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(a) Vanilla contrastive learning for STR (b) Proposed frame-level contrastive learning for STR
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Figure 1: Comparison between vanilla contrastive learning and proposed frame-level contrastive learning.

ABSTRACT
Lightweight models play an important role in real-life applications,
especially in the recent mobile device era. However, due to limited
network scale and low-quality images, the performance of light-
weight models on Scene Text Recognition (STR) tasks is still much
to be improved. Recently, contrastive learning has shown its power
in many areas, with promising performances without additional
computational cost. Based on these observations, we propose a
new efficient and effective frame-level contrastive learning (FLCL)
framework for lightweight STR models. The FLCL framework con-
sists of a backbone to extract basic features, a Text Perceiver Module
(TPM) to focus on text-relevant representations, and a FLCL loss to
update the network. The backbone can be any feature extraction
architecture. The TPM is an innovative Mamba-based structure
that is designed to suppress features irrelevant to the text con-
tent from the backbone. Unlike existing word-level contrastive
learning, we look into the nature of the STR task and propose the
frame-level contrastive learning loss, which can work well with
the famous Connectionist Temporal Classification loss. We con-
duct experiments on six well-known STR benchmarks as well as a
new low-quality dataset. Compared to vanilla contrastive learning
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and other non-parameter methods, the FLCL framework signifi-
cantly outperforms others on all datasets, especially the low-quality
dataset. In addition, character feature visualization demonstrates
that the proposed method can yield more discriminative character
features for visually similar characters, which also substantiates
the efficacy of the proposed methods. Codes and the low-quality
dataset will be available soon.
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• Computing methodologies → Object recognition; • Com-
puter systems organization→ Neural networks.
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1 INTRODUCTION
With the advancement of deep learning, robust Scene Text Recog-
nition (STR) has emerged as a prominent topic in both academia
and industry [55–57]. Numerous remarkable models have been
proposed. It is evident that the scale of STR models is rapidly in-
creasing. Additionally, iterative decoding is gradually gaining pop-
ularity thanks to its ability to achieve higher recognition accuracy,
albeit at a significantly slower pace compared to methods based on
Connectionist Temporal Classification (CTC).
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However, text recognition serves as a fundamental module in
practical document processing tasks, with limited resources allo-
cated to this endeavor. Therefore, we need to utilize minimal re-
sources to achieve maximal recognition performance. So we focus
on the lightweight STR model in this paper.

Using little or no additional costs to improve performance has
consistently been a popular approach. There are mainly twoways to
achieve this. One involves employing more efficient loss functions
such as FocalCTC [9], EnCTC [27], and DCTC [61]. The other en-
tails adopting new training approaches, such as pluggable modules
[37] during training, distillation learning, and Contrastive Learn-
ing (CL). Distillation learning necessitates a large and similarly-
structured high-performance model as the teacher, which limits its
applicability. In contrast, contrastive learning offers a more flexi-
ble and efficient usage. Some CL-based methods [28, 58, 59] have
demonstrated success in STR tasks. However, most existing meth-
ods perform contrastive learning at word level, overlooking the fact
that text recognition is actually a frame-wise task, which may limit
effectiveness.

The complexity of existing features is also crucial for contrastive
learning. Due to diverse image qualities, features extracted by CNNs
or transformers often contain many irrelevant text features. This
increases the difficulty of contrastive learning and diminishes final
accuracy. Some methods utilize fully connected layers for feature
projection in an attempt tomitigate the impact of irrelevant features.
However, this approach is relatively direct and challenging for the
purification of text-relevant information.

Based on these observations, in this paper, we propose a frame-
level contrastive learning framework with a text perceiver for STR
tasks, as illustrated in Fig. 1. The main difference compared to ex-
isting methods lies in conducting contrastive learning at the frame
level. Traditional contrastive learning can only provide word-level
statistical information, such as the number of frames containing
the character ’w’ or ’i’ in the estimation result, but due to pooling
operations, it cannot learn the exact frames. Our method addresses
this issue by performing contrastive learning at each frame level
without pooling, thereby achieving more accurate alignment while
contrastive learning. Furthermore, in order to yield better text-
relevant features, we design a bidirectional Mamba-based [13] Text
Perceiver module to suppress text-irrelevant representations. We se-
lect nine well-known lightweight models and conduct experiments
on six widely-recognized STR benchmarks as well as a specific
low-quality dataset. All experiments demonstrate the effectiveness
of the proposed method.

In summary, the main contributions of this paper are as follows:
(1) We propose a new frame-wise contrastive learning frame-

work for scene text recognition task. It improves the per-
formances of light-weight models without any new com-
putational cost.

(2) We propose a new bi-directionMamba-basedmodule named
Text Perceiver, which can purify the text-relevant informa-
tion in the contextual features and make the outputs more
closely related to the text content.

(3) We achieve new SOTAs on the lightweight STR models.
Furthermore, we analyze the existing STR datasets and
select the low-quality samples to form a new challenging
dataset. This dataset is open access.

2 RELATEDWORKS
2.1 Robust Scene Text Recognition
The robustness of STR models, specifically in low-quality scenarios,
e.g., blur, low resolution, and noise, is a critical issue for applications.
Many previous studies have explored the probability of enhancing
the robustness of models in the wild, which can be divided into
two categories. One of them aims to employ additional modules
for preprocessing the low-quality inputs [5, 23, 37], where [23]
proposes a text-specific hybrid dictionary for text image deblurring,
[5] introduces a transformer-based text deblurring module, while
[37] proposes a plugable super-resolution unit to improve the per-
formance of the STR model faced with low-resolution text. On the
other hand, with the development of language models, some work
focuses on combining them with STR models to revise the incorrect
prediction within low-quality contexts [8, 49, 50, 62]. These meth-
ods are effective, but they also introduce computationally heavy
components, which are unaffordable for lightweight STR models.
In this work, we propose a frame-level contrastive learning strategy
for lightweight STR models to significantly enhance their perfor-
mance in low-quality scenarios without any additional cost.

2.2 Contrastive Learning
Recently, [6, 12, 16] have significantly pushed the boundaries of
representation learning by introducing contrastive learning. By
generating positive samples via data augmentations and regarding
other images as negative examples, [6, 16] pull together embeddings
of positive pairs and push apart those of negative pairs. Addition-
ally, [12] proves that merely using positive samples can also lead to
a promising embedding for downstream tasks. [21] takes advantage
of class labels as a criterion to separate positive and negative sam-
ples. For STR, [1] introduces a sub-word-level contrastive learning
framework, in which patches from different visually augmented
images are considered as positive samples. [29] proposes to view
the same words in different semantic contexts as positive samples,
thus deriving a word-level contrastive learning framework. [60] uti-
lizes stroke-based partitions to help models focus on the topological
structure of the stroke and learn text representations bottom-up.
Existing contrastive learning-based STR methods employ linear
projections to compress the contextual features, while it is still
difficult for them to completely eliminate the influence caused by
the text-irrelevant features. Different from them, we propose an ef-
ficient Text Perceiver instead of simple linear projections to achieve
a more efficient purification of the text-relevant information in
the contextual features. Additionally, we design a frame-level con-
trastive loss for STR models, which can improve their performance
by providing more consistent supervision with the goal of the text
recognition task.

2.3 State Space Model
For efficient long-range dependency modeling, [14] proposes a
State Space Model (SSM)-based model, i.e., the Structured State-
Space Sequence (S4) model, which is a novel alternative to CNNs or
Transformers, and attracts further explorations due to its promis-
ing property of linearly scaling in sequence length. [45] proposes
a new S5 layer by introducing MIMO SSM and efficient parallel

2
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Figure 2: The Architecture of proposed frame-level contrastive learning paradigm.

scan into the S4 layer. [10] designs a new SSM layer, i.e., H3, that
nearly fills the performance gap between SSM-based and attention-
based models in language modeling. [35] builds the Gated State
Space layer on S4 by introducing more gating units to improve the
expressivity. Recently, [13] introduces a selection mechanism to-
gether with a specially designed hardware-aware algorithm into the
SSM layer and builds a generic language model backbone, Mamba,
which outperforms Transformers at various sizes on large-scale
real data and enjoys linear scaling in sequence length. In this work,
we explore the potential of the Mamba to purify the text-relevant
features extracted by STR backbones and design a text perceiver
to replace the linear projection employed in vanilla contrastive
learning frameworks to improve their performance.

3 METHODOLOGY
3.1 Pipeline
The data pipeline of our proposed frame-level contrastive learn-
ing framework is shown in Fig. 2. Initially, high-quality inputs
are subjected to generating the associated low-quality views via
data augmentation, and then the high-quality inputs and their low-
quality counterparts are separately fed into the backbone to extract
the contextual features that are composed of task-required text fea-
tures and quality-relevant image features. Subsequently, on the one
hand, these contextual features are used to transcript the text via a
decoder. On the other hand, we leverage a specifically designed text
perceiver module to derive quality-invariant text representations
from the contextual features, and then conduct the frame-level con-
trastive loss on the text representation space. The components and

the loss function applied in the framework are detailed in sections
3.2–3.4, respectively.

3.2 Backbone
The backbone of STR models generally consists of two components:
a feature encoder, and an optional sequence model. There are three
prevailing categories of feature encoders applied in the scene text
recognition (STR) model. The first is CNN-based encoders, as ex-
emplified by [8, 25, 43]. The second refers to transformer-based
encoders, as demonstrated in [3, 7, 53]. The last integrates CNN
with attention mechanisms, represented by [26, 51, 52]. Due to the
difficulty of CNNs capturing long-range dependencies in sequences,
the STR model with a CNN-based feature encoder often utilizes an
extra sequence model to process the extracted visual features for
better recognition accuracy. The most widely used sequence models
include RNN [43], LSTM [11, 33], and transformer-based models
[32, 39]. They convert visual features into contextual features that
are used to transcript the text predictions via the decoder. As with
vanilla contrastive learning, the proposed frame-level contrastive
learning framework can be compatible with various backbones
with different components, thereby facilitating flexible integration
and showcasing substantial potential for applications. In the Ex-
perimental section, we have executed extensive experiments with
diverse backbones to substantiate this adaptability.

3.3 Text Periceiver
3.3.1 Motivation. Contrastive learning is dedicated to allowing
STR models to learn more discriminative text representations, thus

3
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Figure 3: The Architecture of the Text Perceiver.

improving their recognition performance. However, when dealing
with the text instance in a varying-quality context, the backbone
will inevitably extract some quality-relevent features. In order to
suppress the impact of these features on the training effect, vanilla
contrastive learning frameworks commonly utilize several linear
projections to compress the contextual features, and then calculate
the contrastive loss in a more compact feature space. However, the
low-quality samples may suffer from various distortions, which
makes it difficult for simple linear projections to effectively per-
ceive the text-specific information in the contextual features from
different types of low-quality samples, resulting in suboptimal per-
formance. To address this issue, we designed a SSM-based light-
weight module, i.e., Text Perceiver, to replace the widely applied
linear projection for more efficient purification of the text-specific
information in the contextual features.

3.3.2 Preliminaries. The general SSM is inspired by the continuous
system that maps a 1-D function or sequence 𝑥 (𝑡) ∈ R ↦→ 𝑦 (𝑡) ∈ R
through a hidden state ℎ(𝑡) ∈ RN:

ℎ′(𝑡) = Aℎ(𝑡) + B𝑥 (𝑡),
𝑦 (𝑡) = Cℎ(𝑡), (1)

where A ∈ RN×N, B ∈ RN×1, and C ∈ R1×N are separately the
discretized evolution parameter and projection parameters. After
the discretization via zero-order hold (ZOH) and parallelization,
the SSM can be formulated as follows:

K = (CB,CAB, ...,CAM−1
B),

y = x ∗ K,
(2)

where x, y separately represents the input and output sequences.
A and B are the discretized evolution parameter and projection
parameter, respectively. As demonstrated by Eq. 2, the SSM exhibits
the promising properties of linearly scaling in sequence length.
However, it also illustrates the limitations of SSM in achieving
input-dependent selection, which has been proven to be the key to
the success of the attention mechanism.

To address this issue, Albert Gu proposes the Selective SSM, i.e.,
Mamba [13], which utilizes three linear projections combined with
the discretization method to calculate the input-dependent A𝑥 , B𝑥 ,
andC𝑥 and employs kernel fusion, parallel scan, and recomputation
to improve the computational efficiency, allowing SSM to effectively
yet efficiently focus on the important part of the inputs. Inspired

by the input-dependent selection mechanism and linear complexity
of Mamab, we consider constructing a lightweight module based
on selective SSM to replace the linear projection widely applied in
vanilla contrastive learning for more effective purification of the
text-relevant information in the contextual features.

3.3.3 Architecture. The original Mamba block is designed for 1-D
sequence, which is inefficient for text recognition requiring spatial-
aware understanding. Inspired by some applications of SSM in the
vision task [42, 54, 63], we design the Text Perceiver, which adds an
independent branch to process the reversed input for bidirectional
feature extraction. The architecture of the proposed text perceiver
is shown in Fig. 3. The input contextual feature is first normalized
by the normalization layer. Subsequently, the normalized feature is
separately projected to the feature x and the gated weight z. For the
feature x, we process it from both the forward and backward direc-
tions. For each direction, we first employ a 1-D convolution to get
the feature x′. Inherited from Mamba, we utilize the x′ to compute
the Ax′ , Bx′ , and Cx′ . Subsequently, we compute the yforward and
ybackward through the SSM layer. Finally, the yforward and ybackward
are gated by the weight z and added together to get the output.

3.4 Loss Function
There are two different-level loss functions in our framework, i.e.,
the recognition loss and the proposed frame-level contrastive loss.
The former, similar to the previous works [34, 43], is used to provide
a word-level supervision for STR models, while the latter is used to
provide a character-level supervision for the STR models to learn
quality-invariant text representations. Before delving into them,
we first clarify the notations. For better performance, STR models
are generally trained with large-scale synthetic datasets that are
entirely composed of high-quality samples. Hence, given a batch of
data {(X𝑖

ℎ
,𝒚𝑖 ), 0 < 𝑖 ≤ 𝑁 } where 𝑁 is the batch size, their features

are defined as {(Z𝑖
ℎ
,U𝑖

ℎ
, 0 < 𝑖 ≤ 𝑁 }, where Z𝑖

ℎ
and U𝑖

ℎ
separately

represents the text representation and the logit sequence. Similarly,
after data augmentation, the associated low-quality views and their
features are denoted as {(X𝑖

𝑙
,𝒚𝑖 ,Z𝑖

𝑙
,U𝑖

𝑙
), 0 < 𝑖 ≤ 𝑁 }.

3.4.1 Recognition loss. We compute recognition lossLREC on logit
sequences of both the high-quality and low-quality views, which
can be formulated as:

LREC =

𝑁∑︁
𝑖=1

LCTC (U𝑖
ℎ
,𝒚𝑖 ) + LCTC (U𝑖

𝑙
,𝒚𝑖 ) . (3)

where LCTC (·) denotes the CTC loss [43] widely applied in the
lightweight STR models.

3.4.2 Frame-level contrastive loss. Frame-level contrastive loss, i.e.,
LFLCL, aims to minimize the distance between each pair of asso-
ciated frames in the projection sequence derived from the same
text instance across different quality contexts, and maximize the
distance between each pair of associated frames in the projection
sequence derived from different text instances. Thus, giving a batch
of paired projection sequences {(Z𝑖

ℎ
,Z𝑖

𝑙
), 0 < 𝑖 ≤ 𝑁 }, the FLCL is

formulated as:

LFLCL =
−1
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑛=1

log
exp(𝑠 (𝒛𝑖,𝑛

ℎ
, 𝒛𝑖,𝑛

𝑙
)/𝜏)∑

𝑚∈Im exp(𝑠 (𝒛𝑖,𝑛
ℎ
, 𝒛𝑖,𝑚

𝑙
)/𝜏)

, (4)
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where 𝒛𝑖,𝑛
ℎ
, 𝒛𝑖,𝑛

𝑙
∈ R1×𝐷 are the 𝑛-th frame of the projection se-

quence Z𝑖𝑐 and Z𝑖
𝑏
respectively. 𝜏 ∈ R+ is a temperature parameter,

which is set to 1 in this work. Im are the index set of all masked
elements. 𝑠 (·) is the cosine similarity which can be computed as
𝑠 (𝒂, 𝒃) = 𝒂T𝒃/∥𝒂∥∥𝒃 ∥. FLCL effectively facilitates aligning the rep-
resentation of clear text instances and their low-quality counter-
parts at the frame level while also enhancing the extraction of
discriminative features, which is pivotal for learning robust text
representations.

Finall, the total loss takes the following form:

Ltotal = LREC + 𝜆LFLCL, (5)

where 𝜆 is a dynamically scaled scalar for balance between recog-
nition loss and FLCL, which is computed as LREC/LFLCL [30].

4 EXPERIMENTS
4.1 Datasets
All models are trained on a union of two commonly used synthetic
datasets, i.e.,MJSynth [17, 18] and SynthText [15], which contain
about 14.4 M synthetic scene text images in total. Then, we first
evaluate the models on six popular benchmarks: IIIT5K-Words
(IIIT) [36] is the dataset crawled from Google image searches, which
contains 3000 images for evaluation, and almost all of them are clear
to recognize. ICDAR2013 (IC13) [20] contains 857 images for eval-
uation, of which 9.3% have low quality. CUTE80 (CT) is proposed
in [41] for curved text recognition, where 288 testing images are
cropped from full images by using annotated words, and about 9%
of them are low-quality. Street View Text (SVT) [48] contains 647
outdoor street images collected from Google Street View, and about
14.2% of them have low-quality appearance. Street View Text-
Perspective (SVTP) [40] is also cropped from Google Street View.
There are 639 test images in this set, and about 20% of them are
suffering from blurred or low-resolution distortion. ICDAR2015
(IC15) [19] contains 1811 images for evaluation. The images are
captured by Google Glasses while under the natural movements of
the wearer, resulting in about 23.5% low-quality images. In addition,
we provide a task-specific benchmark for evaluation: Low-quality
Text (LQT) is made up of the low-quality samples collected from
the previous six datasets, which have a total of 761 images. The
details of the benchmarks are shown in Table 1.

4.2 Implementation Details
4.2.1 Data augmentation. We employ a combination of popular
augmentation and visual distortions to generate low-quality views
of the inputs, which can be formulated as follows:

𝑥 = 𝑓2 (𝑓1 (𝑥)), (6)

where 𝑥 and 𝑥 separately denote the inputs and the associated low-
quality samples. 𝑓1 is the function for data augmentations, which
includes Curve, Stretch, Shrink, AutoContrast, Fog, Snow, Frost, Rain,
Shadow. 𝑓2 is the function for visual distortions, which includes
GaussianBlur, DefocusBlur, MotionBlur, GaussianNoise, JpegCom-
pression, Pixelate. All of the operations are equal in probability and
achieved by the Straug [2] library. Noteworthy, we have not con-
ducted other augmentations on the high-quality inputs separately
during the training phase.

Table 1: Number and proportion of low-quality samples for
evaluation benchmarks.

Benchmark # of Low-quality # of total Ratio
smaples smaples

IIIT 6 3000 0.2%
IC13 80 857 9.3%
CT 27 288 9.4%
SVT 92 647 14.2%
SVTP 131 639 20.3%
IC15 425 1811 23.5%
LQT 761 761 100%

4.2.2 Base Model Selection. To assess the generalizability of our
proposed method, we have chosen nine popular light-weight OCR
models for evaluation, which include CRNN [43], SVTR-T/S [7],
EfficientNetV2-b0/b1 [46], EdgeViT-XXS/XS [38], and EfficientForm-
erV2-S0/S1 [24]. Notably, the EfficientNet series incorporates two
Bi-LSTM layers with a hidden size of 256 for sequence modeling.
Across all these models, a fully-connected layer is utilized as the de-
coder to transcribe contextual features into the text. In addition, the
downsample ratio is set to [×32,×4], the dimension of the output
feature is set to 512, and the dimension of the contrastive learning
feature is set to 192.

4.2.3 Hyperparameters. The rectification module [31, 44] is em-
ployed for distortion correction. All the input RGB images are
resized to 32 × 100, and the maximum length of prediction is set to
25. We adopt the Adam optimizer [22] with a cycle learning rate
from 2e-3 to 1e-8 for training, where the weight decay is set to 1e-5.
The training batch size is 256, and the training epoch is 5. Gradient
clipping is used at magnitude 5. All experiments are conducted on
NVIDIA RTX 4090 GPUs.

4.2.4 Evaluation Protocols. We use word accuracy (ACC) to eval-
uate all models’ performance, which is the ratio of the number of
totally correct predictions over the number of test samples. Besides,
we also report the number of parameters and the inference speed.
Notably, only numbers and letters (case-insensitive) are evaluated.

4.3 Ablation study
To demonstrate the effectiveness of each component in the proposed
framework, we perform an ablation study in this section. Since the
IIIT, IC13, and CT include a small proportion of low-quality samples,
we marked them as high-quality datasets, while the SVT, SVTR,
IC15, and LQT are marked as low-quality datasets. For efficiency,
we adopt the EfficientFormerV2-S0 trained by vanilla contrastive
learning as the baseline on all seven datasets.

4.3.1 Ablation on Key Components. The proposed framework has
two key components, i.e., text perceiver (TP) and frame-level con-
trastive loss (FLCL). The TP is designed to more efficiently purify
the text-relevant information in the contextual features, while the
FLCL is proposed to provide a character-level link between the text
instances with different qualities. We conduct ablation to validate
the effectiveness of TP and FLCL, and the results are shown in
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Table 2: Ablation on key components. ‘LN’ denotes linear pro-
jection, ‘TP’ denotes text perceiver, ‘CL’ denotes contrastive
loss, and ‘FLCL’ denotes frame-level contrastive loss.

0LN0 0TP0 0CL0 FLCL High-quality Low-quality
datasets datasets

✓ ✓ 87.2 72.4
✓ ✓ 88.5 73.7

✓ ✓ 88.3 72.9
✓ ✓ 90.0 74.6

Table 3: Ablation on the architecture of Text Perceiver.

Bidirectional strategy
Recognition ACC.

High-quality Low-quality
datasets datasets

None 89.2 73.7
Bidirectional Sequence 89.4 74.1
Bidirectional SSM 89.5 74.4
Bidirectional SSM + Conv 90.0 74.6

Table 2. We can observe that applying TP to replace LN can bring
an improvement of 1.3% on average accuracy. On the other hand,
compared with popular word-level contrastive loss, FLCL results
in an average accuracy improvement of 0.8%. Finally, it is worth
noting that the combination of TP and FLCL further boosts the
average accuracy of about 1.2%.

4.3.2 Ablation on Text Perceiver. Compared with Mamba [13], the
proposed text perceiver adopts a special bidirectional strategy for
more efficient feature extraction. To illustrate the effectiveness of
this design, we perform an ablation on the design of text perceiver,
where we consider these strategies:
• None. We directly adopt the Mamba block instead of the linear
projection to purify the text-relevant information in the contex-
tual features within the forward direction.

• Bidirectional Sequence. We randomly flip the contextual fea-
tures during the training phase, which is like data augmentation.

• Bidirectional SSM. We add an extra SSM layer for each block
to process the reversed contextual features.

• Bidirectional SSM + Conv. Based on Bidirectional SSM, we
further add a Convolution layer before the SSM in the backward
branch. (as shown in Fig. 3).

As indicated in Table 3, adopting the Mamba block achieves bet-
ter performance than linear projection, while applying additional
bidirectional strategies can further boost the averaged accuracy to
varying degrees. (0.3%∼0.8%). Noteworthy, the strategy of a bidirec-
tional SSM layer with convolution achieves the best results, which
demonstrates the effectiveness of the text perceiver.

4.3.3 Ablation on scale of loss. The relative scale of recognition
loss and the frame-level contrastive loss will be changed at differ-
ent epochs of the training process. Based on this observation, we

Table 4: Ablation on the scaled scalar of the loss function.

Scaled scalar
Recognition ACC.

High-quality Low-quality
datasets datasets

1 89.5 74.4
0.5 89.7 74.1
0.2 89.9 73.9
0.1 89.4 73.4
Dynamic 90.0 74.6

consider a dynamic scaled scalar to balance different losses during
the training. To verify the effectiveness of the dynamic scalar, we
compare it with several static scales, and the results are assessed
in Table 4. For static scalars, we can see that paying too much
attention to contrastive loss will affect the recognition performance
of the model faced with high-quality samples, while paying little at-
tention to contrastive loss will make the performance of the model
decline under low-quality scenarios. However, as for the dynamic
scalar, it is able to provide the model with the highest recognition
accuracy in both high-quality and low-quality datasets.

4.4 Results
4.4.1 Model-wise comparison. To demonstrate the effectiveness of
the proposed framework, we compare the performance of it and the
CTC framework with / without contrastive learning (CL) on seven
popular light-weight OCR models mentioned in Sec. 4.2, and the
results are reported in Table 4. We can clearly see that, compared
with standard contrastive learning, our method can provide an av-
erage accuracy improvement of about 2% for various models with
different backbones over all benchmarks without any additional
cost, which profoundly verifies the effectiveness of our method at
the model level. Overall, since it is difficult for vanilla contrastive
learning to efficiently extract text-relevant information from the
extracted contextual features, the models trained by CL are usually
suffering from the unbalanced performance between the samples of
different quality. However, due to the text perceiver, our framework
can provide more consistent performance improvements for the
models when faced with different-quality samples. To be specific,
CRNN, the most classical, representative, and widely used light-
weight text recognition model, obtains a 4.2% average accuracy
increment via our framework. Besides, the advanced CTC-based
text recognition method, the SVTR series, gains over 1% improve-
ment in average accuracy with our method. In addition, all the rest
of the text recognition models, i.e., EfficientNet, EdgeViT, and Effi-
cientFormer series, also achieved about 1%∼2.5% improvement in
average accuracy by our method. Furthermore, for datasets contain-
ing a large number of blurred or low-resolution samples, e.g., SVT,
SVTP, IC15, and LQT, the improvement brought by our framework
is more significant.

4.4.2 Comparisons with State-of-the-Arts. To illustrate the superi-
ority of our methods, we compare it to the state-of-the-art meth-
ods designed for the light-weight OCR models, e.g., FocalCTC [9],
EnCTC [27], and DCTC [61], with the classic OCRmodels. They are
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Table 5: Results of Model-wise Comparison on seven benchmark datasets made up of different percentage of low-quality
samples. Bold ACCs are the model-wise better results. ‘CTC + CL’ refers to adapting vanilla contrastive learning framework
with CTC loss as the recognition loss to train the model.

Backbones Methods IIIT IC13 0CT0 SVT SVTP IC15 LQT Avg. Param (M) Time (ms)

CRNN
CTC† 84.3 90.3 61.3 78.9 64.8 65.9 40.6 72.4

7.16 4.8CTC + CL 85.7 91.0 68.4 82.6 67.4 68.2 45.0 75.6(+3.2)
Ours 88.2 92.0 76.7 84.5 72.6 73.5 50.3 79.8(+7.4)

SVTR-T
CTC‡ 94.5 96.3 88.2 91.6 85.4 84.1 60.3 86.5

5.98 4.5CTC + CL 94.0 96.5 88.4 92.4 87.6 85.5 62.8 87.5(+1.0)
Ours 95.0 96.8 90.5 93.6 88.3 87.1 64.8 88.9(+2.4)

SVTR-S
CTC‡ 95.0 95.7 92.0 93.0 87.9 84.7 67.2 88.2

10.13 8.0CTC + CL 94.8 96.2 91.4 93.8 89.3 86.2 69.5 89.0(+0.8)
Ours 95.2 96.8 92.8 94.5 90.2 87.8 71.4 90.1(+1.9)

EfficientNetV2-b0
CTC 88.9 94.9 69.8 85.5 74.0 73.9 52.3 82.1

6.95 4.9CTC + CL 89.0 95.0 72.2 85.0 74.5 75.0 54.4 82.9(+0.8)
Ours 89.2 95.4 74.2 86.2 76.4 75.7 55.3 83.9(+1.8)

EfficientNetV2-b1
CTC 89.1 94.2 73.3 86.7 75.5 76.1 57.0 84.3

9.57 8.3CTC + CL 90.4 95.1 74.8 86.5 76.0 77.3 58.4 85.2(+0.9)
Ours 91.2 95.7 75.5 88.2 77.8 78.4 59.3 86.3(+2.0)

EdgeViT-XXS
CTC 88.7 93.8 72.6 86.5 75.5 76.1 52.1 83.4

5.95 4.5CTC + CL 89.0 93.5 73.0 87.6 77.2 78.8 54.3 84.5(+1.1)
Ours 89.2 94.5 75.4 88.3 79.0 80.2 57.5 86.0(+2.6)

EdgeViT-XS
CTC 90.3 94.5 76.7 86.6 78.2 77.1 54.3 84.6

8.62 8.2CTC + CL 90.5 94.0 77.5 87.8 79.3 78.4 57.0 85.6(+1.0)
Ours 90.8 95.2 78.6 89.4 80.7 79.5 58.4 86.7(+2.1)

EfficientFormerV2-S0
CTC 85.9 91.2 73.3 80.7 70.9 70.3 45.3 77.9

3.56 3.8CTC + CL 86.2 92.0 74.0 83.5 72.4 72.8 48.5 79.8(+1.9)
Ours 87.5 93.4 75.4 85.9 76.0 76.6 53.8 82.3(+4.4)

EfficientFormerV2-S1
CTC 88.2 93.4 77.1 83.3 75.0 74.1 52.1 81.5

6.15 4.0CTC + CL 87.4 93.5 77.0 84.5 77.0 75.8 56.4 82.7(+1.2)
Ours 88.6 93.9 79.5 87.0 77.4 77.5 58.2 84.2(+2.7)

The results of † are reported by [4], and the results of ‡ are reported by [7].

widely applied in real-life scenarios to enhance the performance of
the light-weight OCR model without additional cost. Since these
methods are not specifically designed for low-quality text images,
we only report the results on the six popular benchmarks for fair
comparison, which are shown in Table 5. We can observe that in
datasets containing a larger proportion of low-quality samples, i.e.,
SVT, SVTP, and IC15, our method can provide the models with
significantly the best performance among SOTAs, illustrating its
advantage in enhancing recognition performance in low-quality
scenarios. Furthermore, although our method aims to enhance the
recognition performance of the models in low-quality scenarios, it
can also effectively enhance the model performance when faced
with high-quality samples. In general, our method brings the largest
increment of accuracy for not only CRNN but SVTR-T on most
benchmark datasets, resulting in a 6.9%, and 1.9% improvement of
the average accuracy, respectively, which is more than double the
best of SOTAs.

4.5 Visualization Analysis
In a low-quality scenario, it is very difficult for models to identify
samples with confusing characters. Our method introduces a con-
cise yet effective text perceiver to replace the linear projection and
suggests an additional frame-level distillation between high-quality
samples and associated low-quality views besides the recognition
supervision, which promotes the model to extract more discrimi-
native features when faced with low-quality text images and thus
improve its overall performance. To qualitatively demonstrate the
effectiveness of our method, we provide a series of visualization
analyses with EfficientFormerV2-S0 that is trained by vanilla con-
trastive learning, i.e., the baseline, and the proposed frame-level
contrastive learning, respectively.

To verify the effectiveness of our method, we conducted a feature
visualization study with t-SNE [47]. Specifically, we select several
hard example groups that are composed of characters prone to
being wrongly recognized as each other. We crop some examples
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Table 6: Comparison with the state-of-the-art methods, where the results of the DCTC are reported by [61]. Bold ACCs are the
best results; Underline ACCs are the second best results.

Models Variants Venue IIIT IC13 0CT0 SVT SVTP IC15 Avg.

CRNN

CTC TPAMI’15 84.3 90.3 61.3 78.9 64.8 65.9 77.3
FocalCTC Complexity’19 81.2 89.6 60.2 80.1 63.0 65.2 75.6(−1.7)
EnCTC NeurIPS’18 85.6 90.1 59.0 81.5 62.9 64.7 77.1(−0.2)
DCTC AAAI’24 88.9 90.7 68.1 82.4 65.4 66.1 79.9(+2.6)
Ours - 88.2 92.0 76.7 84.5 72.6 73.5 84.2(+6.9)

SVTR-T

CTC TPAMI’15 94.5 96.3 88.2 91.6 85.4 84.1 90.8
FocalCTC Complexity’19 94.3 96.0 87.9 91.0 85.1 84.1 90.6(−0.2)
EnCTC NeurIPS’18 94.5 94.9 88.2 90.8 85.4 84.3 90.6(−0.2)
DCTC AAAI’24 95.4 96.4 89.9 92.3 86.1 85.3 91.7(+0.9)
Ours - 95.0 96.8 90.5 93.6 88.3 87.1 92.7(+1.9)

Baseline

Baseline

Ours

Ours

“o”

“e” “u”

“a”

“m”

“h” “b”

“n”

Figure 4: Feature visualization of the hard example groups.
From top to bottom are separately the examples and the
associated feature projections, where each row represents a
group.

from the images on the test sets and separately fetch their feature
embeddings from the baseline and our method. Fig. 4 shows the
feature projections of two hard example groups, where different
characters are marked with different colors. We can clearly observe
that even when faced with low-quality samples with very similar

Figure 5: Qualitative examples where the baseline fails but
our method succeeds. From top to bottom are the predictions
of the baseline and our method.

appearances, our method can still drive the model to extract more
discriminative features that are more cohesive than those extracted
by the baselines. Furthermore, some predictions of high/low-quality
sample pairs are given in Fig. 5. We can find that it is easier for the
model trained by our method to distinguish the confusing charac-
ters in low-quality cases and make consistent predictions between
high-quality and low-quality samples. For example, the prediction
of the first low-quality example in Fig. 5 is corrected from ’pleose’
to ’please’ by our method.

5 CONCLUSION
In this paper, we propose a concise yet quite effective strategy to
enhance the performance of lightweight STR models when faced
with low-quality samples without additional cost, which includes
a SSM-based text perceiver and a frame-level contrastive loss. By
employing the text perceiver to derive the text-specific information
from the contextual features extracted by the backbone and then
prompting character-focused feature learning via frame-level con-
trastive loss, our method can help STR models learn more robust
text representation, thus improving their recognition performance.
The superiority of our method has been illustrated by both quanti-
tative and qualitative analysis of several popular STR benchmarks.
The proposed method not only has excellent generalization perfor-
mance but also achieves the best results compared with SOTAs.
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