
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFUSION-BASED OFFLINE RL FOR IMPROVED
DECISION-MAKING IN AUGMENTED ARC TASK

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective long-term strategies enable AI systems to navigate complex environments
by making sequential decisions over extended horizons. Similarly, reinforcement
learning (RL) agents optimize decisions across sequences to maximize rewards,
even without immediate feedback. To verify that Latent Diffusion-Constrained
Q-learning (LDCQ), a prominent diffusion-based offline RL method, demonstrates
strong reasoning abilities in multi-step decision-making, we aimed to evaluate its
performance on the Abstraction and Reasoning Corpus (ARC). However, applying
offline RL methodologies to enhance strategic reasoning in AI for solving tasks
in ARC is challenging due to the lack of sufficient experience data in the ARC
training set. To address this limitation, we introduce an augmented offline RL
dataset for ARC, called Synthesized Offline Learning Data for Abstraction and
Reasoning (SOLAR), along with the SOLAR-Generator, which generates diverse
trajectory data based on predefined rules. SOLAR enables the application of offline
RL methods by offering sufficient experience data. We synthesized SOLAR for a
simple task and used it to train an agent with the LDCQ method. Our experiments
demonstrate the effectiveness of the offline RL approach on a simple ARC task,
showing the agent’s ability to make multi-step sequential decisions and correctly
identify answer states. These results highlight the potential of the offline RL
approach to enhance AI’s strategic reasoning capabilities.

1 INTRODUCTION

Effective long-term strategies involve deliberate reasoning, which refers to the thoughtful evaluation
of options to determine the best course of action (Kahneman, 2011). This type of reasoning requires
conscious effort and allows intelligent beings to systematically plan and execute multi-step strategies
to achieve complex long-term goals. Similarly, reinforcement learning (RL) agents make decisions
with the goal of maximizing rewards over extended sequences of actions, even without immediate
feedback. In both cases, reasoning involves considering a sequence of actions to reach an optimal
outcome. We believe that the way Q-values guide an RL agent toward desired outcomes aligns with
the subgoals of deliberate reasoning, particularly in terms of multi-step decision-making to achieve
long-term objectives.

Recent approaches to offline RL combined with generative diffusion models have shown significant
improvements in multi-step strategic decision-making abilities for future outcomes (Janner et al.,
2022; Ajay et al., 2023; Liang et al., 2023; Li et al., 2023). In particular, Latent Diffusion-Constrained
Q-learning (LDCQ) (Venkatraman et al., 2024) leverages diffusion models to sample various latents
that compress multi-step trajectories. These latents are then used to guide the Q-learning process. By
generating diverse data based on in-distribution samples, diffusion models help overcome the limita-
tions of fixed datasets. This integration of diffusion models into offline RL enhances agents’ reasoning
abilities, allowing them to consider multiple plausible trajectories across extended sequences.

We aim to apply the offline RL method to tackle reasoning benchmarks that demand advanced
reasoning capabilities. To this end, we chose the Abstraction and Reasoning Corpus (ARC) (Chollet,
2019), one of the key benchmarks for measuring the abstract reasoning ability in AI. As shown in
Figure 1, the ARC training set consists of 400 grid-based tasks, each requiring the identification of
common rules from demonstration examples, which are then applied to solve the test examples. ARC
tasks are particularly challenging for AI models because they demand high-level reasoning abilities,
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integrating core knowledge priors such as objectness, basic geometry, and topology (Chollet, 2019).
These core knowledge priors guide the decision-making process for selecting the appropriate actions.
Therefore, we believe that agents trained with offline RL methods can leverage these core knowledge
priors by learning from the experienced data.

However, the existing ARC training dataset lacks sufficient trajectories for training agents with
offline RL methods. To address this limitation, we propose Synthesized Offline Learning data for
Abstraction and Reasoning (SOLAR), a dataset for training offline RL agents. SOLAR provides
diverse trajectory data, allowing the agent to encounter various actions shaped by the core knowledge
priors across different episodes. In this research, we synthesized SOLAR for a simple task using the
SOLAR-Generator, which creates data according to the desired conditions. The synthesized SOLAR
was then used to train agents using the LDCQ method. Through training with LDCQ on SOLAR,
agents demonstrated the ability to devise pathways to correct answer states, even generating solution
paths not present in the training data. This approach highlights the potential of diffusion-based offline
RL methods to enhance AI’s reasoning capabilities.

Demonstration

Examples

Test

Example

Task 1

?

Task 2

?

Task 3

?

Figure 1: Three tasks in ARC. Each task consists of demonstration examples and a test example.
Each example has an input grid and an output answer grid. Each pixel in the grid is matched to
a color corresponding to a value in the range 0–9. ARC requires identifying common rules from
the demonstration examples and applying them to solve the test example correctly. Despite recent
advancements in AI, current models have consistently underperformed compared to humans on the
ARC benchmark (Chollet et al., 2024; Johnson et al., 2021).

2 PRELIMINARIES

2.1 ARC LEARNING ENVIRONMENT (ARCLE)

state st

clipgridinput grid

selection

[x,y,h,w]

[3,0,2,2]

operation
Paste
30 

action at
state st+1state st+1

clipgridinput grid

ARCLE

step

reward 0 terminated False

episode information
reward 0 terminated False

episode information

Figure 2: An example of a single step in ARCLE. In this example step, the action has an operation 30
(Paste) and a selection of [3, 0, 2, 2]. The top-left coordinate of the selection box is [3, 0] and the
bottom-right coordinate is [5, 2]. [ht, wt] is calculated by subtracting [3, 0] from [5, 2]. When ARCLE
executes this action, the current clipboard is pasted into the bounding box specified by the selection
on the current grid. It then returns episode information, including the reward and termination status.

ARCLE (Lee et al., 2024) is a Gymnasium-based environment developed to facilitate RL approaches
for solving ARC tasks. ARCLE frames ARC tasks within a Markov Decision Process (MDP) structure,
providing an environment where agents can interact with and manipulate grid-based tasks. This MDP
structure enables ARC tasks to be solved through sequential decision-making.
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ARCLE handles states and actions following the O2ARC web interface (Shim et al., 2024). As
shown in Figure 2, when ARCLE executes an action at on the current state st, it returns the next
state st+1, along with episode information about the reward and termination status. A state st
consists of (input grid, gridt, clipboardt) at timestep t. The input grid represents the initial state
of the test example, the gridt denotes the current grid at time t after several actions have been
applied, and the clipboardt stores the copied grid by the Copy operation. An action at consists of
(operationt, xt, yt, ht, wt), where operationt represents the type of transformation, xt and yt denote
the coordinates of the top-left point of the selection box, and ht and wt represent the difference
between the bottom-right and top-left coordinates. All subsequent notations for st and at will adhere
to this definition for clarity. Reward is only given when the Submit operation is executed at the
answer state, and the episode terminates either after receiving the reward or when Submit is executed
across multiple trials. All possible operations are mentioned in Appendix B.1.

2.2 DIFFUSION-BASED OFFLINE REINFORCEMENT LEARNING

Offline RL focuses on learning policies from previously collected data, without interacting with
the environment. However, Offline RL faces challenges, including data distribution shifts, limited
diversity in the collected data, and the risk of overfitting to biased or insufficiently representative
samples. To address these issues, several works in offline RL have focused on improving learning
efficiency with large datasets and enhancing generalization to unseen scenarios while balancing
diversity and ensuring data quality (Fujimoto et al., 2019; Kidambi et al., 2020; Levine et al., 2020).

Recent offline RL methods offer promising solutions in complex tasks with diverse samples through
diffusion models. For instance, Diffuser (Janner et al., 2022) generates trajectories by learning
trajectory distributions, reducing compounding errors. In addition, diffusion-based offline RL ap-
proaches, such as Decision Diffuser (DD) (Ajay et al., 2023), Latent Diffusion-Constrained Q-learning
(LDCQ) (Venkatraman et al., 2024), AdaptDiffuser (Liang et al., 2023), and HDMI (Li et al., 2023),
have demonstrated the effectiveness of combining diffusion models with offline RL.

3 SYNTHESIZED OFFLINE LEARNING DATA FOR ABSTRACTION AND
REASONING (SOLAR)

We developed a new dataset called Synthesized Offline Learning Data for Abstraction and Reasoning
(SOLAR) that can be used to train offline RL methods. Solving ARC tasks can be considered a process
of making multi-step decisions to transform the input grid into the output answer grid. We believe
that the process of making these decisions inherently involves applying core knowledge priors such
as objectness, goal-directedness, numbers and counting, and basic geometry and topology (Chollet,
2019), which are necessary for solving ARC tasks. The ARC training set lacks information on how
to solve the tasks, providing only a set of demonstration examples and a test example for each
task, as shown in Figure 1. To address this, we aim to provide the trajectory data to solve the tasks
through SOLAR, enabling learning of how actions change the state based on the application of core
knowledge priors. With SOLAR-Generator, we can generated new input-output grid pairs that adhere
to the defined rules and created trajectory data to solve problems based on the newly generated data.

3.1 SOLAR STRUCTURE

As shown in Figure 3, SOLAR consists of two key components: Demonstration Examples and Test
Example with Trajectory. The demonstration examples and the test examples serve the same roles
as in ARC. Through the demonstration examples, the common rule for transforming the input grid
to the output grid is identified and then applied to solve the test example. Trajectory data means the
episode data that starts from test input s0.

SOLAR contains various transition data (st,at, st+1, rt), where actions at are taken in different
states st, then the result st+1 observed and the reward rt is given. To facilitate effective learning and
a combination of core knowledge, we use ARCLE (Lee et al., 2024). When designing the reward
system based on ARCLE, it is crucial for the agent to recognize when it has reached the answer
state. Successfully identifying the answer state implies that the agent has understood the underlying
analogy and executed the necessary ARCLE actions to arrive at the correct solution. This recognition
is critical as it demonstrates the agent’s comprehension of the task’s inherent logic and its ability to
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apply appropriate problem-solving strategies. In ARCLE, the reward is given only when the agent
correctly predicts the Submit operation and the submitted grid matches the answer grid. Therefore,
every SOLAR episode concludes with the Submit operation, where the agent submits an answer
and determines whether it is correct.

SOLAR-Generator

Loading Synthesized Data

Validating Trajectory

Structuring SOLAR

Demonstration Examples

Demonstration Examples

Test Example Action Sequence

Test Example with Trajectory

Grid Maker

SOLARs1a0

st

s0 sans

at

a0

r0

rt st+1 ARCLE

s0 sans

aans

for all

actions step

sanity check

execute transition

Figure 3: Data synthesis procedure with SOLAR-Generator. The state and actions consist of as
mentioned in Section 2.1. 1) Loading Synthesized Data: The Grid Maker module applies constraints,
augments input-output pairs, and synthesizes solutions for specific tasks by utilizing actions. 2) Vali-
dating Trajectories: Checks whether the generated actions are executable in ARCLE. 3) Structuring
SOLAR: Organizes and stores the synthesized data in SOLAR based on the defined format. This
step determines what information to include in the dataset and whether to segment episodes into
fixed-length chunks or store them as a whole.

3.2 SOLAR-GENERATOR

We developed the SOLAR-Generator to synthesize SOLAR. SOLAR-Generator augments ARC
trajectories by following ARCLE formalism, addressing the inherent complexity and diversity of
ARC tasks. Figure 3 illustrates the data synthesis procedure, which is carried out in three steps: 1)
Loading Synthesized Data, 2) Validating Trajectories with ARCLE, and 3) Structuring SOLAR.

Loading Synthesized Data To create trajectories, we generate demonstration examples, test exam-
ples, and action sequences (selections and operations). These data are synthesized through the Grid
Maker, which generates them according to the given rules. Each task has its own specific Grid Maker
that defines the task’s constraints and rules, using common parameters such as the maximum grid
size and the number of demonstration examples per test example. By defining the rules for generating
data, the user can adjust the difficulty level and other specific details. At this stage, the Grid Maker
synthesizes only grid pairs and possible action sequence. The full trajectory data for the test example
is constructed after validating through ARCLE. More details about how the Grid Maker synthesizes
the input-output grids and action sequences are described in Appendix B.

Validating Trajectories with ARCLE After synthesizing various grids and action sequences with
the Grid Maker, the SOLAR-Generator checks whether the action sequences are valid in ARCLE.
The Grid Maker serves as a data loader, enabling it to load and validate the synthesized data. ARCLE
utilizes this data loader to load the synthesized input-output pairs, perform actions at the t-th state st
of the test example, and provide intermediate states, rewards, and termination status for each step,
verifying that each action is correctly executed in the current state. This step is particularly important
for non-optimal trajectories, where operations and selections may be generated randomly, as invalid
selections can sometimes be synthesized by the Grid Maker. For gold standard trajectories, intended
as correct solutions, SOLAR-Generator ensures that the final grid of the trajectory matches the
expected output grid of the test example. As a result, this stage is useful for checking and debugging
the synthesized trajectories, preventing unintended errors.

Structuring SOLAR After the trajectory validation is complete, the episodes are saved into
SOLAR. In this step, user can determine the necessary information to include in SOLAR. At its core,
SOLAR includes episodes consisting of state, action, reward, and termination information at each
step, which are essential for training with offline RL methods. In addition to the previously mentioned
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information, SOLAR can also store various data from ARCLE, such as grid sizes at each step, binary
mask versions of selections, and other relevant information needed for different learning methods.
In this research, we designed the data to work with methods like LDCQ, which require trajectories
of fixed horizon length H . Therefore, the trajectories are segmented into fixed-length chunks with a
horizon length of H .

Through these three steps, SOLAR-Generator synthesizes diverse solutions by altering action orders
or using alternative operation combinations. This is achieved by the Grid Maker, which generates
data using pre-implemented algorithms, enabling the user to create as many trajectories as needed.
SOLAR provides a sufficient training set for learning various problem-solving strategies. By offering
diverse trajectories while adhering to the task-solving criteria, SOLAR bridges the gap between
ARC’s reasoning challenges and the sequential decision-making process of offline RL. The whole
algorithm for SOLAR-Generator is described in Algorithm 1. For additional details about SOLAR
and SOLAR-Generator, see Appendix B.

Algorithm 1: SOLAR-Generator
1 Input: task set T, maximum grid size (H,W), number of samples N, number of examples E

2 for task ∈ T do
3 # Load the synthesized data Ds from the Grid Maker for the task
4 Ds← Grid Maker(task, (H, W), N, E)
5 for data ∈ Ds do
6 # Extract the demonstration examples, test example, and actions for each episode
7 trajectory_ID, dem_ex, input_grid, output_grid, operations, selections← data

8 Add trajectory_ID, dem_ex, input_grid, output_grid to episode τdata

9 # Set the initial state
10 current_grid0 ← input_grid
11 clip_grid0 ← None
12 t← 0
13 st ← (input_grid, current_grid0, clip_grid0)

14 for (oprt, selt) ∈ (operations, selections) do
15 at ← (oprt, selt)
16 if at can be performed in st then
17 # Update state and episode information using ARCLE
18 current_gridt+1, clip_gridt+1, rewardt, terminatedt ← ARCLE.step(st, at)
19 Add st, at, rewardt, terminatedt to τdata
20 st+1 ← (input_grid, current_gridt+1, clip_gridt+1)
21 t← t+ 1
22 end
23 else
24 Save wrong data for debugging
25 break
26 end
27 end
28 if “gold-standard” in trajectory_ID and current_grid ̸= output_grid then
29 Save wrong data for debugging
30 end
31 else
32 Save episode τdata
33 end
34 end
35 end
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4 SOLAR FOR A SIMPLE TASK

Target Task

?
submit

Gold Standard Trajectory

Non-Optimal Trajectory

Non-Optimal Trajectory

Resize

Grid

step 0 step 1 step 2 step 3

Random 
action

Random 
action

Random 
actions

Random 
actions

FlipV SubmitPasteCopyO reward

1

Submit

Submit

reward

0

step 4

reward

1

Figure 4: SOLAR episodes for a simple task. It consist of three demonstration examples (pink box)
and a test example (gray box) with a trajectory (green or orange box). The gold standard episode
contains the steps to solve the problem by using the core knowledge priors properly. The non-optimal
episodes branch off at a random step within the standard trajectory, performing random operations
such as Rotate, Flip, or Copy & Paste, and then Submit after a certain number of steps.

To evaluate whether an RL agent can correctly identify and submit at the answer state, even when
non-optimal trajectories are included in the training dataset, we included episodes where the Submit
operation is conducted in non-answer states. Our experimental objectives are: 1) To assess whether
the model can reach the answer state when non-optimal trajectories are mixed with gold standard
trajectories, and 2) To determine whether the model can recognize the answer state and perform the
Submit action correctly.

We designed Simple Task that requires core knowledge priors such as objectness and geometry. This
task necessitates the ability to consider the input grid as an object and then perform actions based
on this object. We constrained the maximum grid size to 10x10, and each episode includes three
demonstration pairs. In constructing SOLAR for this task, the dataset includes both gold standard
episodes—which successfully reach the answer state and perform the Submit action—and non-
optimal episodes—which follow random paths that may or may not reach the answer state. The
inclusion of non-optimal trajectories aimed to evaluate whether the agent could recognize the answer
state and perform the Submit action appropriately, thereby assessing its reasoning abilities rather
than simply mimicking the dataset actions.

As explained in Section 3, the Grid Maker first generates input-output pairs for several demonstration
examples and test examples. For each input-output pair, both gold-standard and non-optimal trajecto-
ries are generated. In the gold standard episode for this task, as shown in Figure 4, the steps are as
follows: 1) ResizeGrid to make the grid two times longer vertically, 2) CopyO to copy the upper
half of the current grid, as it matches the input grid, 3) Paste to apply it to the lower half of the
grid, 4) FlipV to vertically flip the upper half of the current grid, and 5) Submit, as it reaches the
answer state.

In the non-optimal episodes, the trajectories initially follow the gold standard trajectory but deviate
at a random step to execute random actions for eight steps. We constrained the random opera-
tions to FlipV (vertical flip), FlipH (horizontal flip), Rotate90 (counterclockwise rotation),
Rotate270 (clockwise rotation), and CopyO (copy the selected area to clipboard) & Paste. For
selection, it was constrained to either two options (upper half or lower half of the current grid) or three
options (upper half, lower half, or the whole grid). Specifically, there are two options for Rotate90,
Rotate270, and CopyO, and three options for the others. This simplified selection allows for
focusing on assessing the AI’s decision-making by sequentially combining operations.

For each test example, one gold-standard episode and nine non-optimal episodes were generated.
In total, 500 test examples and 5,000 episodes are generated. Consequently, the training set was
composed such that approximately 10% of the total episodes included the Submit operation at the
correct answer state.
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5 EXPERIMENTS AND RESULTS

Using the training dataset for a simple task, we trained an agent with Latent Diffusion-Constrained
Q-learning (LDCQ) (Venkatraman et al., 2024), a prominent diffusion-based offline RL method.
LDCQ utilizes diffusion models to sample diverse latent representations that encapsulate multi-step
trajectories, enabling the Q-learning process to effectively explore various possible action sequences.
More details about training process with LDCQ are described in Appendix A.

5.1 EVALUATION PROCESS USING ARCLE

x T times 

Demonstration

Examples

Test Example

state st

clipgridinput grid

state st

selection

[x,y,h,w]

[0,0,5,5]

operation
Submit

34 

action at

clipgridinput grid

ARCLE

step

reward 0 terminated False

episode information
reward 1 terminated True

episode information

DDPM Sampling

with Diffusion Model Decoder at

Candidate

Latents

Max Q

Latent

Q-Netz z

?

ARCLE
state st+1

T times
Inference Network

Figure 5: Inference framework for solving ARC tasks. ARCLE loads the task from the dataset and
manages state information as well as the termination status of the current evaluation episode. The
inference network of LDCQ performs DDPM sampling on the given state to extract candidate latents,
then decodes the corresponding action for max Q latent, and sends it to ARCLE. ARCLE executes
the action and updates the state information accordingly. This process alternates between ARCLE
and the inference network, continuing the inference until the episode ends.

After training the agent using LDCQ on the SOLAR dataset, we conducted an evaluation of its
performance. To evaluate our experiment, we synthesized an evaluation SOLAR set with 100 test
examples, each paired with three synthesized demonstration examples. To measure the effectiveness
of decision-making using the Q-function, two accuracy metrics are measured: 1) Whether the agent
reaches the answer state, and 2) Whether it predicts the Submit operation at the answer state to
receive a reward.

The evaluation process is carried out through ARCLE, which manages the problem and its corre-
sponding solution from SOLAR. ARCLE handles state transitions, performs actions, and verifies
whether the submitted solution is correct. As depicted in Figure 5, ARCLE interacts with the LDCQ
inference network by alternating the exchange of st and at, facilitating the decision-making process
toward reaching the correct answer state. The latent zt represents a segment trajectory spanning from
timestep t to t+H − 1, and is trained to accurately decode actions for any state within this segment
trajectory.

In the original LDCQ methodology, inference is performed by executing several horizons using a
single latent, followed by predicting the next latent. However, in the task used for this research, which
has a gold standard trajectory consisting of five steps, it is possible to complete the task with just
one latent sampling from the initial state. While reaching the correct answer in this manner is not
inherently problematic, one of the primary goals of this research is to analyze whether the agent
learns the knowledge prior to how actions work across various states. Thus, instead of focusing solely
on solving the problem in as few steps as possible, only one action is conducted per latent. With this,
the results demonstrate that the agent can make far-sighted decisions to reach the answer not just
from the beginning to the end, but also through intermediate steps.
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5.2 RESULTS

To demonstrate the strengths of the diffusion-based offline RL method guided by Q-function, we
compare three approaches:

• VAE prior (VAE): This method uses a latent sampled from the VAE state prior pω(zt|st).
The VAE state prior is trained in β-VAE training stage by calculating the KL divergence
between pω(zt|st) and the posterior qϕ(zt|τt), aligning the latent distribution with the
trajectory starting from state st.

• Diffusion prior (DDPM): This method uses a latent sampled from the diffusion model
pψ(zt|st) through the DDPM method (Ho et al., 2020). The sampled latents closely resemble
the training data, with added variance during the denoising process. This method is similar
to behavior cloning in that it operates without guidance from rewards or value functions.

• Max Q latent (LDCQ): This method selects a latent with the highest Q-value from those
sampled by the diffusion model, argmaxz∼pψ(zt|st)Q(st, z), to make a decision at st.

The evaluation of each approach was conducted five times for the evaluation SOLAR set. The results,
summarized in Figure 6a, show the success rates for: 1) Whether the agent reaches the correct answer
state and 2) Whether the agent executes Submit operation in the answer state. When using the VAE
prior, the agent reaches the correct answer state in only about 10% of test episodes and submits
the answer in just 1%. With latents sampled using DDPM, about 10% of the answers are correctly
submitted, while the agent reaches the answer state approximately 37% of the time. When using
LDCQ, the agent reaches the answer state in over 90% of cases and successfully submits the correct
answer in about 77% of test episodes. These results demonstrate that the Q-function enhances the
agent’s ability to both reach the correct answer and recognize when it has arrived at the answer state.

VAE DDPM LDCQ
0

20
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)

1.0
9.8

76.6

13.0

36.8

92.4
Submit Answer
Reach Answer

(a) Test accuracy for three methods

Resize

Grid

Random 
actions SubmitPaste

Rotate

90

reward

1

step 0 step 1 step 2 step 9 step 10

(b) Inference example with DDPM method

step 0 step 1 step 2 step 3

Resize

Grid SubmitPasteCopyO

reward

1

(c) Inference example with LDCQ method

Figure 6: (a) The evaluation results for 100 test examples for a simple task. LDCQ shows significantly
improved performance compared to the other two methods, successfully reaching the correct answer
state and executing the Submit operation at the answer state. The error bars represent the 96%
confidence interval. (b) With the latent sampled with DDPM, the agent sometimes reaches the correct
answer after performing various actions. This occurred rarely during evaluation, and even when it
did, it did not appear in subsequent evaluations. (c) When using LDCQ, it often shows the case that
skips unnecessary actions. The inference example with the VAE prior method is omitted because it
rarely solves the problem.

Figure 6b and Figure 6c highlight the different solving strategies exhibited by the Q-function. When
using the latent sampled with DDPM, the agent performs diverse actions, occasionally reaching the
goal by chance. In contrast, with the Q-function, the agent consistently reaches the correct answer in
every evaluation. In scenarios where the input grid is vertically symmetrical, the agent even skips
unnecessary operation FlipV and proceeds directly to Submit. Notably, the training dataset does
not include any trajectories where the FlipV operation is skipped, even for symmetrical grids. With
the Q-function, the model recognizes that applying FlipV does not alter the state. Consequently, the
Q-value for submitting at that state increases, prompting the agent to choose the Submit operation.
This demonstrates the reasoning ability of the agent trained with LDCQ in solving ARC tasks, as
recognizing when the correct answer state has been reached is crucial.
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6 LIMITATIONS & DISCUSSIONS

In our experiment, the LDCQ method showed significant improvement in reaching the goal. However,
in approximately 16% of cases, the agent reached the correct state but proceeded with another action
instead of submitting the solution, even with the assistance of the Q-function. This issue arises because
the Q-function, while enhancing decision-making, sometimes assigns higher values to actions other
than submission, causing the agent to bypass the goal state. This suggests that the Q-function is not
perfectly aligned with the final objective in ARC. Notably, in ARC tasks, even when solving different
test examples within the same task where the same rule is applied, the actual action sequence can
vary depending on factors like grid size or the arrangement of elements in the input grid. The current
Q-values are calculated based on the absolute state values, which occasionally leads to misjudgments
when submitting the correct solution. Therefore, improving the agent’s ability to accurately determine
when to submit the correct answer is necessary for future research.

While the LDCQ approach performs well in a simple ARC task setting, more complex tasks and
multi-task environments present additional challenges. Unlike single-task scenarios, where the agent
follows a fixed strategy toward a predefined answer, multi-task settings demand flexibility to adapt to
changing goals or new possibilities during task execution. We expect that addressing these challenges
could involve integrating task classifiers for Q-learning. Additionally, incorporating modules so
that the agent can revise its strategy during task execution—adjusting based on evolving states or
objectives rather than rigidly following the initial strategy—may enhance its adaptability.

In traditional supervised RL approaches, such as those described by Ghugare et al. (2024), stitching
typically occurs only when the goal remains consistent across tasks. To address this limitation, we
employed temporal data augmentation, which involves starting from an intermediate state near the
goal and setting a new target. In SOLAR, this could be extended by using non-optimal paths as goals
in non-optimal trajectories. However, in ARC, where goals are determined by demonstration pairs,
augmenting all goals is impractical. More careful strategies are needed to enable stitching for entirely
new goals not previously encountered. If methodologies are developed that can combine existing
actions toward different goals, we expect that SOLAR will facilitate these combinations.

Going forward, refining how the Q-function evaluates states and actions will be crucial. To improve
performance, especially in multi-task environments, incorporating mechanisms that not only assess
the state and action in relation to the goal but also guide the agent toward the most effective path to
achieve the ultimate objective will be beneficial. Recognizing the task’s context and how close states
are to the correct solution is essential for ensuring that the Q-function helps navigate toward the goal
efficiently.

7 CONCLUSION

This research demonstrates the potential of offline reinforcement learning (RL), particularly the
Latent Diffusion-Constrained Q-learning (LDCQ) method, for efficiently sequencing and organizing
actions to solve tasks in grid-based environments like the Abstraction and Reasoning Corpus (ARC).
This work is the first to tackle ARC using a diffusion-based offline RL model within a properly
designed environment, guiding agents step-by-step toward correct solutions without generating the
full ARC grid at once. Through training on SOLAR, we successfully applied and evaluated offline
RL methods, showing that agents can learn to find paths to the correct answer state and recognize
when they’ve reached it. This suggests that RL with a well-designed environment is promising for
abductive reasoning problems, potentially reducing data dependency compared to traditional methods.
As tasks become more complex, especially in multi-task settings, refining the Q-function to address
unique reward structures is crucial, with multi-task environments requiring task-specific adaptations
to account for varying states and rewards. Integrating modules like task classifiers or object detectors
could enhance the agent’s ability to dynamically adjust its strategy, promoting more flexible decision-
making. This research opens new avenues for program synthesis in analogical reasoning tasks with
RL environments, potentially integrating with analogy findings techniques (hypothesis search with
LLMs) to handle a wider range of ARC tasks.

9
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A TRAINING DETAILS

A.1 LATENT DIFFUSION CONSTRAINED Q-LEARNING (LDCQ)

At:t+H

st:t+H
encoder

st+h

Decoder at+h

segment

trajectory

(a) Training β-VAE

Forward Process 
Diffusion Model

Noised

Latent

st

T times

(b) Training Diffusion Model

Denoised

Latents

DDPM Sampling

with Diffusion Model 

Random 
Noises

Q-Net

st

T times

(c) Training Q-Network

st+h

Decoder at+h

Candidate

Latents

Max Q

Latent

Q-Net

(d) Inference step

Figure 7: (a)–(c) Training stages of LDCQ. (a) Training a β-VAE with an encoder that encodes
H -horizon segment trajectories into latents zt, and a policy decoder that decodes actions based on zt
and state st+h where h ∈ [0, H) contained in the latent. (b) Training a diffusion model based on zt
and the st. (c) Training a Q-network using latents sampled through the diffusion model. (d) LDCQ
inference step at st+h. Possible latents at st are sampled through the diffusion model, and the agent
executes actions resulting from decoding the latent with the highest Q-value.

Latent Diffusion-Constrained Q-learning (LDCQ) (Venkatraman et al., 2024) leverages latent diffu-
sion and batch-constrained Q-learning to handle long-horizon, sparse reward tasks more effectively.
The LDCQ method uses sampled latents that encode trajectories of length H to train the Q-function,
effectively reducing extrapolation error. The training process of LDCQ is shown in Figure 7: 1)
training the β-VAE to learn latent representations, 2) training the diffusion model using the latent
vectors encoded by the β-VAE, and 3) training the Q-network with latents sampled from the diffusion
model.

Training Latent Encoder and Policy Decoder The first stage in training with LDCQ is to train a
β-VAE that learns latent representations. In this stage, the β-VAE learns how actions are executed
over multiple steps to change the state. With H -horizon latents, it becomes easier to capture longer-
term changes in the state. We use SOLAR as the training dataset D, which contains H -length
segmented trajectories τ

t
. Each τt consists of state sequences st:t+H = [st, st+1, ..., st+H−1]

and action sequences at:t+H = [at,at+1, ...,at+H−1], along with additional information such as
demonstration examples. As shown in Figure 7a, during the β-VAE training stage, the encoder qϕ is
trained to encode τt into the latent representation zt, and the low-level policy decoder πθ is trained
to decode actions based on the given state and latent. For example, given the latent zt and a state
from the segment trajectory, st+h where h ∈ [0, H), the policy decoder decodes the action at+h for
st+h. The β-VAE is trained by maximizing the evidence lower bound (ELBO), minimizing the loss
in Eq. 1. The loss consists of the reconstruction loss from the low-level policy decoder and the KL
divergence between the approximate posterior qϕ(zt|τt) and the prior pω(zt|st).

LVAE(θ, ϕ, ω) = −Eτt∼D

[
Eqϕ(zt|τt)

[
t+H−1∑
l=t

log πθ(al|sl, zt)

]
− βDKL(qϕ(zt|τt) ∥ pω(zt|st))

]
(1)
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Training Latent Diffusion Model In the second stage, latent diffusion model is trained to generate
latents based on the latent representations encoded by the β-VAE. The training data consists of
(st, zt) pairs, which are used to train a conditional latent diffusion model pψ(zt|st) by learning the
denoising function µψ(z

j
t , st, j), where j ∈ [0, T ] is diffusion timestep. This allows the model to

capture the distribution of trajectory latents conditioned on st. q(z
j
t |z0

t ) denotes the forward Gaussian
diffusion process that noising the original data. Following previous research (Ramesh et al., 2022;
Venkatraman et al., 2024), we predict the original latent rather than the noise, balancing the loss
across diffusion timesteps using the Min-SNR-γ strategy (Hang et al., 2023). The loss function used
to train the diffusion model is shown in Eq. 2. Here, zjt , j ∈ [0, T ] represents noised latent on j-th
diffusion time step, when j = 0 then z0

t = zt and zTt is Gaussian noise.

L(ψ) = Ej∼[1,T ],τH∼D,zt∼qϕ(zt|τt),zjt∼q(z
j
t |z0

t )

[
min{SNR(j), γ}∥z0

t − µψ(z
j
t , st, j)∥2

]
(2)

Training Q-Network Finally, the latent vectors sampled by the latent diffusion model are used for
Q-learning. For sampling latents, we use the DDPM method (Ho et al., 2020). The trained diffusion
model samples latents by denoising random noise using the starting state information st. We use
the data consisting of (st, zt, rt:t+H , st+H ) for training Q-Network, where rt:t+H =

∑t+H−1
l=t γlrl

deontes the discounted sum of rewards. Here, DDPM sampling is used to sample zt+H for st+H .
For Q-learning, we use Clipped Double Q-learning (Fujimoto et al., 2018) as shown in Eq. 3 with
Prioritized Experience Replay buffer (Schaul, 2016) to improve learning stability and mitigate
overestimation. The trained Q-network Q(st, zt) evaluates the expected return of performing various
H-length actions, with zt sampled via DDPM based on st. This allows the network to efficiently
calculate the value of actions over H-steps to estimate future returns. Additionally, since ARC
tasks involve inferring analogies from demonstration pairs, the embedded representation of the
demonstration pair, pemb, is also used in the Q-function calculation.

Q(st, zt,pemb)←

(
rt:t+H + γHQ(st+H , argmax

z∼pψ(zt+H |st+H)

Q(st+H , z,pemb),pemb)

)
(3)

A.2 HYPERPARAMETERS

We used a horizon length of 5 for encoding skill latents, meaning the model plans and evaluates
actions over a five-step lookahead.

We trained the diffusion model with 500 diffusion steps. If the number of diffusion steps is too small,
it can lead to high variance in the sampling process, potentially causing errors during the decoding of
operations or selections in ARCLE. To minimize these errors, we set the number of diffusion steps to
500, ensuring more accurate operation and selection decoding from the sampled latents.

We set the discount factor to 0.5 to ensure the model appropriately balances immediate and future
rewards. Since the total steps required to reach the correct answer in ARCLE are usually fewer than
20, a high discount factor could cause the agent to struggle in distinguishing between submitting at
the correct state and continuing with additional steps, which could lead to episode failure.

The hyperparameters that we used for training three stages of LDCQ are shown in Tables 1, 2 and 3.

Table 1: Hyperparameters for training β-VAE

Parameter Value
Learning rate 5e-5
Batch size 128
Epochs 400
Horizon (H) 5
Latent dimension (z) 256
KL loss ratio (β) 0.1
Hidden layer dimension 512

12
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Table 2: Hyperparameters for training latent diffusion model

Parameter Value
Learning rate 1e-4
Batch size 32
Epochs 400
Diffusion steps (T ) 500
Variance schedule linear
Sampling algorithm DDPM
γ (For Min-SNR-γ weighing) 5

Table 3: Hyperparameters for training DQN

Parameter Value
Learning rate 5e-4
Batch size 128
Discount factor (γ) 0.5
Target net update rate (ρ) 0.995
PER buffer α 0.7
PER buffer β Linearly increased from 0.3 to 1, Grows by 0.03 every 2000 steps
Diffusion samples for batch argmax 100

A.3 HARDWARE

We used an NVIDIA A100-SXM4-40GB GPU to train the model. Training the β-VAE took about 7
hours, while training the diffusion model and Q-network each took around 6 to 10 hours.
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B DETAILS OF SOLAR-GENERATOR

B.1 OPERATIONS IN SOLAR

0 Color0 1 Color1 2 Color2 3 Color3

5 Color5

4 Color4

6 Color6 7 Color7 8 Color8 9 Color9

10 FloodFill0 11 FloodFill1 12 FloodFill2 13 FloodFill3

15 FloodFill5

14 FloodFill4

16 FloodFill6 17 FloodFill7 18 FloodFill8 19 FloodFill9

20 MoveU 21 MoveD 22 MoveR 23 MoveL

24 Rotate90 25 Rotate270 26 FlipH

28 CopyI 29 CopyO 30 Paste

31 CopyInput 32 ResetGrid 33 ResizeGrid 34 Submit 35 None

27 FlipV

Coloring

Critical

Clipboard

Object

Oriented

FloodFill

Figure 8: All operations compatible with SOLAR, 0–34 operations follow ARCLE, and only in
SOLAR, 35 (None) is for terminated episode. It means the episode is ended after Submit.

The operations from 0 to 34 are identical to those used in ARCLE (Lee et al., 2024). Since Submit
is an operation that receives a reward, it should only be used when the state is considered correct
and not excessively. Due to LDCQ’s fixed horizon, and to ensure that the agent only uses Submit
when the state is definitively correct, we added a None operation that fills all subsequent states after
Submit with the 11th color (10), which does not exist in the original ARC (0–9). In other words,
during training, the None action emphasizes that the episode ends after Submit.

B.2 GRID MAKER

For generating SOLAR, we create a SOLAR-Generator that can synthesize a large amount of data
for a given rule. Grid Maker is a hard-coded program specific to each task. Grid Maker contains the
rules for synthesizing demonstration examples and test examples, and the synthesized solution action
path consists of operations and selections. In Grid Maker, data is formatted to be compatible with
ARCLE. The Grid Maker constructs analogies with the same problem semantics but with various
attributes such as the shape, color, size, and position of objects. SOLAR-Generator can generate
intermediate trajectories by interacting with ARCLE. The algorithm of the SOLAR-Generator is
designed to augment specific tasks using the Grid Maker, which can primarily be divided into three
parts.

Grid Maker was built as a data loader, which is used in ARCLE. In the original ARCLE environment,
there was no need to load operations and selections. Only the grid was loaded with original ARC.
To change this structure, the entire environment would need to be recreated. Instead, operations and
selections are now loaded from the data loader’s description, allowing us to retain the original envi-
ronment. Therefore, the process of creating input-output examples and generating action sequences
works within a single file.

Specifying Common Parts Each task in the ARC dataset usually contains 3 demonstration exam-
ples, with common elements observed across these pairs. In the common parts, attributes such as
color, the type of task, and the presence of objects are predetermined using random values before pair
generation.

Synthesizing Examples In the example synthesis phase, the input of the original task is augmented
in a way that ensures diversity while preserving the integrity of the problem-solving method. A
random input grid is generated under conditions that satisfy the analogy required by the task. A
solution grid is created using a hard-coded algorithm. For tasks involving pattern-based problems, as
experimented in the paper, selections are made to fit the grid size, and various operations are executed
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either randomly or in a predetermined order. For object-based problems, the solution grid is generated
by an algorithm that finds the necessary objects in the input grid and processes them according to the
task requirements.

Converting to ARCLE Trajectories This stage involves the creation of an ARCLE-based trajectory
that meticulously adheres to the problem-solving schema of the synthesized examples. The entire
process is carried out through a hard-coded algorithm. During the example synthesis process, the
locations of objects may already be known, or they can be identified using a search algorithm. The
information obtained is then used to make the appropriate selections, and the trajectory is converted
into an ARCLE trajectory through an algorithm that leads to the correct solution.

If all steps are properly coded, it is possible to generate the operations and selections that lead to the
correct solution for any random input grid. These are then fed into ARCLE to obtain intermediate
states, rewards, and other information, and to verify whether the correct result is reached. Once steps
1) to 3) are correctly implemented, SOLAR-Generator can continuously and automatically generate
as much data for the given task as the user desires, using the Grid Maker.

B.3 EXAMPLE OF DATA SYNTHESIS IN GRID MAKER AND THE GENERATION OF SOLAR

SOLAR-Generator can synthesize SOLAR for object-based tasks. Figure 9 shows a variant of Task 2
from Figure 1. Grid Maker generates random input grids with some variances first. In this variant,
each episode randomly selects two colors for the boxes. Each inputs can have different grid sizes,
and rules are established for objects of each color within the episode. Then it generates the answer
output grids for the input grids through algorithm. The solution algorithm in Grid Maker proceeds as
follows: 1) Find the top-left corner of the orange square and repeat the coloring process to draw a
diagonal line to the grid’s edge. 2) Find the bottom-right corner of the red square and repeatedly color
diagonally until the end of the grid is reached. With these algorithms, Grid Maker can synthesize as
many examples and SOLAR trajectories as the user desires.

Demonstration Examples

Test Example with Trajectory

Task 2_gold-standard_7

Color

7

Color

2

Submit
Color


2
Color


2
Color


2

Color

2

Color

7

Figure 9: A gold standard trajectory for Task 2 in Figure 1. SOLAR contains its trajectory ID,
demonstration examples, and a test example with trajectory.
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B.4 OTHER SOLAR EXAMPLES

Figure 10 illustrates two examples of episodes from the tasks used in the experiment. Each episode
includes three random demonstration examples and a trajectory for a test example. Figure 10a shows
a gold standard trajectory, which represents the ideal sequence of actions to reach the correct answer
state. Figure 10b shows a non-optimal trajectory that, while not a gold standard, also reaches the
answer state. The clip grid, reward, and termination information are not displayed.

Demonstration Examples

Test Example with Trajectory

Simple task_gold-standard_64

FlipV Submit
Resize


Grid CopyO Paste

(a) Gold standard episode

Demonstration Examples

Test Example with Trajectory

Simple task_non-optimal_279

Resize

Grid FlipH

Rotate 
90

Rotate 
270

Rotate 
270

CopyO Paste

Rotate 
90 FlipV FlipH FlipH Submit

(b) Non-optimal episode

Figure 10: SOLAR episode examples of the task used in our experiment. Each episode contains three
demonstration examples and a test example with a trajectory. (a) An example of a gold standard
episode that ideally reaches the answer. (b) An example of a non-optimal episode that is not ideal,
but still reaches the answer state.
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Demonstration Examples

Test Example with Trajectory 1

Task 1_gold-standard

Resize

Grid

Rotate 
270CopyO CopyOPaste

Paste FlipH FlipV Submit

Test Example with Trajectory 2

Resize

Grid

Rotate 
90

Rotate 
90

Rotate 
90

CopyO CopyO

CopyO

Paste

Paste

Paste

Submit

Figure 11: Two different gold standard trajectories for Task 1 in Figure 1, there might be multiple
gold standard trajectories in the same task.
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C RESULTS FOR MORE COMPLEX TASKS

We evaluate the agent by training with LDCQ in more complex tasks, Task 2 and Task 4.

Demonstration

Examples

Test

Example ?

(a) An example of Task 2. It follows
the rule of coloring based on the orange
square and red square.

Demonstration

Examples

Test

Example ??

(b) An example of Task 4. The demonstration example pair in
an episode uses the same color, while other episodes use colors
ranging from 0 to 9.

Figure 12: Examples of Task 2 and Task 4.

Table 4: Accuracy for complex tasks. Each approach evaluated five times on the SOLAR evaluation set
for each task. LDCQ shows improved performance compared to the other two methods, successfully
reaching the correct answer and executing the Submit operation at the answer state.

Submit Answer Reach Answer
Task VAE DDPM LDCQ VAE DDPM LDCQ
Task 2 0 0 1.2 5.2 3.4 9.8
Task 4 0.4 0.2 4.0 0.4 0.2 4.0

Figure 12a illustrates Task 2, where the rule from the demonstration example is applied to solve the
test example. In this task, since the coloring proceeds one cell at a time, each action’s meaning depends
on the object’s position rather than being independently determined. Non-optimal trajectories were
constructed by selecting locations slightly off the exact diagonal. The agent struggles to accurately
select positions for the actions and to recognize when the correct state is reached. Although VAE and
DDPM show some success in reaching the correct answer, there are no successful cases where the
agent submits the answer grid. This suggests that the Q-function is crucial for correctly recognizing
the solution state.

Figure 12b illustrates Task 4, which emphasizes recognizing and utilizing the colors used in the
demonstration examples. Each episode in this task includes three demonstration examples, all of
which share a common color. The agent needs to determine which color to use based on the colors in
the demonstration examples. Non-optimal trajectories were generated by maintaining the selected
rectangular region while choosing random colors. The agent struggled to select the correct color and
had difficulty recovering once an incorrect color was chosen.

Although neither of these tasks achieved the high performance seen with the simple task described
in the main text, using the Q-function still resulted in better performance compared to not using it.
Since these tasks are more challenging than the simple task, with increased complexity in operations
and selections, the limited training data might have contributed to the lower performance. Adjusting
aspects like the discount factor in the Q-function training could also be beneficial. In future research,
it would be worthwhile to investigate whether the challenges can be addressed by increasing the
amount of data or if these tasks are fundamentally difficult for reinforcement learning to solve.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D SOLAR VS RE-ARC: COMPARING ARC DATA AUGMENTATION
APPROACHES

During the development of SOLAR, another augmentation scheme called RE-ARC (Hodel, 2024) was
independently developed and released. While both aim to generate diverse examples for ARC tasks,
they differ significantly in their design objectives, underlying architectures, and dataset structures.

Underlying Architectures SOLAR is built upon the ARCLE framework, designed for training
reinforcement learning agents. It uses a limited set of actions based on the O2ARC web interface,
which, despite their simplicity, are sufficient primitives to solve all ARC tasks. This design choice
results in sequential trajectories directly applicable to reinforcement learning models. In contrast,
RE-ARC is based on a more comprehensive Domain Specific Language (DSL) developed by Hodel,
featuring 141 primitives. This expanded set of operations provides greater flexibility in expressing
solutions, allowing for more complex transformations.

Data Generation Approach SOLAR generates sequential trajectories that mirror the step-by-step
approach humans use when solving ARC tasks. This aligns well with typical reinforcement learning
models that execute actions sequentially. RE-ARC, leveraging its expansive DSL, generates solutions
in the form of directed acyclic graphs (DAGs). This approach allows for more complex problem-
solving strategies but may present challenges when applied to traditional reinforcement learning
frameworks.

Dataset Structure and Utility SOLAR provides complete episodes with detailed trajectories,
including all intermediate states. This feature is crucial for training agents with offline reinforcement
learning methods, allowing models to learn from the entire problem-solving process. RE-ARC focuses
on augmenting input-output pairs without explicitly providing intermediate steps. While valuable
for increasing example diversity and testing generalization capabilities, it may require additional
processing for direct application in a reinforcement learning context.

Flexibility and Potential for Integration SOLAR’s design allows for easy generation of large
episode datasets and is highly adaptable for various experimental setups in reinforcement learning
research. The simplicity of the ARCLE action set makes it easier to modify and extend the system.
RE-ARC’s DAG-based approach, while not immediately compatible with sequential RL methods,
opens up possibilities for more advanced RL frameworks capable of handling DAG-structured data.

Future Directions Future research could explore synergies between SOLAR and RE-ARC ap-
proaches, potentially leading to more powerful and flexible AI systems for solving ARC tasks. One
promising direction would be adapting the LDCQ methodology to work with RE-ARC’s DAG
structures, which could involve developing new RL algorithms capable of processing DAG-structured
data. Another interesting avenue would be to investigate how SOLAR’s sequential trajectories could
inform or constrain the generation of more complex DAG-based solutions in RE-ARC. Such a hybrid
approach could combine the simplicity and learnability of sequential actions with the expressiveness
of DAG-based representations. By integrating the strengths of both approaches - SOLAR’s alignment
with current RL techniques and RE-ARC’s comprehensive problem representations - we could poten-
tially unlock new capabilities in AI systems. This integration might lead to significant advancements
in abstract reasoning and problem-solving, bridging the gap between the efficiency of reinforcement
learning and the expressiveness of symbolic methods.
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