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In Appendix [A]l we provide training details for each of our fine-tuning run. In Appendix [B] we
provide details on how to compute the concatenated feature vector ®g(x) from a ViT-B/32 CLIP
model for LDIFS. In Appendix [C} we provide additional results on i) observing how fine-tuning can
lead to concept forgetting, ii) our investigations on why LP-init-L2SP is a better baseline compared
to others in avoiding concept forgetting and ii) performance of our proposed LDIFS regularizer.

A TRAINING DETAILS

Training datasets and hyper-parameters: We fine-tune the CLIP ViT-B/32 model on each of the 9
image classification datasets: a) Stanford Cars, b) CIFAR-10, ¢) CIFAR-100, d) DTD, e) EuroSAT, f)
GTSRB, g) MNIST, h) RESISC45, i) SVHN. For each dataset, we have a separate fine-tune run for
each of the baselines discussed in For each run, we train using the AdamW |Loshchilov & Hutter|
(2017) optimizer, with an initial learning rate of 1e — 5, a weight decay of 0.1 and a cosine learning
rate scheduler with a warmup length of 500. For all the runs, we use a batch-size of 128. Following
the code of Ilharco et al.[(2022a), we use the following number of epochs to fine-tune each dataset: a)
Stanford Cars: 35 epochs, b) CIFAR-10/100: 10 epochs, ¢) DTD: 76 epochs, d) EuroSAT: 12 epochs,
e) GTSRB: 11 epochs, f) MNIST: 10 epochs, g) RESISC45: 15 epochs and h) SVHN: 10 epochs.
For each dataset, we keep a minimum of 10 epochs for fine-tuning.

Compute and number of experiments: Each of our fine-tuning run is done on a single NVIDIA
A100 GPU. As there are a total of 9 classification datasets and a 8 fine-tuning baselines (including our
proposed LDIFS), we perform a total of 72 fine-tune training runs from a pre-trained CLIP ViT-B/32.
Furthermore, in order to produce the plots capturing Azs, Arp, as well as ¢ distance in parameter
and feature space, we store intermediate checkpoints over the course of fine-tuning. Particularly, for
each run, we evaluate checkpoints after every 20% of training completion. Finally, in order to obtain
the full set of results in Table[6] for the 72 fine-tuned models, we evaluate each of them on 9 datasets
(i.e., including the test set of the fine-tuned task), thereby having a total of 648 evaluations. Similar
to training, each evaluation is also performed on a single NVIDIA A100 GPU.

Choosing A\;prrs: One hyper-parameter which the LDIFS regularizer introduces is Arpirs. A
higher value of Apirs encourages the model to preserve features of the original foundation
model and vice versa. For each classification task, we performed a grid search over A\pirs €
{0.01,0.05,0.1,0.5,1, 10,100} and cross-validated this hyper-parameter on a held-out validation set,
choosing the value which produces the best performance on the validation set. We found Ay, pirg = 10
to produce the best performance over datasets in general, so all the results we present in this paper
are with Ar,pirs set to 10.

B COMPUTING Py (x)

In this section, we discuss how we compute the concatenated feature vector ®y(x) given input x
and model parameters 6, specifically for a ViT-B/32 model. This is used for computing LDIFS, our
proposed regularizer for fine-tuning.

Let the feature output from layer [ in the network for input x be ®4(;) (x) € R!. Then the normalized

o
feature vector for layer [ can be represented as #;Ei)”.

vector, one can take technically take features from every intermediate layer of the network. However,
storing all the features is memory intensive. Thus, we follow a similar approach to the LPIPS
Zhang et al.|(2018) implementation for VGG and AlexNet, and choose 5 intermediate points in the
ViT-B/32 architecture to collect features from. For a single input image x € R3*224%224 each of the
intermediate feature representations has a dimension of R0 768 with 50 tokens and 768 dimensional
representation for each token. When normalizing the feature vector, we flatten this vector out to a
single 38400 dimensional vector. Thus the full concatenated feature vector ®¢(x) has dimensionality
5 x 38400 = 192000. However, note that there can be other ablations to this design and we leave
that for future exploration.

LDIFS vs LPIPS [Zhang et al.| (2018): One can find similarities between our proposed LDIFS
regulariser and the LPIPS metric |[Zhang et al.| (2018)) used for measuring perceptual similarity
between images. However, while LPIPS uses feature space distance on a pre-trained, frozen model
to find perceptual similarity between pairs or sets of images, LDIFS instead feature space distance

In order to form the concatenated feature
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between a pair of pre-trained and fine-tuned model for the same image, to preserve the input-output
behaviour of the pre-trained model.

C ADDITIONAL RESULTS

In this section, we present additional empirical results to supplement our observations and conclusions
in the main paper.

C.1 CRIPPLING EFFECT OF FINE-TUNING

In §3] we observed how most existing fine-tuning methods, while gaining state-of-the-art performance
on fine-tuned tasks, can lead to concept forgetting in models. In this section, we provide additional
empirical results to further strengthen those observations.

In Figure [7] and Figure [I5] we present the Azg and App accuracy for models fine-tuned on each
of the 9 classification tasks, on their respective test sets. This shows expected behaviour as models
broadly achieve very high test set accuracy, which increases over the course of fine-tuning, on their
respective fine-tuned tasks. Note that LP-init baselines seem to have relatively lower performance on
Ayzs accuracy compared to their ZS-init counter-parts. However, this reduced performance is only
limited to Azg as this does not translate to a reduced performance in App. Moreover, L2SP baselines
(both ZS and LP-init) obtain relatively lower fine-tuned accuracy both in case of Azg and Arp.

In Figureand Figure we present the Azg and App for models fine-tuned on EuroSAT (first row),
GTSRB (second row) and SVHN (third row) as captured on 8 classification datasets different from
their respective fine-tuned set. Broadly, the ZS and LP performance for all models drops on other
datasets as they are fine-tuned, thereby capturing concept forgetting in the fine-tuned models. Among
the baselines, we consistently observe LP-init-L2SP to perform better than others in avoiding concept
forgetting. This is evident through the distinctly higher Azg and Ay p accuracies over fine-tuning for
the LP-init-L2SP baselines.

C.2 ANALYSING L2SP

In this section, we provide additional results to supplement our observations related to investigating
the L2SP baseline in §4|of the main paper. In Figure we present the /5 distance in parameter
space ||0 — 6y||3 between the pre-trained and current models captured over fine-tuning. For all the
datasets, we observe that L2SP baselines while initially diverging slightly in the parameter space,
converge back to a model having low ¢5 parameter space distance from the original foundation model.
Other baselines on the other hand, completely diverge away from the original model in the parameter
space.

To further investigate the change in input-output behaviour of the model over fine-tuning, we measure
the distance in feature space (see Equation (3)) over fine-tuning. In Figure we present the /o
distance in feature space captured for models fine-tuned on EuroSAT. Again, consistent with our
previous observation, we find that unlike other baselines, L2SP first diverges away from the original
foundation model and then converges back to the original input-output behaviour, as is indicative
through a decreasing L2 feature space distance in the later stages of fine-tuning. This observation
is consistent on the EuroSAT train set, the EuroSAT test set as well as on other datasets, thereby
providing our motivation for the LDIFS regularizer.

C.3 PERFORMANCE OF LDIFS

In this section, we provide additional results to supplement observations related to the performance
of the proposed LDIFS regularizer.

Analysing LDIFS on parameter space and feature space distance: In Figure 9] and Figure [I0]
we plot the ¢, distance in parameter/weight and feature space respectively (same as Figure [3| and
Figure [ in the main paper), but with the LDIFS baselines added in. In the weight space, LDIFS,
while lower than other fine-tuning methods, has a relatively higher ¢, distance from the pre-trained
model compared to L2SP. On the contrary, in the feature space, LDIFS consistently gets the lowest
distance from the pre-trained model. This is expected and was indeed the purpose behind LDIFS’s
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Figure 7: Test set ZS Accuracy .Azs for different fine-tuning methods on 9 image classification
tasks: (a) Stanford Cars, (b) CIFAR-10, (c) CIFAR-100, (d) DTD, (e) EuroSAT, (f) GTSRB, (g)
MNIST (h) RESISC45 and (i) SVHN. Azg generally rises over the course of fine-tuning. However,
for the ZS-init-L2SP and LP-init-L2SP baselines, the gain in Azg is relatively lower. Furthermore,
for LP-init baselines, the performance is consistently lower compared to other baselines
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Figure 8: ZS Accuracy Ayzg for models fine-tuned on EuroSAT (first row), GTSRB (second row),
and SVHN (third row) and evaluated on 8 different datasets different from their fine-tuning
dataset. Most fine-tuning methods show a drop in .Azg performance over the course of fine-tuning
indicating a reduction in the model’s transferability.
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Figure 9: /; distance in weight space ||0,,;) — 0.,(0)||3 between the image encoder fine-tuned to the

current time-step fp_,, and the pre-trained image encoder fy . over the course of fine-tuning.
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Figure 10: /, distance in feature space d(0.,(;), 0, (o), D), between image encoders, fj, « and fo,

computed over different fine-tuning methods for models fine-tuned on EuroSAT.

design which is to minimize the difference in input-output behaviour, captured through feature space
distance between the fine-tuned and pre-trained models and not necessarily constrain the parameter
space of the fine-tuned model to lie close to the pre-trained model. Furthermore, note from Figure [T0]
that although we are applying the LDIFS regularizer only on the EuroSAT samples during fine-tuning,
the preservation of features extends even to other datasets like CIFAR10, CIFAR100 and GTSRB, as
is indicated by the low feature space distance even on these datasets.

Results and observations: Firstly, in Figure[I3]and Figure[T7] we present the test set accuracy of
all fine-tuning methods including LDIFS on all 9 classification tasks. We see that LDIFS performs
competitively with all other baselines and improves on L2SP consistently. In Figure[T4]and Figure[T8]
we present the Azg and App accuracy respectively, for models fine-tuned on EuroSAT (first row),
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Figure 11: App for models trained with LDIFS on EuroSAT using the full concatenated feature
vector vs just the last layer (LL) feature vectors. Full feature vectors with earlier features is crucial
for LDIFS’s performance.

GTSRB (second row) and SVHN (third row) over the course of fine-tuning. Furthermore, we also
provide the Azg, Arp and the App values for fully fine-tuned models on all 9 classification tasks
and all baselines in Table[6l

As is crystal clear from our results, LP-init-LDIFS consistently minimizes concept forgetting without
compromising on performance on the fine-tuned task. This is evident from its high Azs, App (see
Figure[I4]and Figure[I8) and high Azg and App (see Table[6) when evaluated on tasks other than the
fine-tuning task at hand. Note from Table[6|that even when LP-init-LDIFS is not achieving the best
performance on a certain dataset pair, it is often a close second with very little difference compared
to the best performing baseline. In addition to this advantage, its Ay,p accuracy on the fine-tuned task
itself is very competitive with the top scores obtained by other fine-tuning baselines and provides a
consistent improvement on L2SP.

Finally, in Table[/| we present the full results of the 2 task sequence setup for continual fine-tuning.
Even in this setting, we find LP-initLDIFS to not only preserve performance of the first fine-tuning
task during the second fine-tuning stage but also to preserve performance of all other tasks during the
entire sequence of end-to-end fine-tuning.

Ablation with last layer features: In Figure we present an ablation where we fine-tune on
EuroSAT using LDIFS but using just the last layer features as opposed to the full concatenated
feature vector. Clearly, including earlier features when computing the LDIFS regularizer is crucial
to its performance as preserving just the last layer features leads to a significant performance drop
compared to using the full feature vector.

C.4 COMPARISON WITH ADAPTERS AND PROMPT TUNING

In Table 5] we present results of fine-tuning a CLIP ViT-B/32 model using linear probing, CoOp,
CLIP-Adapter, Tip-Adapter and full end-to-end fine-tuning using ZS-init-CE loss on 9 downstream
image classification tasks. We consistently observe end-to-end fine-tuning to produce the best test set
accuracy across all 9 tasks. Furthermore, we also note that in case of tasks where the gap between
linear probe performance and end-to-end fine-tuning performance is significant (e.g. SVHN), adapter
and prompt tuning approaches don’t cover this performance gap. Hence, if the pre-trained encoder
is not performant on a downstream task, the only way to achieve state-of-the-art results on the task
requires end-to-end fine-tuning the model on the task itself. This observation thus necessitates study
into better end-to-end fine-tuning methods for foundation models.

C.5 COMPARISON WITH WISE-FT

In this section, we perform an ablation to see the effect of Wise-FT [Wortsman et al.| (2022b)) on
preventing concept forgetting. Wise-FT is a weight interpolation method which forms a linear
combination between the pre-trained 6 and fine-tuned  model parameters:

Owse = 0l + (1 — )0y 6)

Since this can work with any fine-tuned model, we can apply it on all the end-to-end fine-tuning
baselines in this work. Specifically, we tune the hyperparameter o on a held-out validation set of
the downstream task at hand to maximum validation accuracy. We evaluate concept forgetting on
3 downstream tasks: CIFAR-10, EuroSAT and SVHN using the App metric and report the results
in Table[d For each dataset, we evaluate the mean App on 5 other downstream tasks: Cars, DTD,
GTSRB, RESISC45 and MNIST. Our observations show a consistent reduction in concept forgetting
across all fine-tuning baselines. However, the order of performance between the fine-tuning baselines
does not change and LDIFS still maintains superior performance over other baselines both pre and
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Figure 12: Visualizing test LP accuracy of fine-tuning baselines on different datasets. For each
dataset, we plot its test set LP accuracy on the x-axis and the average test set LP accuracy of the
remaining datasets on the y-axis.

Dataset Fine-tuning baselines
FLYP FLYP-CE ZS-init-CE LP-init-CE (LP-] ZS-init-L2SP LP-init-L2SP ZS-init-LDIFS (Ours) LP-init-LDIFS (Ours)
App(+

Avp wse) | Ap  Aip(+wse) | Aup  Aup(+wse) | App  Arp(+wse) | Arp  Arp(+wse) | Ap  Aip(+wse)  App  App(+wse) | Arp  App(+wse)
CIFARIO | —5.14 -0.11 | -1.33 ~0.16 | —1.67 —0.1 | —1.49 —0. | 158 | 149 1.96 1.53 1.99 | 172 2.01
EuroSAT | —6.5 -1.32 | -553 —1.04 | —5.62 —1.23 | —4.08 —0.76 | —1.77 —012 | —0.87 0.08 0.83 12 | 124 1.96
SVEN | -10.82 624 | ~10.18 637 | ~10.98 72 | -9.2 411 | -2.65 —0.66 | -2.13 —0.23 —0.57 012 | -018 0.33

Table 4: App without and with Wise-FT [Wortsman et al.| (2022b) for all fine-tuning baselines on
CIFAR-10, EuroSAT and SVHN.

Figure 13: Comparing test set ZS Accuracy Ayg for different fine-tuning methods with LDIFS
on 9 image classification tasks. While LP-init baselines generally underperform on Azg, we find
ZS-init-LDIFS to be competitive with the best baselines.

post application of Wise-FT. Thus, the results show that Wise-FT can be combined with any E2E
fine-tuning method to further minimize concept forgetting.

C.6 VISUALIZING TABLE[]

In this section, we present the results of Table [T]using an alternate visualization. For each of the 9
downstream datasets, we plot the LP accuracy on the dataset itself on the x-axis and the average LP
accuracy on all other datasets on the y-axis. The best baselines should lie on the top right corner of
this plot as that indicates that as the model is fine-tuned on the dataset, it still retains performance on
other datasets. Results are in Figure[T2] Clearly, we consistently see the LDIFS baselines to lie at the
top right, again indicative of their performance in not just minimizing concept forgetting but also
obtaining excellent downstream task performance.

C.7 GENERALITY OF CONCEPT FORGETTING BEYOND CLIP VIT-B/32

To study the relevance of concept forgetting beyond a CLIP ViT model, in Table[§]and Table[9] we
apply the end-to-end fine-tuning methods to fine-tune a CLIP RN-50 model and a FLAVA |Singh et al.
(2022) ViT-B/16 model respectively on EuroSAT. From both these tables, we observe both concept
forgetting to exist and LP-init-LDIFS to minimize it, thereby validating our assumptions on models
beyond a CLIP ViT model.
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Figure 14: Comparing ZS Accuracy .Azg of different fine-tuning methods with LDIFS for models
fine-tuned on EuroSAT (first row), GTSRB (second row) and SVHN (third row) and evaluated
on 8 datasets different from their fine-tuning dataset. LP-init-LDIFS almost consistently beats all
other baselines including LP-init-L2SP in preserving the model’s transferability.
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Figure 15: Test set LP Accuracy Ay p for different fine-tuning methods on 9 image classification
tasks: (a) Stanford Cars, (b) CIFAR-10, (c) CIFAR-100, (d) DTD, (e) EuroSAT, (f) GTSRB, (g)
MNIST (h) RESISC45 and (i) SVHN. App generally rises over the course of fine-tuning. However,
for the ZS-init-L2SP and LP-init-L2SP baselines, the gain in Ay p is relatively lower. Furthermore,
for LP-init baselines, the performance is consistently lower compared to other baselines
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Figure 16: LP Accuracy App for models fine-tuned on EuroSAT (first row), GTSRB (second
row), and SVHN (third row) and evaluated on 8 different datasets different from their fine-
tuning dataset. Most fine-tuning methods show a drop in App performance over the course of
fine-tuning indicating a reduction in the model’s transferability.

Figure 17: Comparing test set LP Accuracy App for different fine-tuning methods with LDIFS
on 9 image classification tasks.
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Figure 18: Comparing LP Accuracy Ay p of different fine-tuning methods with LDIFS for
models fine-tuned on EuroSAT (first row), GTSRB (second row) and SVHN (third row) and
evaluated on 8 datasets different from their fine-tuning dataset. LP-init-LDIFS almost consistently
beats all other baselines including LP-init-L2SP in preserving the model’s transferability.
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Figure 19: /5 distance in weight space ||0 — 0||3 between pre-trained image encoder fy, and fine-
tuned image encoder fy over the course of fine-tuning. Apart from ZS-init-L2SP and LP-init-L2SP,
all fine-tuning baselines diverge in weight space over the course of fine-tuning.

Figure 20: /, distance in feature space d(6, 0y, D), between fine-tuned and pre-trained image
encoders, fp and fy, computed over different fine-tuning methods for models fine-tuned on EuroSAT.

Dataset | LP  CoOp  CLIP-Adapter  Tip-Adapter  E2E Fine-tuning
Cars 80.80  80.88 81.24 81.32 83.48
CIFARI0 | 94.92  95.02 94.87 95.13 97.73
CIFAR100 79.62 80.12 80.06 80.82 88.6
DTD 72.08 72.01 71.87 72.62 77.18
EuroSAT 95.56 95.14 95.38 96.23 98.76
GTSRB 86.70 86.81 87.45 88.04 98.52
MNIST | 98.65 98.84 99.03 99.11 99.67
RESISC45 91.86 91.79 91.82 91.80 95.76
SVHN | 65.47 67.28 69.76 69.23 97.3

Table 5: Test set accuracy obtained from linear probing (LP), CoOp, CLIP-Adapter, Tip-Adapter and
end-to-end (E2E) fine-tuning using ZS-init-CE loss.
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DTD 203 122 0.05 101 112
EuoSAT  GTSRB —127 405 “12 456 451
MNIST 3.21 0.54 02 5.54 252
RESISCIS Sx2 o 0.05 —4.08 09
SVHN 007 s 251 6.08 607
EuroSAT 52.19 267 52.15 17.02
T Zo02s “2.66 —o0ss
CIFARID “a0s0 1141 02 -7 o014
CIFARI00 4 1766 0.39 —2.16 181
DD 66 2.1 176 —255 —0.32
GTSRB  EuroSAT 165 5.31 0.0 117 2,57
MNIST —172 039 —0.06 223 8
RESISCIS —186s 202 —0.02 26
VHN 522 1615 79
6iT4 108 527
156 218 “oa1
—1531 561 032
2377 0.1 011
“aa4 —0s2 155
MNIST 246 072 —0.17 —12.63
557 245 277 371
5.6 156 021 319
7882 129 606 751 19.95
MNIST 99.63 5102 08 05 835
Cars 7478 7 Ti: ozl 019 sl 026
CIFARID 081 LT 758 201 00 oiol 0.2
CIFARIOD 72.80 7438 | 725 825 057 8019 047 157
DT 69.52 76 | 84 o7 207 713 -1 —o0.4:
EuroSAT 96,61 9661 | 123 113 126 & 1874 12.7¢
GTSRB. 52.76 8551 176 106 031 8695 -2.00 1.96
MNIST 95.33 o541 | 208 —o10 — 9558 404 5.47
Vi 6238 6288 | a5n o8 0.8 6623 416 29
95.79 68 o500 219 225 o413 8476 1092
63.50 1528 6550 2.02 2.0 65 s
$1.06 S1ad s3do 747 ~5.66 —7.25 683
5672 —1807 6159 —11ss ~10.00 128 —11.08
566 “1501 5697 —106 —09 —a7 ~186
SVEN 0121 601 226 256 2.61 1574
sT.72 9 oLsT 5 501 6.03 549 6.5
9847 015 os1 | a9 23 —0.06 4191 19.35
5178 —xor om0 | k. —195 L6 —456 556
974 s198 975 | 6isi 3Lz SL01 9651 6525 50.92

Table 6: Azs, Arp and App for models fully fine-tuned on 9 different classification datasets.
LP-init-LDIFS outperforms other fine-tuning baselines and even LP-init-L2SP in minimizing concept
forgetting, while also outperforming LP-init-L2SP on the fine-tuned task performance.

Dataset Fine-tuning bascines
Finetune Eval ZS.init-CE LP-init-CE (LP-FT) zs. » LPinit-L2SP ZS-init-LDIFS (Ours) DIFS (Ours)
Azs(t) A1) | Bzsh) Aup() Awe()) | Azs(D) B Auwe(D) | Sas() Awe()  Aue() | Azs(h) Aue() | Azs(t) Aue() Aw(t) | Sz Swe(®)  Ave(h) Aup(t)  Ave(t)
SVEN | 521 935 | saas  2ies o323 | o7l 9200 | 4577 2852 938 | olod 9194 | 5001 2036 9495 | 5575 2008 0504
ciRari0 | T o768 252 otaz | 78 oras | 7l 25 orms | 7 o753 | 7 220 otz | 616 238 a73
an | 5763 1623 6450 | —4750  —10.07 —aran o w0 | 1m0t 5116 041 8123 | -4 —001
sviNcio CIFARIO | —2827 003 7o 3.24 150 81z | 67 3 47 082 8046 | 5
b | 1941 181 6ozt —1d26 —02 G287 | 293 048 7252 o005 7220 | —165
EuoSAT | 2156 —091 9463 “152 043 @51l | 415 013 565 0.2 337
g Zoz2 17 s —252 168 53 | 412 i 075 324 7.09
MNIST | 3i62 004 9861 30.26 3 231 022 5.5 02
RESISCss | ~36.56  —6.03 54 | —2220 “2076 —is2 —ia3 Sis —om a120 —025
SVIN | 5408 56.19 s6r2 2167 w12 211 2L6s 55,06 sL1L
ciRARIO0 | 2318 2164 278 198 s08 206 7o 86.64 3
Cans 395 241 sa 516 600 o1d o7 0.62 0.0
. CIFARIO | ~10.04 251 092 iz 7 19 9675 133 262
SVEN = CI00 P 1218 1583 936 5. 521 00 7220 ~154 Z054
EuroSAT | —2452 076 052 0.0 187 0.13 9567 | —689 007 128
GTSRE | —6.26 Ssa o 1an i 06 270 o022 | 267 343 5.0
2170 524 25 0.36 ;s 08 9592 | 695 o043 1878
RESISCi5 | —25.98 2 —isy 335 Z605 0o or1 | —8s1 —0e1  ooi | 328

Table 7: Ayg, Arp and App for models fine-tuned on SVHN — CIFAR10 and SVHN —
CIFAR100. LP-init-LDIFS consistently outperforms other baselines even in the sequence setup.

Dataset
ctme B

tuning baselines
zs

Ace(t)  Ace(t) | Azs(h)  Ace(t)  Ace(t) | Azs(1)  Acwe(t)  Awe() | Azs(f)  Are(f)  Awe(h) (1) Awe(t)  Awe(h) | Azs(t)  Awe(t)  Ace(t) | Szs()  Ace(t)  Ace(f)  Azs(t)  Ace(f)  Ace(f)
Table 8: Ayg, App and Aypp for CLIP RN50 fully fine-tuned on EuroSAT.
Dataset Fine-tuning baselines
Fine-tune Eval FLYP FLYP-CE ZS-init-CE LP-init-CE (LP-FT) ZS-init-L2SP LP-init-L2SP ZS-init-LDIFS (Ours) LP-init-LDIFS (Ours)
Arp()  Awe(D) | Ace()  Ace() | Ae(1)  Awe(D) | Ace(1)  Ace() | Awp(1)  Awe(h) | Ae(1)  Awe(D) | Awe(t)  Awe(h) | Ae()  Awp(h)
CIFARI0 —9.44 83.43 —8.13 84.74 —6.01 86.86 88.11 —2.32 90.55 —0.11 92.76 0.07 92.8 0.16 93.03
EuroSAT SVHN —8.92 54.24 —8.16 55.0 —6.63 56.53 58.06 —1.87 61.29 —1.21 61.95 1.37 64.53 2.68 65.84
EuroSAT ‘ 1.63 98.89 ‘ 1.65 98.91 ‘ 1.41 98.67 ‘ 1.53 98.79 ‘ 0.95 98.21 ‘ 1.42 98.68 ‘ 1.47 98.73 ‘ 1.6 98.86

Table 9: Arp and App for FLAVA ViT-B/16 fully fine-tuned on EuroSAT.
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