑΘ is a layer-based weight sharing scheme
if each τi is of the form

τipθ
1q“pθ1π1

,...,θ1πbi
q (D.4)

where π1,...,πbi is a set of distinct indices taking values in rw1s. Note that this ensures that parameters
are not duplicated within a layer.

We will now prove our main lower bound for the all-layer margin based on inserting correction
functions at every layer.

26

Theorem D.6. In the above setting, suppose that Conditions D.3 and D.4 hold for a function F in
the form given by (D.1) parametrized by θ with correction layers ζ0,...ζd´1 parameterized by ξ with
correction radius σζ ă 1. Suppose that F pxq P t´1,`1u @x PX . Then for all x PX , we can bound
the all-layer margin of F (defined in (2.1))as follows:

ρF ppθ,ξq,x,1pF px,θ,ξqě0qqěmint
λ

µ0
,
σζ
µ0
,σθ,σξ,

1

2κθ
,
σζ

2κθλ
,
σh

2κξλ
,
σζ

4λµκξ
,

1

4µκξ
u (D.5)

Here the subscript F makes it explicit that the all-layer margin is for the architecture F . Furthermore,
if we consider any layer-based weight-shared model F 1px,θ1q fi F px,τ p1qpθ1q,τ p2qpθ1qq for valid
weight-tying mappings τ p1q, τ p2q (Definition D.5), the same bound holds for ρF 1pθ1,x,1pF 1px,θ1qě0qq.

Our proof will first consider the case without weight sharing. We use pθ “ ppθ0, ... , pθdq and
pξ “ ppξ0,...,pξd´1q to denote a perturbed set of parameter vectors. Furthermore, define the partially
perturbed parameter sets pθi fi ppθ0,...,pθi,θi`1,...,θdq and pξi fi ppξ0,...,pξi,ξi`1,...,ξdq. We also use
pθ´1fiθ and pξ´1fiξ when convenient.

We consider perturbations such that the following norm bounds hold:

}pθ0´θ0}2ďmint
λ

µ0
,
σζ
µ0
u (D.6)

}pθi´θi}2ďmintσθ,
1

2κθ
,
σζ

2κθλ
u (D.7)

}pξi´pξi}2ďmintσξ,
σh

2κξλ
,
σζ

4λµκξ
,

1

4µκξ
u (D.8)

We show that such perturbations won’t change the label predicted by the model, and so therefore the
minimum of these quantities immediately gives a lower bound on the all-layer margin. Our proof
will be by induction, with the following lemma providing the base case.
Lemma D.7. In the setting of Theorem D.6, suppose that (D.6) holds. Then the following hold:

rh0px,pθ,ξq“h0px,θq

}g0px,pθ,pξq´h0px,θq}2ďmintλ,σζu

The next lemma provides the inductive step. Starting with the base case, we show that because of
the presence of the correction functions, the perturbations with our given bounds won’t change the
next layer output by too much. This allows the correction function to fix the output of the next layer,
and this argument can extend inductively.
Lemma D.8. In the setting of Theorem D.6, fix some 1ď iďd. Suppose that for all 0ďjă i, it holds
that for all xPX ,

rhjpx,pθ,pξj´1q“hjpx,θq (D.9)
and

}gjpx,pθ,pξq´hjpx,θq}2ďmintλ,σζu

In addition, suppose that pθ,θ,pξ,ξ satisfy (D.7) and (D.8). Then it follows that for all xPX ,

}gipx,pθ,pξq´hipx,θq}2ďmintλ,σζu

Furthermore, for 1ď iďd´1, we additionally have
rhipx,pθ,pξi´1q“hipx,θq

Combined, the two lemmas above allow us to inductively show that the prediction of the model is
not changed whenever the perturbations are bounded by (D.6), (D.7), and (D.8). Next, we show that
this translates directly to an all-layer margin lower bound.
Lemma D.9. In the setting of Theorem D.6, suppose there exist norm bounds a0,...,ad, b0,...,bd´1

such that whenever }pθi´θi}2ďai and }pξi´ξi}2ď bi, |F px,θ,ξq´F px,pθ,pξq|ă1 for all xPX . Then
we obtain the following lower bound on the all-layer margin, for all xPX :

ρF ppθ,ξq,x,1pF px,θ,ξqě0qqěminta0,...,ad,b0,...,bd´1u

The same lower bound applies if we consider models that use layer-based weight sharing, defined
by F 1px,θ1qfiF px,τ p1qpθ1q,τ p2qpθ1qq for valid weight-tying mappings τ p1q, τ p2q (Definition D.5).

27

We can combine these steps to formally complete the proof of Theorem D.6.

Proof of Theorem D.6. Assuming the perturbation bounds (D.6) (D.7), and (D.8) hold, we can apply
induction with Lemma D.7 as the base case and Lemma D.8 as the inductive step to conclude that
|F px,pθ,pξq´F px,θ,ξq| ď σζ ă 1 for all x PX . We can now apply Lemma D.9 to obtain the desired
bound on the all-layer margin.

We fill in the proofs of the supporting lemmas below.

Proof of Lemma D.7. By our definitions and Condition D.3, we have

}g0px,pθ,pξq´h0px,θq}2“}f0px,pθ0q´f0px,θ0q}2ďµ0}θ0´pθ0}2ďmintλ,σζu

Now we can apply the Definition D.1 of the correction function to get

rh0px,pθ,ξq“ζ0pg0px,pθ,pξq,ξ0q“h0px,θq

Proof of Lemma D.8. By expanding the expression for hi, we observe that

hipx,θq“fiph0px,θq,...,hi´1px,θq,θiq

“fiprh0px,pθ,ξq,rh1px,pθ,pξ0q...,rhi´1px,pθ,pξi´2q,θiq (D.10)

We obtained the equality via (D.9). Now we write

gipx,pθ,pξq“fiprh0px,pθ,pξq,...,rhi´1px,pθ,pξq,pθiq (D.11)

We subtract the two expressions and add and subtract fiprh0px,pθ,ξq,rh1px,pθ,ξ0q...,rhi´1px,pθ,ξi´1q,pθiq
to obtain

gipx,pθ,pξq´hipx,θq“E1`E2

where

E1fifiprh0px,pθ,pξq,...,rhi´1px,pθ,pξq,pθiq

´fiprh0px,pθ,ξq,rh1px,pθ,pξ0q...,rhi´1px,pθ,pξi´2q,pθiq

E2fifiprh0px,pθ,ξq,rh1px,pθ,pξ0q...,rhi´1px,pθ,pξi´2q,pθiq

´fiprh0px,pθ,ξq,rh1px,pθ,pξ0q...,rhi´1px,pθ,pξi´2q,θiq

We first boundE1. We note that for all 0ďjď i´1

}rhjpx,pθ,pξq´rhjpx,pθ,pξj´1q}2“}ζjpgjpx,pθ,pξq,pξjq´ζjpgjpx,pθ,pξq,ξjq}2

ďκξmaxt}gjpx,pθ,pξq}2,1u}pξj´ξj}2

The last inequality used Condition D.3 and }pξj ´ ξj}2 ď σξ. Now defining H 1 fi

prh0px,pθ,pξq,...,rhi´1px,pθ,pξqq andHfiprh0px,pθ,ξq,rh1px,pθ,pξ0q...,rhi´1px,pθ,pξi´2qq, it follows that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇH´H 1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ“ max
0ďjďi´1

κξmaxt}gjpx,pθ,pξq}2,1u}pξj´ξj}2

Plugging in }gjpx,pθ,pξq}2ď}hjpx,θq}2`}gjpx,pθ,pξq´hjpx,θq}2ď2λ, λě1, and }pξj´ξj}2ď σh
2κξλ

,
we obtain |||H´H 1||| ď σh. Furthermore, we note that H P ph0, ... , hi´1qpX q, so we can apply
Condition D.3 and Definition D.2 to obtain

}E1}2“}fipH
1,pθiq´fipH,pθiq}2

ďµ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇH´H 1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ (since }pθi´θi}2ďσθ and |||H´H 1|||ďσh)

ď2λµκξmax
j
}pξj´ξj}2

28

Next, we boundE2 by applying Condition D.3 and Definition D.2 again, using }pθi´θi}2ďσθ:

}E2}2“}fipH,pθiq´fipH,θiq}2

ďκθ}pθi´θi}2maxt|||H|||,1u

“κθ}pθi´θi}2maxt}hjpx,θq}2ujYt1u

ďκθ}pθi´θi}2λ

where we applied Condition D.4. By triangle inequality, follows that

}gipx,pθ,pξq´hipx,θq}2ď}E1}2`}E2}2

ďκθ}pθi´θi}2λ`2λµκξmax
j
}pξj´ξj}2

Now by the assumptions on }pθi´ θi}2 and }pξj ´ ξj}2, we can check that the r.h.s. is bounded by
mintλ,σζu.

Finally, we note that by Definition D.1 of the correction function, we have

rhipx,pθ,pξi´1q“ζipgipx,pθ,pξq,ξiq“hipx,θq

where we used the fact that }gipx,pθ,pξq´hipx,θq}2ďσζ .

Proof of Lemma D.9. Note that if }pθ,ξq ´ ppθ, pξq}2 ă ā fi minta0, ... ,ad,b0, ... ,bd´1u, then by the
conditions of the lemma, |F px,θ,ξq´F px,pθ,pξq|ă1. However, because F px,θ,ξq P t´1,`1u for all
xPX , the sign of the output is unchanged, which means F px,θ,ξqF px,pθ,pξqą0. This means that we
must perturb pθ,ξq by }¨}2-norm at least ā to satisfy the constraint in the all-layer margin definition,
giving us the lower bound. We note that a similar argument applies to layer-based weight sharing
because there are no parameters shared within a layer, so if the perturbation to θ1 has `2 norm less
than ā, the parameters in τ p1qpθ1q, τ p2qpθ1qwill also have a perturbation of at most ā in each layer. The
same reasoning as before then applies.

29

	Introduction
	Related works
	Notation

	Statistically meaningful approximation
	Background and tools

	SM approximation of Boolean circuits with feedforward nets
	Proof sketch for Theorem 3.1

	SM approximation of Turing machines with transformers
	Transformer architecture for SM-approximating Turing machines
	Proof sketch for Theorem 4.1

	Conclusion
	Proofs for Section 2
	Proofs for Section 3
	Proof of Theorem 4.1
	Additional setup and notation
	Completing the proof

	All-layer margin lower bounds via correction functions

