
Under review as submission to TMLR

A Detailed proof of Theorem 4.1

A.1 Notation and Setting

First, we need to define the value function of an SMDP. In Sutton et al. (1999) it is defined as a formalism
for MDP with options, that itself, by the demonstration presented in the same article, is an SMDP.
In our case, however, for the SMDP model, we are considering an additional dependency on h ∈ [0, H].
Notation used:

• H is the horizon

• µ policy over options {µ : S × O × H → [0, 1]}

• r(s, o, h) is the discounted cumulative reward gained by selecting the option o, in state s, in the
instant h of the horizon H

• p(s′, h′|s, o, h) is a new transition model that characterizes both the state dynamic and the time the
option executes.

• w(s, o, h) is the probability of playing option o being in state s at time-step h

The value function is defined as:

V µ(s, h) =
∑

o∈Os

µ(s, o, h)
[
r(s, o, h) +

∑
s′,h′>h

p(h′, s′|s, o, h)V µ(s′, h′)
]

(14)

with V µ(s, H) = 0.

A.2 Performance Difference Lemma

Lemma 7.1. [Performance Difference Lemma for FH-SMDP] Given two FH-SMDPs M̂ and M̃ with horizon
H, and respectively rewards r̂, r̃ and transition probabilities p̂, p̃. The difference in the performance of a
policy µk is:

Ṽ µk (s, 1) − V̂ µk (s, 1)

= Ê
[ H∑

i=1

((
r̃(si, oi, hi) − r̂(si, oi, hi)

)
+
(
p̃(si+1, hi+1|si, oi, hi) − p̂(si+1, hi+1|si, oi, hi)

)
Ṽ µk (si+1, hi+1)

)
1{hi < H}

]
where Ê is the expectation taken w.r.t. p̂ and µk.

Proof. Ê is the expectation taken w.r.t. the policy µ and the transition probability p̂(s′, h′|s, o, h), and can
be rewrite as:

H∏
i=1

µk(si, oi, hi)p̂k(si+1, hi+1|si, oi, hi)1{hi < H}

This quantity is the distribution of visits for the policy µk in the " ˆ " SMDP and it is equivalent to wtk

for the FH-MDP case. The result follows by unrolling equation 14. Lemma E.5 Dann et al. (2017) for an
example in FH-MDPs.
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A.3 Confidence Intervals

The confidence sets are defined as:

Br
k(s, o, h) := [r̂k(s, o, h) − βr

k(s, o, h), r̂k(s, o, h) + βr
k(s, o, h)]

Bp
k(s, o, h) :=

{
pk(·, ·|s, o, h) ∈ ∇(s) : ∥p̃k(·, ·|s, o, h) − p̂k(·, ·|s, o, h)∥1 ≤ βp

k(s, o, h)
}

and the relative confidence bounds βr
k(s, o, h) and βp

k(s, o, h) using Empirical Bernstein bound (Maurer &
Pontil, 2009), Hoeffding (1963) and Weissman et al. (2003).

βr
k(s, o, h) ∝

√
2V̂ar(r) ln 2/δ

n(s, o, h) + 7 ln 2/δ

3(n − 1) (15)

βp
k(s, o, h) ∝

√
S log

(nk(s,o,h)
δ

)
nk(s, o, h) (16)

with V̂ar(r) be the sample variance of r.

V̂ar(r) = 1
n(n − 1)

∑
1≤i≤j≤n

(ri − rj)2 (17)

A.4 Actual Proof

Theorem 4.1. Considering a non-stationary Finite Horizon SMDP SM and a set of options O, with
bounded primitive reward r(s, a) ∈ [0, 1]. The regret suffered by algorithm FH-SMDP-UCRL, in K episodes
of horizon H is bounded as:

Regret(K) ≤ Õ

((√
SOKd2

)(
T +

√
SH

))

with probability 1 − δ.
Where:

T = max
s,o,h

√
E[τ(s, o, h)2]

= max
s,o,h

√
E[τ(s, o, h)]2 + Var[τ(s, o, h)],

τ is the holding time, and d describes the expected number of decisions in one episode.

Proof.

Regret(K) =
K∑

k=1
V ∗(s, 1) − V̄ µk (s, 1)

Opt.
≤

K∑
k=1

Ṽ µk (s, 1) − V̄ µk (s, 1)

=
K∑

k=1
Ē
[ H∑

i=1

((
r̃(si, oi, hi) − r̄(si, oi, hi)

)
+
(
p̃(si+1, hi+1|si, oi, hi) − p̄(si+1, hi+1|si, oi, hi)

)
Ṽ µk (si+1, hi+1)

)
1{hi < H}

]
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a=
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)
((

r̃(si, oi, hi) − r̄(si, oi, hi)
)

+
(
p̃(si+1, hi+1|si, oi, hi) − p̄(si+1, hi+1|si, oi, hi)

)T
Ṽ µk (si+1, hi+1)

)
b
≤
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)
(

2βr
k(si, oi, hi) + 2βp

k(si, oi, hi)T H
)

c∝
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)
(√

V̂ar(r)
nk(s, o, h) + 1

nk(s, o, h) − 1 +
√

S

nk(s, o, h)H

)

d
≤
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)√
nk(si, oi, hi)

(√
V̂ar(r) +

√
SH

)
+
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)
nk(s, o, h)

e
≤ Õ

((√
dSOn

)(√
V̂ar(r) +

√
SH

)
+ dSO

)
f
≤ Õ

((√
dSOn

)(
RmaxT +

√
SH

)
+ dSO

)

with

T = max
s,o,h

√
E[τ(oi, si, hi)2] = max

s,o,h

√
E[τ(oi, si, hi)]2 + Var[τ(si, oi, hi)] (18)

with τ representing the average duration of the set of options seen so far.

The first passage is a standard inequality when proving the regret in frameworks adopting optimism in face
of uncertainty.

(a) The expectation with respect to the policy µk and the transition model p̄ can be replaced with
a more common formulation used in the Finite Horizon literature (Dann et al., 2017; Zanette &
Brunskill, 2018),

∑
(s,o,h)∈Lk

.
Where, Lk is defined as the good set (Dann et al., 2017; Zanette & Brunskill, 2018), which is the
number of episodes in which the triple (s, o, h) is seen sufficiently often, and this equation is valid
for all the tuples (s, o, h) being part of this set.

(b) We upper bound the difference of rewards and transition probabilities with two times their relative
confidence intervals, and, the Value function at the next step with the horizon length H.

(c) We substitute the confidence intervals with their definitions (eq. 16) neglecting logarithmic terms.

(d) We divide the summation in two, to upper bound the terms separately

(e) Using the adaptation of lemma 16 of Zanette & Brunskill (2018) for SMDPs, lemma 7.2, for the first
term. Using passage (b) and (c) in the proof of lemma E.1

(f) Upperbounding the sample variance of r, with RmaxT . Where T is the sample variance of the
duration.
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B Special Case of fixed-length options

Let’s consider the same finite horizon MDP with options with fixed length M :=< S, O, Rh, Ph, H, τ̄ > where
each option o :=< I, πo, β > has a fixed initial set I and fixed termination condition β, Rh(s, o) ∈ [0, τ̄Rmax]
is the expectation of the reward function distribution, Ph(·|s, o) is the transition distribution, H is the
horizon, and τ̄ ≤ H is the options fixed length. The solution of the MDP will be a policy πH : S → O that
maximizes the cumulative return choosing among options’ optimal policies πoi . The reward function over
state − options pairs relates to the flat-MDP’s reward as:

Rh(s, o) = E s0=s
ai∼πo(·|si)

si+1∼ph+1(·|si,ai)

[τ̄−1∑
i=0

rh+i(ai, si)
]

Denote with V πH

n (s) the state value function associated with a hierarchical policy πH (with Hierarchical
policy we define a policy that chooses among options).

V πH

n (s) = E s0=s
oj∼πH (·|sj)

sj+1∼P (·|sj ,oj)h

[ N∑
j=0

Rh×τ̄ (sj , oj)
]

with N = H
τ̄ the number of decision steps that occurs during the Horizon.

In this way, we can exploit the same performance difference lemma of Dann (Dann et al., 2017) Lemma
E.15, where, instead of actions we have fixed length options, and we sum over N decision steps. Hence, we
can write:

Regret(K)
Opt.
≤

K∑
k=1

Ṽ
πH

k
1 (s) − V̄

πH
k

1 (s) (19)

a=
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
((

R̃n(s, o) − R̄n(s, o)
)

+
(
P̃n(s, o) − P̄n(s, o)

)T
Ṽ πk

n+1

)
(20)

+ term considering the state-options pairs inside the failure event (21)

here wnk(s, o) is the probability of visiting state s and choosing option o there at the decision step n in the
k-th episode.

Then, we consider a new formulation of the confidence sets:

BR
nk(s, o) := [R̂nk(s, o) − βR

nk(s, o), R̂nk(s, o) + βR
nk(s, o)]

BP
nk(s, o) :=

{
Pnk(·|s, o) ∈ ∇(s) : ∥P̃nk(·|s, o) − P̂nk(·|s, o)∥1 ≤ βP

nk(s, o)
}

using Hoeffding (1963) and Weissman et al. (2003) the confidence bounds are:

βR
nk(s, o) ∝ Rmaxτ̄

√
log
(nnk(s,o)

δ

)
nnk(s, o) (22)

βP
nk(s, o) ∝

√
S log

(nnk(s,o)
δ

)
nnk(s, o) (23)
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After the definition of the confidence sets we can bound the previous equation as follow:

K∑
k=1

Ṽ
πH

k
1 (s) − V̄

πH
k

1 (s) =
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
((

R̃nk(s, o) − R̄nk(s, o)
)

+
(
P̃nk(s, o) − P̄nk(s, o)

)T
Ṽ πk

h+1

)
+ term considering the state-options pairs inside the failure event
a
≤
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
(

2βR
nk + 2βP

nk

T (H − τ̄)
)

b∝
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
(

Rmaxτ̄
√

nnk
+
√

S

nnk
(H − τ̄)

)

=
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
√

nnk

(
Rmaxτ̄ +

√
S(H − τ̄)

)
c
≤ Õ

(
N

√
SOK

(
Rmaxτ̄ +

√
SH −

√
Sτ̄
))

d
≤ Õ

(
N

√
SOK

(
Rmaxτ̄ +

√
SH)

)
(a) substituting the R̃n(s, o)−R̄n(s, o) and P̃n(s, o)−P̄n(s, o) with double the relative confidence interval

and considering Ṽ πk

h+1 ≤ (H − τ̄). The second term will be omitted for ease of notation.

(b) replacing the confidence intervals with their definition

(c) Lemma E.2

(d) considering the worst case, where there isn’t the negative term

comparing it with the bound of Fruit & Lazaric (2017) for bounded holding time:

Õ
((

Do

√
S + Tmax + (Tmax − Tmin)

)
Rmax

√
SOOn

)
that having options with fixed duration τ̄ , and considering Rmax = 1 reduces to:

Õ
(

DS
√

On + τ̄
√

SOn
)

we have the same bound where instead of the diameter we have the Horizon H, and where NK is exactly
equal to the number of the decisions up to episode k, which is n in their notation. We have:

Õ
(

HS
√

ON2K + τ̄
√

SON2K
)

Important: Note that we have an additional
√

N terms because we considered non-stationary MDP. This
is a well-known penalty term when considering non-stationarity in the process.

C Proof of Theorem 6.2

Theorem 6.2. The regret paid by the two-phase learning algorithm until the episode K is:

Regret(K) ≤ Õ
(

K
2
3 3
√

H5
OS2

OAOO + HS
√

Od2K
)

with HO = maxo∈O Ho, and SO, and AO, respectively, the upper bounds on the cardinality of the state and
action space of the sub-FH-MDPs.
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Proof. The regret of the two-phase algorithm can be written in this form

Regret(K) =
K1∑

k=1
V ∗

∗ (s, 1) − V µ
(πk)(s, 1) +

∑
k=k1

V ∗
∗ (s, 1) − V µk

πK1

=
K1∑

k=1
V ∗

∗ (s, 1) − V µ
(πk)(s, 1)︸ ︷︷ ︸

Options learning Regret

+
K∑

k=K1

V ∗
∗ (s, 1) − V ∗

(πK1 )︸ ︷︷ ︸
Bias

+ V ∗
(πK1 ) − V µk

(πK1 )︸ ︷︷ ︸
Regret SMDP with fixed options

The regret is the sum of the regret paid in the first phase and the regret paid in the second one, plus an
additional bias term. By assuming all options with equal samples Ko and the options’ policies learning as
O finite horizon MDPs for which So, Ao, Ho are the upper bounds of the option’s state space dimension, the
option’s action space dimension and the option’s horizon, and K1 =

∑
o∈O Ko and

K =
∑
o∈O

Ko + K2 (24)

we can write the regret as

Regret(K) ≤
∑
o∈O

KoHo + K2 max
o∈O

1
Ko

H2
o So

√
AoKo + HS

√
Od2K2

In which we pay full regret for each option learning, then the maximum average regret considering the option
learning as a finite horizon MDP with horizon Ho, and the regret of the SMDP learning with fixed options.
However, considering the options with equal samples and with SO, AO, HO the upper bounds of the relative
quantities we can get rid of the maximization in the second term, and the regret became

Regret(K) ≤ OKoHO + K2

Ko
H2

OSO

√
AOKo + HS

√
OK2d2

Now, by substituting K2 with eq. 24, and upper bounding (K − OK) ≤ K we can solve in closed form to
find Ko to minimize the regret.

Regret(K) ≤ OKoHO + K

Ko
H2

OSO

√
AOKo + HS

√
OKd2

Ko = 3

√
K2S2

OH2
OAO

O24

Therefore, by substituting Ko in the original equation we have

Regret(K) ≤ Õ
(

K
2
3 (H5

OS2
OAOO) 1

3 + HS
√

OKd2
)

Now we can compare the regret of this algorithm compared to the regret of UCRL2 adapted for non-stationary
FH-MDPs (Ghavamzadeh et al., 2020).

Regret(UCRL2 − CH) ≤ Õ(H2S
√

AK)

RegretSMDP

RegretMDP
≤ K1/6α3/8O1/3

(HS)1/3A1/6 ≤ 1 (25)

K ≤ H2S2A

α16O2 (26)
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D Renewal Processes

Lemma D.1 (Renewal Function Bound). Considering a Renewal process, (Xt)t≥0, and a sequence S1, S2 . . .
of random variables, characterizing the random duration of an event, alternatively defined as holding time,
with supp(Si) ∈ {1, . . . , H}. We can bound, with probability 1 − δ, the expected number of random events
that occurred up to time t, Xt, with:

Xt <

√
ln 2 − ln δ

cK
+ t

µ

with c = µ3

32σ2T where µ is the mean of the r.v.s and σ2 the variance.

Proof. Based on the proof presented on Pinelis (2019), which apply DKW type inequalities to renewal
processes (Dvoretzky et al., 1956)

Pr
(

sup
0≤t≤T

∣∣∣∣Xnt

n
− t

µ

∣∣∣∣ ≥ ϵ

)
≤ 2e−cnϵ2

Now we can equal 2e−cnϵ2 to δ and find ϵ.

ϵ =
√

ln 2 − ln δ

cn

Thus with probability 1 − δ

Xt ≤
√

ln 2 − ln δ

cn
+ t

µ

that completes the proof

Lemma 5.3. [Bound on number of options played in one episode] Considering a Finite Horizon SMDP SM
with horizon H and, O options with duration τmin ≤ τ ≤ τmax and mino(E[τo]) the expected duration of the
shorter option. The expected number of options played in one episode d can be seen as the renewal function
m(t) of a renewal process up to the instant H. With probability 1 − δ, this quantity is bounded by

d <

√
32(τmax − τmin)H(ln 2 − ln δ)

(mino(E[τo]))3 + H

mino(E[τo])

Proof. The proof followed the one of lemma D.1 and the fact that we are considering T = H, n = 1, t = H,
µ = τ̄ , σ2 = (τmax − τmin), and Xt = d.

E Useful Lemmas

Lemma E.1 (lemma 16 (Zanette & Brunskill, 2018) for non stationary MDPs). The following holds true:

∑
k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a)
√

1
nk(s, a, h) = Õ(

√
HSAT )

where the extra
√

H is due to the non-stationarity of the environment
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Proof. ∑
k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a)
√

1
nk(s, a, h)

a
≤
√∑

k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a)
√√√√∑

k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a) 1
nk(s, a, h)

b=
√

KH

√√√√∑
k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a) 1
nk(s, a, h)

e
≤ Õ(

√
HSAT )

Then: ∑
k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a)
nk(s, a, h)

c
≤
∑

h∈[H]

∑
(s,a)∈Lk

∑
k

whk(s, a)
1
4
∑

j≤k whj(s, a)

d
≤ 4HSA log

(
Ke

wmin

)
∼∝ HSA

(a) by Cauchy-Schwartz

(b)
∑

t∈[H]
∑

(s,a)∈Lk
wtk(s, a) = H lemma 17 (b) Zanette & Brunskill (2018)

(c) lemma 2 Zanette & Brunskill (2018) adapted to the non-stationary case

(d) lemma E.5 Dann et al. (2017) considering that being (s,a) part of the good set Lk, then we are
assuming (Appendix E.3 Dann et al. (2017)) that wk(s, a) ≥ wmin.

(e) substituting (f) we get the upper bound, and we conclude the proof.

Lemma 7.2. Considering a non-stationary MDP M with a set of options as an SMDP MO (Sutton et al.,
1999). In MO the number of decisions taken in the kth-episode is a random variable d and∑

i∈H

∑
(s,o)∈Lk

wk(si, oi, hi)1{hi < H} = d with {∀k : d ≤ H}

Therefore, the following holds true:∑
k

∑
i∈H

∑
(s,o)∈Lk

wk(si, oi, hi)
√

1
nk(si, oi, hi)

= Õ

(√
SOKd2

)
or, using the same notation used in Fruit & Lazaric (2017), Õ(

√
SOKd2), with n = Kd the number of

decisions taken up to episode K.

Proof. Due to the stochasticity of the option’s duration, d is a random variable expressing the number
of decisions taken in a step. Thus, first, we can rewrite passage (b) of the proof of lemma 17 Zanette &
Brunskill (2018) then, we change lemma E.1 considering the same notion of good set considered in the
appendix of Zanette & Brunskill (2018) and the validity of lemma 2 of Zanette & Brunskill (2018), in the
options framework(replacing o with a). If all the aforementioned assumptions hold, thus the derivation of
the new lemma follows the derivation of lemma E.1
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Lemma E.2 (lemma 16 (Zanette & Brunskill, 2018) for MDPs with options of fixed lenght). For an MDP
with O options, with a fixed lenght τ̄ , where the horizon is divided in N = H

τ̄ decision steps, the following
holds true:

∑
k

∑
n∈N

∑
(s,o)∈Lk

wnk(s, o)
√

1
nk(s, o) = Õ

(
N

√
SOK

)

Proof. In this MDP the control returns to the hierarchical policy after exactly τ̄ time steps (the length of
an option), thus, we can have at most N = H

τ̄ actions in the horizon H. For this reason, passage (b) of the
proof of lemma E.1 become ∑

n∈N

∑
(s,o)∈Lk

wnk(s, o) = N

The rest results for the same passage of the proof of lemma E.1.

To have a more complete analysis we need also to consider the triples (s, o, h) which aren’t inside the good
set. To do that, we can adapt Lemma 3 of Zanette & Brunskill (2018), for the FH-SMDP setting.
Lemma E.3 (Outside the good set). It holds that:

K∑
k=1

d∑
h=1

∑
(s,o,h)/∈Lk

wk(s, o, h) = Õ(SOd)

The proof follows from the one of lemma 3 of Zanette & Brunskill (2018).
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