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ABSTRACT

Federated Learning (FL) has surged in prominence due to its capability of collabo-
rative model training without direct data sharing. However, the vast disparity in
local data distributions among clients, often termed the non-Independent Identically
Distributed (non-IID) challenge, poses a significant hurdle to FL’s generalization
efficacy. The scenario becomes even more complex when not all clients participate
in the training process, a common occurrence due to unstable network connections
or limited computational capacities. This can greatly complicate the assessment
of the trained models’ generalization abilities. While a plethora of recent studies
has centered on the generalization gap pertaining to unseen data from participating
clients with diverse distributions, the divergence between the training distributions
of participating clients and the testing distributions of non-participating ones has
been largely overlooked. In response, our paper unveils an information-theoretic
generalization framework for FL. Specifically, it quantifies generalization errors by
evaluating the information entropy of local distributions and discerning discrepan-
cies across these distributions. Inspired by our deduced generalization bounds, we
introduce a weighted aggregation approach and a duo of client selection strategies.
These innovations aim to bolster FL’s generalization prowess by encompassing
a more varied set of client data distributions. Our extensive empirical evalua-
tions reaffirm the potency of our proposed methods, aligning seamlessly with our
theoretical construct.

1 INTRODUCTION

Federated Learning (FL) offers a collaborative paradigm to train a shared global model across dis-
tributed clients, ensuring data privacy by eliminating the need for direct data transfers (Zhu et al.,
2021; McMahan et al., 2017). However, the inherent heterogeneity among clients—often due to their
distinct operational environments—generates non-Independent and Identically Distributed (non-IID)
scenario (Hu et al., 2023; Zhu et al., 2021; Zhao et al., 2018). This distinctness complicates the assess-
ment of FL’s generalization capabilities, setting it apart from traditional centralized learning (Yuan
et al., 2021; Mohri et al., 2019).

While prevailing research on FL generalization predominantly concentrates on actively participating
clients (Mohri et al., 2019; Qu et al., 2022). it offers a limited view: it addresses the model’s
adaptability to observed local distributions without reconciling the divergence between observed
data distributions in actively participating clients and unobserved data distributions from passive
unparticipating clients. In real-world settings, numerous clients might remain detached from the
training process, due to unstable network connectivity or other constraints (Hu et al., 2023; Lim et al.,
2020). For example, in cross-device federated edge learning, IoT devices, although reliant on robust
deep learning models for edge inferences (Wang et al., 2023; Pan et al., 2022), often abstain from FL
owing to computational and communicative constraints (Tak and Cherkaoui, 2020). This landscape
raises a pivotal question: Can models, honed by active participants, cater effectively to passive clients
that do not participate in the training process?

Some recent endeavours strive to demystify this by quantifying the performance disparity between
models tested on active versus passive clients, proposing a dual-level framework to evaluate both
out-of-sample and out-of-distribution generalization gaps, grounded in the premise that client data
distributions stem from a meta-distribution (Hu et al., 2023; Yuan et al., 2021). Yet, the approach
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by Yuan et al. (2021) primarily sketches the contours of the FL generalization gap, substantiating it
with empirical evidence sans a comprehensive theoretical underpinning. Conversely, the approach
byy Hu et al. (2023) accentuates theoretical insights on meta-distribution-based errors but leave
practical algorithmic solutions largely unexplored, particularly those that might uplift the global
model’s adaptability for passive clients.

Motivation. Traditional Federated Learning (FL) typically deploys a global model for actively
participating clients, assuming an alignment between training and testing data distributions. Our
investigation diverges from this standard, spotlighting the global model’s out-of-distribution general-
ization capabilities when trained by participating clients. In essence, we seek to cultivate a model via
FL across active clients that reliably serves even the passive ones. Specifically, a novel contribution of
our paper is the introduction of the self-information weighted expected risk – a metric to gauge model
generalization. Our hypothesis is grounded in the notion that a model exhibiting proficiency with
low-probability examples from training distributions might demonstrate adaptability to unfamiliar
testing distributions. Such examples are anticipated to hold a greater significance in these unseen
datasets. Operationalizing this concept within FL, our framework leverages the self-information of
examples to craft a generalization boundary. Delving into the resulting entropy-aware and distribution
discrepancy-aware generalization disparities, a revelation emerges: data sources tend to manifest
informational redundancy. This implies that certain data sources, characterized by diminished infor-
mational weight, can be seamlessly supplanted by others. Essentially, only a fraction of the client
base holds substantial sway over FL’s generalization. This redundancy is especially pronounced in
AIoT settings, where a myriad of edge devices—often operating in overlapping zones—partake in FL.
Consider drones, serving as FL clients, amassing spatial data for model training. Drones constrained
by limited flight spans might be rendered redundant due to their shared operational territories with
other drones (Wang et al., 2021). Informed by these insights, our paper further proposes strategies to
elevate the generalization prowess of FL.

Contributions. Our paper presents several key contributions.

• We introduce a novel theoretical framework to scrutinize the generalization error in FL.
Distinctly, our approach shines a light on the “participation gap”, an aspect largely glossed
over in preceding research. This framework adeptly harnesses the information entropy of
data sources, coupled with the distribution variances among them, to provide a more refined
insight into the generalization potential of models.

• Drawing from our theoretical results, we champion a weighted aggregation approach along-
side a duo of client selection methodologies. These are designed to amplify the generalization
prowess of FL.

• The empirical evaluations using three widely-referenced datasets underscore the efficacy of
our methods, consistently eclipsing benchmarks.

2 RELATED WORK

Data heterogeneity is a major challenge in federated learning (Zhu et al., 2021; Reisizadeh et al.,
2020; Ma et al., 2022). Despite numerous studies investigating the generalization error in the presence
of data heterogeneity (Mohri et al., 2019; Qu et al., 2022; Caldarola et al., 2022), most of these have
focused only on scenarios where a global model is trained on distributed data sources and tested on
unseen data from these sources. While Yuan et al. (2021) and Hu et al. (2023) also consider this
generalization problem in FL, they do not account for local distribution characteristics nor propose
methods to enhance generalization performance. In contrast, our work is motivated by the need to
design algorithms providing good generalization performance on passive clients (that unparticipate in
the training process) with unknown data distributions. Our framework takes into account the local
distribution property and provides methods for improving generalization performance in this setting.

There have been several studies that propose information-theoretic generalization analyses for FL
(Yagli et al., 2020; Barnes et al., 2022; Sefidgaran et al., 2022). For instance, Yagli et al. (2020)
developed a framework for generalization bounds that also accounts for privacy leakage in FL. Barnes
et al. (2022) presented generalization bounds for FL problems with Bregman divergence or Lipschitz
continuous losses. However, these works focus on bounding the generalization error via the mutual
information between models and samples, ignoring the information stored in data sources. And
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they only consider the IID generalization error, with the assumption that the source distribution is
identical to the target distribution. Compared with Federated Domain Generalization (FedDG) (Zhang
et al., 2023; Nguyen et al., 2022b) dealing with the challenge of domain distribution shift under FL
settings, our focus is solely on a specific collection of all the data sources in FL. Our objective is to
train a global model from seen distributions of participating clients and generalize it to other unseen
distributions of unparticipating clients. Additionally, it is commonly assumed that each domain
contains equal information and cannot represent each other in FedDG. However, we consider the
presence of information redundancy among data sources and only a subset of clients contributes to the
generalization of FL. Besides, most DG studies concentrate on learning an invariant representation
across different domains (Nguyen et al., 2022a; Li et al., 2022; Lu et al., 2022; Muandet et al., 2013).
Conversely, our focus is to design proper weighting aggregation and client selection methods to
mitigate the generalization error in FL.

3 THEORETICAL FRAMEWORK

Similar to previous studies (Yuan et al., 2021; Hu et al., 2023), we model each data source as a
random variable with its corresponding distribution. In order to better evaluate the generalization
performance of FL, we focus on the gap between the information-theoretic global objective in FL
and the self-information weighted expected risk based on the joint distribution of all the data sources.
To conserve space, we have provided proofs for all our theorems in the appendix.

3.1 PRELIMINARIES

Let the sample space Z = X ×Y be the set of all the possible outcomes z = (x, y) (e.g. image-label
pairs) focused on in this paper, where X is the feature space and Y is the label space. Let I be
the index set of all the possible clients. The total number of all possible clients in I is |I| = N
and it is possibly infinite. We assume that only clients in the finite subset Ip of I participating
in FL practically and the number of these clients is |Ip| = M . Following Hu et al. (2023), N is
commonly larger than M due to the unreliable network links. Furthermore, we only select a subset
It of Ip for training in each round of FL in this paper, which can reduce both the computational
and communication burden of participating clients. Similarly, we denote the number of selected
clients |It| as K. Therefore, we have It ⊂ Ip ⊂ I and K ≤ M ≤ N . In this paper, we assume
that each client i,∀i ∈ I is associated with a local data source Zi, where Zi = (Xi, Yi) is a discrete
random variable with the distribution function PZi and is with support on Z . The sequence of random
variables Z1, Z2, ..., ZN is denoted as ZI and the corresponding joint distribution is denoted as PZI

in the following. The local distribution PZi
of each data source Zi,∀i ∈ I is different from each

other, i.e., PZi
̸= PZj

,∀i ̸= j, i, j ∈ I, which is common in FL (Zhu et al., 2021).

The local training set Si = {sji}
ni
j=1,∀i ∈ Ip stored on participating client i is made of ni i.i.d.

realizations from the local data source Zi ∼ PZi . Referring to Yuan et al. (2021), the objective of
federated generalization is to train a global model on {Si}i∈Ip

, such that all the possible clients in I
will be provided satisfactory service by this global model trained by participating clients. LetH be a
hypothesis class on X . The loss function ℓ : Y × Y → R+ is a non-negative function. For simplicity,
we denote ℓ(h(x), y) as ℓ(h, z) in the following. To understand the proposed framework better, we
first present some definitions as follows:
Definition 1 (Self-information weighted expected risk). The self-information of outcome zi ∈ Z is
denoted by log( 1

P (zi)
). Then, the self-information weighted expected risk is defined by

LZi
(h) := E

[
ℓ(h, Zi) log(

1

P (Zi)
)
]
=

∑
zi∈Z

PZi
(zi)ℓ(h, zi) log(

1

PZi(zi)
), (1)

where h is a specific model inH and ℓ(h, zi) is the loss function of model h on sample zi.

The rationale behind the formulation of the risk outlined in equation 1 can be attributed to the fact
that target distributions are unknown in the training stage under the OOD setting. It is reasonable to
assume that unknown data sources have maximum entropy distributions, signifying greater uncertainty,
exemplified by a uniform distribution of discrete labels. For example, IoT devices may only collect
data in specific areas, while the global model trained by these devices is expected to provide spatial-
related services for all devices across the entire area. Hence, the self-information of each outcome is
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indispensable for measuring the expected risk in such a situation. Additionally, the proposed loss
ℓ(h, zi) log(

1
PZi

(zi)
), is indicative of the requisite focus on outcomes zi ∈ Z with lower probabilities

in source distributions since they may have higher probabilities in unknown target distributions.
Definition 2 (Joint self-information weighted expected risk). The self-information of one combination
of outcomes z1, z2, ..., zN is denoted by log( 1

PZI (z1,...,zN ) ). We use the term 1
N

∑
i∈I ℓ(h, zi) as

the loss in this risk. This term denotes the average loss of model h predicated on z1, z2, ..., zN and
it is commonly used in the field of OOD generalization (Christiansen et al., 2022). Then, the joint
self-information weighted expected risk on multiple data sources is defined by

LZI (h) := EZI

[ 1

N

∑
i∈I

ℓ(h, zi) log(
1

P (ZI)
)
]

=
∑
z1∈Z

∑
z2∈Z

...
∑

zN∈Z
PZI (z1, z2, ..., zN )

1

N

∑
i∈I

ℓ(h, zi) log(
1

PZI (z1, z2, ..., zN )
),

(2)

where h is a specific model in hypothesis spaceH. Similarly, the self-information log( 1
PZI (z1,...,zN ) )

reflects the uncertainty of the event that outcomes z1, z2, ..., zN are sampled from Z1, Z2, ..., ZN

respectively. We also denote LZI (h) as
∑

ZI PZI
1
N

∑
i∈I ℓ(h, zi) log(

1
PZI

) in the following.

Analogously, the motivation for defining the risk in equation 2 is that distributions of unparticipating
clients may differ from distributions of participating clients significantly. We must account for
the self-information of every possible combination of outcomes in order to ensure that one model
performing well on participating clients will also do well on unparticipating clients with distinct
distributions. Moving forward, we introduce the general training objective in FL, as well as the
self-information weighted semi-empirical risk which we propose in this paper, respectively. The
empirical risk minimization (ERM) objective in federated learning (Hu et al., 2023) is formulated
as follows: LS(h) :=

∑
i∈Ip

αi

ni

∑ni

j=1 ℓ(h, s
j
i ), αi ≥ 0,

∑
i∈Ip

αi = 1, where sji denotes the j-th
training sample at i-th selected client and αi is the weighting factor of client i.

Let Si = {sji}
ni
j=1 be the local training set of i-th participating client based on i.i.d. realizations

from examples of the data source Zi. S is the whole training set over all the participating clients
defined as S = ∪i∈Ip

Si. The empirical risk minimizer ĥ is denoted as ĥ = arg infh∈H LS(h).
Motivated by the definition of semi-empirical risk 1

|I|
∑

i∈I EZ∼PZi
[ℓ(h, Z)] in Hu et al. (2023),

we further propose the self-information weighted semi-empirical risk as follows. The self-
information weighted semi-empirical risk LZIp

(h) rooted on data source {Zi}i∈Ip
is defined by

LZIp
(h) :=

∑
i∈Ip

αiE
[
ℓ(h, Zi) log(

1
P (Zi)

)
]
. The semi-empirical risk minimizer ĥ∗ is denoted

as ĥ∗ = arg infh∈H LZIp
(h). For participating clients Ip, the corresponding semi-excess risk is

defined as LZIp
(ĥ)− LZIp

(ĥ∗) (Hu et al., 2023). The semi-excess risk represents how well the ĥ

can perform on the unseen data from {Zi}i∈Ip from the view of information theory.

3.2 FEDERATED GENERALIZATION

We now formally present the introduction of our proposed information-theoretic generalization
framework in FL. We first define the information-theoretic generalization gap in FL as follows,
Definition 3 (Information theoretic-generalization gap in federated learning).

|LZI (ĥ∗)− LZIp
(ĥ∗)| :=

∣∣∣EZI

[ 1

N

∑
i∈I

ℓ(ĥ∗, zi) log(
1

P (ZI)
)
]
−

∑
i∈Ip

αiE
[
ℓ(ĥ∗, Zi) log(

1

P (Zi)
)
]∣∣∣,

(3)
where αi ≥ 0,

∑
i∈Ip

αi = 1.

The motivation for defining the gap in equation 3 is that we want to know whether the global model
ĥ∗ achieving the best on data sources of participating clients Ip via FL can also perform well on data
sources of all the possible clients I. We will find that the upper bound of this generalization gap
LZI (ĥ∗)− LZIp

(ĥ∗) includes the semi-excess risk LZIp
(ĥ)− LZIp

(ĥ∗) defined above.
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Furthermore, we decompose the original generalization gap in equation 3 and amplify it as follows,∣∣∣LZI (ĥ∗)− LZIp
(ĥ∗)

∣∣∣ ≤ sup
h∈H

∣∣∣LZI (ĥ∗)− LZI (h)
∣∣∣︸ ︷︷ ︸

overfitting error

+
∣∣∣LZI (ĥ)− LZIp

(ĥ)
∣∣∣︸ ︷︷ ︸

participation gap

+LZIp
(ĥ)− LZIp

(ĥ∗)︸ ︷︷ ︸
semi-excess risk

,

(4)

We conduct our theoretical analysis using the following assumptions.

Assumption 1 (Bounded and Lipschitz loss). The loss function ℓ(h, z) is bounded by b. Besides,
the loss function is differentiable with respect to h and L-Lipschitz for every z, i.e., ∀h, g ∈
H, |ℓ(h, z) − ℓ(g, z)| ≤ L∥h − g∥. This assumption is commonly used in most of studies on
generalization analysis (Deng et al., 2023; Sun et al., 2021).

Assumption 2 (Limited Independence). The participating data sources ZIp are independent of the
unparticipating data sources ZI\Ip , i.e., PZI = PZIpPZI\Ip . In addition, among the participating
data sources, each single data source Zi,∀i ∈ Ip is independent of the sequence of other participating
data sources ZIp\i, i.e., PZIp = PZi

PZIp\i ,∀i ∈ Ip. This assumption is also reasonable since
clients construct their own data sources spontaneously in reality.

Rooted on the above assumptions, we can derive three lemmas introduced in the appendix and we
can further have below theorem about the information-theoretic generalization gap in FL.

Theorem 1 (Information entropy-aware generalization gap in FL). Let G be a family of functions
related to hypothesis spaceH : z 7→ ℓ(h, z) : h ∈ H with VC dimension V C(G). For any δ ≥ 0, it
follows that with probability at least 1− δ,

|LZI (ĥ∗)− LZIp
(ĥ∗)| ≤ L∥ĥ∗ − h∗∥H(ZI)︸ ︷︷ ︸

overfitting error

+3bH(ZI)− b
∑
i∈Ip

αiH(Zi)︸ ︷︷ ︸
participation gap

+ Ep + cb

√
V C(G)∑|Ip|

i=1 ni

+ b

√
log(1/δ)

2
∑|Ip|

i=1 ni︸ ︷︷ ︸
semi-excess risk

,

(5)

where c is a constant. h∗ := suph∈H L∥ĥ∗ − h∥H(ZI) and L is the Lipschitz constant. Ep =
2b

∑
i∈Ip

∑
zi∈Z P 2

Zi
.

Remark 1. The first term L∥ĥ∗ − h∗∥H(ZI) in equation 5 includes the distance ∥ĥ∗ − h∗∥ between
the optimal model ĥ∗ trained on ZIp via FL and other models h∗. This gap L∥ĥ∗ − h∗∥H(ZI) is
affected more by greater H(ZI). The second term denotes that both the greater

∑
i∈Ip

αiH(Zi) and
the smaller H(ZI) will decrease this generalization gap, which implies that the trained model will
be powerful on unknown test domains if the model has encountered a sufficient number of outcomes
during the training stage. The last term is the IID semi-excess risk for participating clients including
the model and sample complexity.

In the following, we consider only leveraging a selected subset It ⊂ Ip with the identical weighting
factor αi = αj =

1
|It| =

1
K ,∀i ̸= j, i, j ∈ It for each selected client to measure the generalization

gap in FL. In other words, we turn to focus on the below objective,

|LZI (ĥ∗
t )−LZIt

(ĥ∗
t )| =

∣∣∣EZI

[ 1

N

∑
i∈I

ℓ(ĥ∗
t , Zi) log(

1

P (ZI)
)
]
−
∑
i∈It

1

K
E
[
ℓ(ĥ∗

t , Zi) log(
1

P (Zi)
)
]∣∣∣

(6)
where ĥ∗

t = arg infh∈H LZIt
(h).

Referring to the derivation presented in the proof of Theorem 1 in the appendix, we can further
establish another theorem that pertains to the information-theoretical generalization gap in FL.

Theorem 2 (Distribution discrepancy-aware generalization gap in FL). Let G be a family of functions
related to hypothesis spaceH : z 7→ ℓ(h, z) : h ∈ H with VC dimension V C(G). For any δ ≥ 0, it
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follows that with probability at least 1− δ,

|LZI (ĥ∗
t )− LZIt

(ĥ∗
t )| ≤ L∥ĥ∗

t − h∗
t ∥H(ZI) + b(3− 2M

N
)H(ZI) + b(2− 2K

M
− 1

K
)H(ZIp)

+
b

K

∑
i∈Ip\It

H(PZi
, PZj

) + Et + cb

√
V C(G)∑|It|

i=1 ni

+ b

√
log(1/δ)

2
∑|It|

i=1 ni

,∀j ̸= i, j ∈ Ip

(7)
where c is a constant. h∗

t := suph∈H L∥ĥ∗
t − h∥H(ZI) and L is the Lipschitz constant. Et =

2b
∑

i∈It

∑
zi∈Z P 2

Zi
. H(PZi , PZj ) = EPZi

[log 1
PZj

] is the cross entropy between distributions PZi

and PZj
, measuring the dissimilarity between the two distributions.

Remark 2. Theorem 2 indicates that lower dissimilarity H(PZi
, PZj

) between unselected distribu-
tions PZi

, i ∈ Ip \ It and other participating distributions PZj
, j ∈ Ip can reduce the generalization

gap. In other words, Theorem 2 reveals that participating data sources contains redundant information
and a subset of Ip is adequate to represent the entirety. Notice that we do not need to compute the
cross entropy H(PZi

, PZj
) in practice, the derived bound only inspire us to design the client selection

algorithms to improve the generalization of FL.

4 METHODS

This section focuses on introducing a weighting aggregation approach, along with two client selection
methods in FL, that are rooted on the theoretical findings mentioned earlier. The objective of
employing these methods is to enhance the generalization performance of FL. Further elaboration on
the procedure of the proposed methods can be found in the appendix, providing additional details.

4.1 MAXIMUM ENTROPY AGGREGATION

Inspired by Theorem 1, it is easy to find that to minimize the information-theoretic generalization
gap is actually to maximize the term as follows

max
{αi}i∈Ip

∑
i∈Ip

αiH(Zi), (8)

where
∑

i∈Ip
αi = 1, αi ≥ 0, H(Zi) is the information entropy of data source Zi.

The true entropy of each client in equation 8 is inaccessible in practice, so we can not assign αi = 1
for i = argmaxĩ∈Ip

H(Zĩ) directly. Therefore, we can design proper weighting factors of local
gradients in federated aggregation to maximize this term.

Empirical entropy-based weighting: Based on the above analysis, the weighting factor of local
gradient ∇Fi(w), i ∈ Ip should be increased proportionally to the information entropy H(Zi) of
the data source Zi. This paper considers only the label distribution skew scenario for verifying the
proposed empirical entropy-based weighting method. Therefore, we can design the aggregation
weighting factor as follows:

αi =
exp (Ĥi)∑

i∈Ip
exp (Ĥi)

. (9)

In this paper, we only consider the label skew scenario of heterogeneous FL, the empirical entropy

can be thus calculated via Ĥi = −
∑

y∈Y

∑
j I

y=yi
j

ni
log

∑
j I

y=yi
j

ni
, where yij is the label of j-th sample

of local dataset Si of client i and I denotes the indicator function. In fact, the proposed maximum
entropy aggregation can be applied into other distribution shift scenarios directly if we can estimate
the empirical entropy of data source (Paninski, 2003). How to leverage this aggregation method to
benefit the federated generalization for other scenarios is out of the scope of this paper.

4.2 GRADIENT SIMILARITY-BASED CLIENT SELECTION

Assumption 3 (Bounded dissimilarity). The dissimilarity between two local gradients is bounded by
the divergence of corresponding local data distributions, i.e,

∥∇Fi(w)−∇Fj(w)∥2 ≤ σ2
K,∀i, j ∈ K, (10)
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where ∇Fi(w) denotes the local gradient of client i and σ2
K depends on the dissimilarity of data

distributions {PZk
}k∈K. In other words, a higher level of distribution dissimilarity of {PZk

}k∈K
will incur a higher level of σ2

K (Zou et al., 2023; Li et al., 2020). Hence, σ2
K is related to the term

supi,j∈K KL(PZi
∥PZj

) in fact. Assumption 3 and Theorem 2 can help us to design client selection
methods for improving the generalization performance of FL in the following.

We begin by introducing the general procedure of client selection methods. The server basically
repeats the following steps in each round of FL: a) Update the gradient table: After updating the
global model based on gradients uploaded by clients i,∀i ∈ It following wt+1 ← wt−

∑
i∈It

αig
i
t,

the server updates and maintains a table to store the latest gradients uploaded by clients selected in
each round. Specifically, the server performs the below actions: gi

s ← gi
t,∀i ∈ It and gi

s ← gi
s,∀i ∈

Ip \ It to maintain the table {gi
s}i∈Ip

. b) Execute the selection algorithm: Based on the gradients
stored in the table {gi

s}i∈Ip , the server executes the client selection algorithms introduced below
to determine the subset It+1 of Ip to participate in the next round of FL. Note that this procedure
eliminates the need for all participating clients to upload their gradients to the server in each round.

4.2.1 MINIMAX GRADIENT SIMILARITY-BASED CLIENT SELECTION

Recall the Theorem 2, to minimize the distribution discrepancy-aware generalization gap is in
fact to maximize the term

∑
i∈It

minj∈Ip
H(PZi

, PZj
), which means that selecting clients with

distributions PZi
, i ∈ It that differ significantly from other participating distributions PZj

,∀j ∈ Ip
can improve the generalization performance of FL. Furthermore, in reference to the Assumption 3,
this objective can be formulated as a tractable optimization problem, given by

min
{ai

t}i∈Ip

∑
i∈Ip

ait max
j∈Ip,j ̸=i

S(∇Fi(w),∇Fj(w)), (11)

s.t. ait ∈ {0, 1},∀i ∈ Ip;
∑
i∈Ip

ait = |It|. (11a)

where S(∇Fi(w),∇Fj(w)) represents the similarity metric between ∇Fi(w) and ∇Fj(w) up-
loaded by client i and client j respectively, is evaluated using cosine similarity in this work.
This choice is motivated by the fact that the distance between bounded local gradients can
be bounded by the distribution discrepancy between the corresponding local distributions, i.e,
∥∇wLPZi

(z;w)−∇wLPZj
(z;w)∥2 ≤ c′KL(PZi

∥PZj
) ≤ c′H(PZi

, PZj
), where c′ is a constant.

Besides, the cosine similarity is related to the Euclidean distance: ∥∇Fi −∇Fj∥2 = ∥∇Fi∥2 − 2 <
∇Fi,∇Fj > +∥∇Fj∥2 and it provides a more stable approach in FL (Zeng et al., 2023). We propose
a feasible approximate method for solving this optimization problem in Algorithm 1. Additionally,
in Algorithm 1, we define the concept of "similarity set" denoted as Si,∀i ∈ Ip, which is a set
of gradient similarities between the local gradient of each participating client and the gradients
calculated by the other participating clients.

4.2.2 CONVEX HULL CONSTRUCTION-BASED CLIENT SELECTION

Besides, we can also minimize the generalization gap in Theorem 2 via maximizing a term as follows,

max
It

∑
i∈It

∑
j∈Ip

H(PZi
, PZj

). (12)

The above objective suggests that the larger difference between distributions PZi ,∀i ∈ It and other
participating distributions PZj ,∀j ∈ Ip, the smaller generalization gap in Theorem 2. Following the
insights gained from our analysis and Assumption 3, a convex hull construction-based client selection
policy is proposed to enhance the generalization of FL. The key idea of such method is to identify the
vertices of the convex hull of gradients, and then select the corresponding clients whose gradients are
located on the vertices of the constructed convex hull.

5 EXPERIMENT

In this section, we evaluate the proposed methods on three common datasets in FL, in order to verify
our theoretical results. More details of experimental settings and results are provided in the appendix.
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Algorithm 1: Minimax Gradient Similarity-based Client Selection Policy

Input: set of local gradients {gi
t}i∈Ip

, the size of selected clients |It| in round t.
1 Initialize collection of similarity sets {Si}i∈Ip

, where Si = ∅,∀i ∈ Ip. Max similarity set
Smax = ∅. Candidate set Ĩt = ∅ ;

2 for i ∈ Ip do
3 for j ∈ Ip, j ̸= i do
4 Si,j ← S(gi

t,g
j
t ), Si ← Si ∪ {Si,j}

5 end
6 Smax ← Smax ∪ {S∗

i = max
Si,j

Si}

7 end
8 while |Ĩt| ≤ |It| do
9 Ĩt ← Ĩt ∪

{
argmin

i
Smax

}
, S∗ ← min

S∗
i

Smax, Smax ← Smax \ {S∗};

10 end
11 return Ĩt

Algorithm 2: Federated Generalization via Client Selection
Input: set of local datasets {Si}i∈Ip , participating client set Ip with size |Ip|, the size of

selected client set |It|, the initial model w0, the local learning rate η.
1 Before the beginning of FL, all the participating clients update local models via w0 and

upload local gradients gi
0 to the server;

2 for round t ∈ [T ] do
3 It ← Convex Hull({gi

s}i∈Ip
) or It ←MinimaxSim({gi

s}i∈Ip
, |It| = K) ;

4 for client i ∈ It in parallel do
5 wi

t ← LocalSolver(wt, Si, η), gi
t ← wt −wi

t;
6 end
7 wt+1 ← wt −

∑
i∈It

αig
i
t;

8 end

Experiment setting: We consider three datasets commonly used in FL: i) image classification on
EMNIST-10 and CIFAR-10 with a CNN model, ii) next character prediction on Shakespeare with
a RNN model. For the image classification task, we split the dataset into different clients using
the Dirichlet distribution spitting method, and we compare the proposed weighting aggregation
method and client selection methods with baselines provided below. For the Shakespeare task, each
speaking role in each play is set as a local dataset (Caldas et al., 2018), and we only compare the
proposed client selection methods with baselines on this dataset. We split all datasets into 100 clients,
and randomly select 40 clients among them as participating clients. The remaining 60 clients are
considered unparticipating clients. We evaluate the global model’s performance on two metrics: In
Distribution (ID) performance and Out-Of-Distribution (OOD) performance. The ID performance
evaluates the global model on the local test set of selected clients, while the OOD performance
evaluates the global model on a standard test set with a distribution equivalent to the total dataset of
100 clients. All the selected clients perform 5 local epochs before sending their updates. We use a
batch size of 128 and tune the local learning rate η over a {0.1, 0.01, 0.001} grid in all experiments.

Then we introduce some baseline methods: a) Random selection: Participating clients are selected
randomly with equal probability. b) Maximum gradient similarity-based selection: This baseline
evaluates the proposed minimax gradient similarity-based client selection method. The server selects
clients with the most similar local gradients. c) Interior selection: This baseline evaluates the
proposed convex hull construction-based selection method. The server constructs the convex hull
of local gradients and then selects clients with gradients in the interior randomly. d) Full sampling:
All participating clients will be selected in each round. e) Power-of-Choice selection: The server
selects clients with the largest loss values in the current round (Cho et al., 2020). f) Data size-based

8
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weighting: The weighting factor of each client is proportional to the data size of its local dataset. g)
Equality weighting: The weighting factor of each client in aggregation is set to 1/|It|.
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Figure 1: (a): OOD test accuracy of client selection methods for EMNIST-10; (b): OOD test
accuracy of weighting methods for EMNIST-10.

Experiment Results: Table 1 reports the ID and OOD test accuracy of client selection methods on
three datasets, while Figure 1 presents their convergence behaviors. The results in Table 1 indicate
that, with respect to OOD test accuracy, the proposed client selection methods outperform random
selection, Power-of-Choice selection, and other baselines. Furthermore, as shown in Figure 1, the
proposed methods converge faster on OOD test accuracy than all the other baselines. These findings
are consistent with our theoretical framework, which highlights that selecting clients with distribu-
tions distinct from other local distributions to participate in FL leads to improved generalization
performance of the global model. Notably, on EMNIST-10 and CIFAR-10, the proposed methods
perform even better than the full sampling baseline, possibly due to the randomness induced by client
selection, which may enhance the generalization performance of FL. Table 2 demonstrates that the
proposed empirical entropy-based weighting method surpasses the data size-based weighting and
equality weighting method on OOD test accuracy and is more stable in convergence in Figure 1. This
outcome aligns with our theoretical results and confirms that local models trained on distributions
with greater information entropy contribute more significantly to federated generalization.

Table 1: Test accuracy (%) ± std of client selection methods
Method EMNIST-10 CIFAR-10 Shakespeare

ID OOD ID OOD ID OOD

Convex Hull (ours) 91.8±0.8 82.1±4.6 50.7±3.7 42.9±1.1 56.1±2.0 43.6±1.0
MiniMaxSim (ours) 95.5±0.7 82.3±4.7 49.9±3.0 42.0±1.0 55.0±1.9 43.5±0.8
Random Selection 95.9±0.9 69.4±5.4 49.9±2.6 38.9±1.0 45.2±0.6 37.3±1.1

MaxSim 95.3±0.5 59.8±6.3 60.9±2.1 32.2±3.1 30.2±0.8 22.2±1.4
Interior 96.6±0.5 73.8±6.5 50.4±5.7 40.8±0.9 33.5±3.6 25.4±0.8

Full Sampling 98.7±0.3 80.1±5.5 61.4±6.8 41.6±1.2 53.7±2.3 43.2±1.8
Power-of-Choice 97.3±0.6 76.3±4.5 60.3±6.7 39.2±1.3 56.7±2.6 42.6±1.7

Table 2: Test accuracy (%) ± std of weighting aggregation methods
Method EMNIST-10 CIFAR-10

In Distribution Out-Of-Distribution In Distribution Out-Of-Distribution

Entropy (ours) 96.7±0.2 74.9±10.5 56.5±0.7 35.7±1.0
Data size 94.7±1.8 53.1±12.1 53.3±3.2 33.2±0.3
Equality 96.2±0.6 70.7±13.2 60.8±3.9 34.9±0.9

6 CONCLUSION

This paper addresses the generalization issue in FL by exploring whether a global model trained
by participating clients is capable of performing well for unparticipating clients in the presence of
heterogeneous data. To capture the generalization gap in FL, we propose an information-theoretic
generalization framework that takes into account both the information entropy of local distribution and
the discrepancy between different distributions. Leveraging this framework, we are able to identify
the generalization gap and further propose an empirical entropy-based weighting aggregation method,
as well as two gradient similarity-based client selection methods. These methods aim to improve the
generalization performance of FL through distribution diversification. Numerical results corroborate
our theoretical findings, demonstrating that the proposed approaches can surpass baselines.
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A PROOF OF THEOREMS IN FEDERATED GENERALIZATION

In this section, we will present detailed proofs of theorems in the theoretical framework section.

A.1 PROOF OF THEOREM 1

Proof. Let us recall the decomposed generalization gap in FL,∣∣∣LZI (ĥ∗)− LZIp
(ĥ∗)

∣∣∣ = ∣∣∣LZI (ĥ∗)− LZI (ĥ) + LZI (ĥ)− LZIp
(ĥ) + LZIp

(ĥ)− LZIp
(ĥ∗)

∣∣∣
≤

∣∣∣LZI (ĥ∗)− LZI (ĥ)
∣∣∣+ ∣∣∣LZI (ĥ)− LZIp

(ĥ)
∣∣∣+ ∣∣∣LZIp

(ĥ)− LZIp
(ĥ∗)

∣∣∣
≤ sup

h∈H

∣∣∣LZI (ĥ∗)− LZI (h)
∣∣∣︸ ︷︷ ︸

overfitting error

+
∣∣∣LZI (ĥ)− LZIp

(ĥ)
∣∣∣︸ ︷︷ ︸

participation gap

+LZIp
(ĥ)− LZIp

(ĥ∗)︸ ︷︷ ︸
semi-excess risk

.

We regard the three terms in this decomposed generalization gap as three different lemmas and
introduce the detailed proofs of these lemmas in the following.

Lemma 1 (Overfitting error).

sup
h∈H

∣∣∣LZI (ĥ∗)− LZI (h)
∣∣∣ ≤ L∥ĥ∗ − h∗∥H(ZI),

where h∗ := suph∈H L∥ĥ∗ − h∥H(ZI), L is the Lipschitz constant and ∥ĥ∗ − h∗∥ represents the
distance between model ĥ∗ and model h∗.

Proof.

sup
h∈H

∣∣∣LZI (ĥ∗)− LZI (h)
∣∣∣ = sup

h∈H

∣∣∣∑
ZI

PZI
1

|I|
∑
i∈I

log
( 1

PZI

)
[ℓ(ĥ∗, zi)− ℓ(h, zi)]

∣∣∣
≤ sup

h∈H

{∑
ZI

PZI log
( 1

PZI

) 1

|I|
∑
i∈I

∣∣∣ℓ(ĥ∗, zi)− ℓ(h, zi)
∣∣∣}

≤ sup
h∈H

{∑
ZI

PZI log
( 1

PZI

) 1

|I|
∑
i∈I

L∥ĥ∗ − h∥
}

= sup
h∈H

L∥ĥ∗ − h∥H(ZI)

= L∥ĥ∗ − h∗∥H(ZI),

where h∗ := suph∈H L∥ĥ∗ − h∥H(ZI). The last inequality holds since the Assumption 1.

Lemma 2 (Participation gap).∣∣∣LZI (ĥ)− LZIp
(ĥ)

∣∣∣ ≤ 3bH(ZI)− b
∑
i∈Ip

αiH(Zi).
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Proof.

∣∣∣LZI (ĥ)− LZIp (ĥ)
∣∣∣ = ∣∣∣∑

ZI

PZI
1

N

∑
i∈I

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
i∈Ip

αi

∑
zi∈Z

PZi
ℓ(ĥ, zi) log

( 1

PZi

)∣∣∣
=

∣∣∣∑
ZI

PZI
1

N

∑
i∈I

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)
+

∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)
−

∑
i∈Ip

αi

∑
zi∈Z

PZiℓ(ĥ, zi) log
( 1

PZi

)∣∣∣
≤

∣∣∣∑
ZI

PZI
1

N

∑
i∈I

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)∣∣∣︸ ︷︷ ︸
participation discrepancy

+
∣∣∣∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)
−

∑
i∈Ip

αi

∑
zi∈Z

PZi
ℓ(ĥ, zi) log

( 1

PZi

)∣∣∣︸ ︷︷ ︸
distributed learning discrepancy

.

Notice that the term called "participation discrepancy" mainly reflects the discrepancy between the
whole data source ZI and participating data source ZIp . While the term called "distributed learning
discrepancy" represents the gap between performing the centralized training on participating data
source ZIp and conducting the distributed learning on the same source ZIp . Now we first focus on
the "participation discrepancy" term and we denote this term as gen(ZI , ZIp ; ĥ) in the following.

gen(ZI , ZIp ; ĥ) =
∣∣∣∑
ZI

PZI
1

N

∑
i∈I

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)∣∣∣
=

∣∣∣∑
ZI

PZI
1

N

∑
i∈Ip

ℓ(ĥ, zi) log
( 1

PZI

)
+

∑
ZI

PZI
1

N

∑
i∈I\Ip

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)∣∣∣
≤

∣∣∣∑
ZI

PZI
1

N

∑
i∈I\Ip

ℓ(ĥ, zi) log
( 1

PZI

)∣∣∣+ ∣∣∣∑
ZI

PZI
1

N

∑
i∈Ip

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)∣∣∣
≤ 1

N

∑
i∈I\Ip

b
∣∣∣∑
ZI

PZI log
( 1

PZI

)∣∣∣+ ∣∣∣∑
ZI

PZI
1

N

∑
i∈Ip

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)∣∣∣
=

N −M

N
bH(ZI) +

∣∣∣∑
ZI

PZI
1

N

∑
i∈Ip

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)∣∣∣
=

N −M

N
bH(ZI) +

∣∣∣∑
ZI

PZI
1

N

∑
i∈Ip

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
ZIp

∑
ZI\Ip

PZIpPZI\Ip

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)∣∣∣.
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According to Assumption 2, we can have,

gen(ZI , ZIp ; ĥ) ≤ N −M

N
bH(ZI) +

∣∣∣∑
ZI

PZI

[ 1

N

∑
i∈Ip

ℓ(ĥ, zi) log
( 1

PZI

)
−

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)]∣∣∣
≤ N −M

N
bH(ZI) +

∑
ZI

PZI

∑
i∈Ip

∣∣∣ 1
N

ℓ(ĥ, zi) log
( 1

PZI

)
− αiℓ(ĥ, zi) log

( 1

PZIp

)∣∣∣
=

N −M

N
bH(ZI) +

∑
ZI

PZI

∑
i∈Ip

∣∣∣ 1
N

ℓ(ĥ, zi) log
( 1

PZI

)
− αiℓ(ĥ, zi) log

( 1

PZI

)
+ αiℓ(ĥ, zi) log

( 1

PZI

)
− αiℓ(ĥ, zi) log

( 1

PZIp

)∣∣∣
≤ N −M

N
bH(ZI) +

∑
ZI

PZI

∑
i∈Ip

∣∣∣ 1
N

ℓ(ĥ, zi) log
( 1

PZI

)
− αiℓ(ĥ, zi) log

( 1

PZI

)∣∣∣
+
∑
ZI

PZI

∑
i∈Ip

∣∣∣αiℓ(ĥ, zi) log
( 1

PZI

)
− αiℓ(ĥ, zi) log

( 1

PZIp

)∣∣∣
≤ N −M

N
bH(ZI) +

∑
ZI

PZI

∑
i∈Ip

b
∣∣∣ 1
N

log
( 1

PZI

)
− αi log

( 1

PZI

)∣∣∣
+
∑
ZI

PZI

∑
i∈Ip

αib
∣∣∣ log ( 1

PZI

)
− log

( 1

PZIp

)∣∣∣
≤ N −M

N
bH(ZI) +

∑
ZI

PZI

∑
i∈Ip

b
[∣∣∣ 1
N

log
( 1

PZI

)∣∣∣+ ∣∣∣αi log
( 1

PZI

)∣∣∣]
+
∑
ZI

PZI

∑
i∈Ip

αib
[
log

( 1

PZI

)
− log

( 1

PZIp

)]
≤ N −M

N
bH(ZI) +

∑
ZI

PZI

∑
i∈Ip

b(
1

N
+ αi) log

( 1

PZI

)
+
∑
ZI

PZI

∑
i∈Ip

αib
[
log

( 1

PZI

)
− log

( 1

PZIp

)]
=

N −M

N
bH(ZI) + b

∑
ZI

PZI (
M

N
+ 1) log

( 1

PZI

)
+ b

∑
i∈Ip

αi

∑
ZI

PZI log
( 1

PZI

)
− b

∑
i∈Ip

αi

∑
ZIp

PZIp log
( 1

PZIp

)
=

N −M

N
bH(ZI) +

N +M

N
bH(ZI) + bH(ZI)− bH(ZIp)

= 3bH(ZI)− bH(ZIp).

Then we focus on the "distributed learning discrepancy" term and we denote it as gen(ZIp ; ĥ).

gen(ZIp ; ĥ) =
∣∣∣∑
ZIp

PZIp

∑
i∈Ip

αiℓ(ĥ, zi) log
( 1

PZIp

)
−

∑
i∈Ip

αi

∑
zi∈Z

PZi
ℓ(ĥ, zi) log

( 1

PZi

)∣∣∣
≤

∑
i∈Ip

αi

∣∣∣∑
ZIp

PZIp ℓ(ĥ, zi) log
( 1

PZIp

)
−

∑
zi∈Z

PZiℓ(ĥ, zi) log
( 1

PZi

)∣∣∣
=

∑
i∈Ip

αi

∣∣∣∑
ZIp

PZIp ℓ(ĥ, zi) log
( 1

PZIp

)
−

∑
zi∈Z

∑
ZIp\i

PZiPZIp\iℓ(ĥ, zi) log
( 1

PZi

)∣∣∣.
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Similarly, based on Assumption 2, we can also have,

gen(ZIp ; ĥ) ≤
∑
i∈Ip

αi

∑
ZIp

PZIp

∣∣∣ℓ(ĥ, zi) log ( 1

PZIp

)
− ℓ(ĥ, zi) log

( 1

PZi

)∣∣∣
≤ b

∑
i∈Ip

αi

∑
ZIp

PZIp

∣∣∣ log ( 1

PZIp

)
− log

( 1

PZi

)∣∣∣
= b

∑
i∈Ip

αi

[∑
ZIp

PZIp log
( 1

PZIp

)
−

∑
zi∈Z

PZi
log

( 1

PZi

)]
= bH(ZIp)− b

∑
i∈Ip

αiH(Zi).

To sum up, the participation gap can be bounded as follows,∣∣∣LZI (ĥ)− LZIp (ĥ)
∣∣∣ ≤ 3bH(ZI)− b

∑
i∈Ip

αiH(Zi).

Lemma 3 (Semi-excess risk). Let G be a family of functions related to hypothesis space H : z 7→
ℓ(h, z) : h ∈ H with VC dimension V C(G). Distributed training sets {Si}Ni=1 = {{sij}

ni
j=1}Ni=1 are

constructed by i.i.d. realizations sampled from different data sources {Zi}Ni=1. If the loss function ℓ
is bounded by b, for any δ ≥ 0, it follows that with probability at least 1− δ,

LZIp
(ĥ)− LZIp

(ĥ∗) ≤ Ep + cb

√
V C(G)∑|Ip|

i=1 ni

+ b

√
log(1/δ)

2
∑|Ip|

i=1 ni

,

where c is a constant, and Ep = 2b
∑

i∈Ip

∑
zi∈Z P 2

Zi
. The term Ep represents the gap between

the self-information weighted expected risk and the vanilla expected risk without considering the
self-information of outcomes.

Before stating the detailed proof of Lemma 3, we introduce a theoretical result about the generalization
bound for participating clients in IID federated learning in (Hu et al., 2023) into our paper as a lemma.

Lemma 4 (Generalization bound for participating clients in IID FL). (Hu et al., 2023) Let G be a
family of functions related to hypothesis spaceH : z 7→ ℓ(h, z) : h ∈ H with VC dimension V C(G).
Distributed training sets {Si}Ni=1 = {{sij}

ni
j=1}Ni=1 are constructed by i.i.d. realizations sampled

from different data sources {Zi}Ni=1. If the loss function ℓ is bounded by b, for any δ ≥ 0, it follows
that with probability at least 1− δ,

sup
h∈H

∣∣∣ N∑
i=1

αiE(ℓ(h, Zi))−
N∑
i=1

αi

ni

ni∑
j=1

ℓ(h, sij)
∣∣∣ ≤ cb

√
V C(G)∑N

i=1 ni

+ b

√
ln(1/δ)

2
∑N

i=1 ni

,

where c is a constant.

And then we start the formal proof of the Lemma 3

Proof.

LZIp
(ĥ)− LZIp

(ĥ∗) = LZIp
(ĥ)− LS(ĥ)︸ ︷︷ ︸
Term A

+LS(ĥ)− LS(ĥ
∗)︸ ︷︷ ︸

ERM

+LS(ĥ
∗)− LZIp

(ĥ∗)︸ ︷︷ ︸
Term B

.

The ERM term LS(ĥ)− LS(ĥ
∗) ≤ 0. Then we focus on the term A first.
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LZIp
(ĥ)− LS(ĥ) = LZIp

(ĥ)−
∑
i∈Ip

αiE[ℓ(ĥ, zi)] +
∑
i∈Ip

αiE[ℓ(ĥ, zi)]− LS(ĥ)

≤ sup
h∈H

∣∣∣LZIp
(h)−

∑
i∈Ip

αiE[ℓ(h, zi)] +
∑
i∈Ip

αiE[ℓ(h, zi)]− LS(h)
∣∣∣

≤ sup
h∈H

∣∣∣LZIp
(h)−

∑
i∈Ip

αiE[ℓ(h, zi)]
∣∣∣+ sup

h∈H

∣∣∣ ∑
i∈Ip

αiE[ℓ(h, zi)]− LS(h)
∣∣∣.

Rooted on the Lemma 4, we can immediately have the below result with probability at least 1− δ,

LZIp
(ĥ)− LS(ĥ) ≤ sup

h∈H

∣∣∣LZIp
(h)−

∑
i∈Ip

αiE[ℓ(h, zi)]
∣∣∣+ cb

√
V C(G)∑|Ip|

i=1 ni

+ b

√
log(1/δ)

2
∑|Ip|

i=1 ni

.

Now we focus on the term B, we can have:

LS(ĥ
∗)− LZIp

(ĥ∗) = LS(ĥ
∗)−

∑
i∈Ip

αiE[ℓ(ĥ∗, zi)] +
∑
i∈Ip

αiE[ℓ(ĥ∗, zi)]− LZIp
(ĥ∗).

The concentration term LS(ĥ
∗)−

∑
i∈Ip

αiE[ℓ(ĥ∗, zi)] does not affect the bound because ĥ∗ is a
specific model in hypothesis class. To sum up, we have:

LZIp
(ĥ)− LZIp

(ĥ∗) ≤ sup
h∈H

∣∣∣LZIp
(h)−

∑
i∈Ip

αiE[ℓ(h, zi)]
∣∣∣+ ∑

i∈Ip

αiE[ℓ(ĥ∗, zi)]− LZIp
(ĥ∗)

+ cb

√
V C(G)∑|Ip|

i=1 ni

+ b

√
log(1/δ)

2
∑|Ip|

i=1 ni

.

For simplicity, we denote the term cb

√
V C(G)∑|Ip|
i=1 ni

+ b

√
log(1/δ)

2
∑|Ip|

i=1 ni

as N (G, Ip) temporarily.

Assume that h′ ∈ H satisfying suph∈H

∣∣∣LZIp
(h)−

∑
i∈Ip

αiE[ℓ(h, zi)]
∣∣∣ = ∑

i∈Ip
αiE[ℓ(h′, zi)]−

LZIp
(h′), we have

LZIp
(ĥ)− LZIp

(ĥ∗) ≤
∑
i∈Ip

αiE[ℓ(h′, zi)]− LZIp
(h′) +

∑
i∈Ip

αiE[ℓ(ĥ∗, zi)]− LZIp
(ĥ∗) +N (G, Ip)

=
∑
i∈Ip

αiE[ℓ(ĥ∗, zi) + ℓ(h′, zi)]−
(
LZIp

(h′) + LZIp
(ĥ∗)

)
+N (G, Ip)

=
∑
i∈Ip

αi

∑
zi∈Z

PZi

(
ℓ(h′, zi) + ℓ(ĥ∗, zi)

)
−

∑
i∈Ip

αi

∑
zi∈Z

PZi

(
ℓ(ĥ∗, zi) + ℓ(h′, zi)

)
log

( 1

PZi

)
+N (G, Ip)

=
∑
i∈Ip

αi

∑
zi∈Z

PZi

(
ℓ(ĥ∗, zi) + ℓ(h′, zi)

)(
log(PZi

) + 1
)
+N (G, Ip)

≤
∑
i∈Ip

αi

∑
zi∈Z

P 2
Zi

(
ℓ(ĥ∗, zi) + ℓ(h′, zi)

)
+N (G, Ip)

≤ 2b
∑
i∈Ip

∑
zi∈Z

P 2
Zi

+N (G, Ip).
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If we assume that h′ ∈ H satisfying suph∈H

∣∣∣LZIp
(h) −

∑
i∈Ip

αiE[ℓ(h, zi)]
∣∣∣ = LZIp

(h′) −∑
i∈Ip

αiE[ℓ(h′, zi)], we have LZIp
(ĥ)− LZIp

(ĥ∗) ≤ b
∑

i∈Ip

∑
zi∈Z P 2

Zi
+N (G, Ip).

To sum up, we eventually have

LZIp
(ĥ)− LZIp

(ĥ∗) ≤ Ep + cb

√
V C(G)∑N

i=1 ni

+ b

√
ln(1/δ)

2
∑N

i=1 ni

,

where the term Ep represents 2b
∑

i∈Ip

∑
zi∈Z P 2

Zi
derived in the above.

On the basis of the proven three lemmas introduced above, we can find that Theorem 1 is proven
immediately.

A.2 PROOF OF THEOREM 2

Proof. Following the proof of Theorem 1, we can also decompose and amplify the gap |LZI (ĥ∗
t )−

LZIt
(ĥ∗

t )| as,

|LZI (ĥ∗
t )−LZIt (ĥ

∗
t )| ≤ sup

h∈H

∣∣∣LZI (ĥ∗
t )− LZI (h)

∣∣∣︸ ︷︷ ︸
overfitting error

+
∣∣∣LZI (ĥt)− LZIt

(ĥt)
∣∣∣︸ ︷︷ ︸

participation gap

+LZIt
(ĥt)− LZIt

(ĥ∗
t )︸ ︷︷ ︸

semi-excess risk

.

We can use the theoretical results derived in Theorem 1 to bound the above overfitting error and the
semi-excess risk directly. Therefore, we mainly focus on the participation gap in the client selection
scenario in the following. The participation gap can be decomposed and amplified as,

∣∣∣LZI (ĥt)− LZIt
(ĥt)

∣∣∣ = ∣∣∣∑
ZI

PZI
1

N

∑
i∈I

ℓ(ĥt, zi) log
( 1

PZI

)
− 1

K

∑
i∈It

∑
zi∈Z

PZiℓ(ĥt, zi) log
( 1

PZi

)∣∣∣
≤

∣∣∣∑
ZI

PZI
1

N

∑
i∈I

ℓ(ĥt, zi) log
( 1

PZI

)
−

∑
ZIp

PZIP

1

M

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZIp

)∣∣∣
+
∣∣∣∑
ZIp

PZIp

1

M

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZIp

)
− 1

K

∑
i∈It

∑
zi∈Z

PZiℓ(ĥt, zi) log
( 1

PZi

)∣∣∣.
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We move to the first term in the right hand side of the inequality. Similar to the proof of Theorem 1,
we can easily have,∣∣∣∑
ZI

PZI
1

N

∑
i∈I

ℓ(ĥt, zi) log
( 1

PZI

)
−

∑
ZIp

PZIP

1

M

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZIp

)∣∣∣
≤

∣∣∣∑
ZI

PZI
1

N

∑
i∈I\Ip

ℓ(ĥt, zi) log
( 1

PZI

)∣∣∣+ ∣∣∣∑
ZI

PZI
1

N

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZI

)
−

∑
ZIp

PZIP

1

M

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZIp

)∣∣∣
≤ b(N −M)

N
H(ZI) +

∣∣∣∑
ZI

PZI
1

N

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZI

)
−

∑
ZIp

∑
ZI\Ip

PZIP PZI\IP

1

M

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZIp

)∣∣∣
≤ b(N −M)

N
H(ZI) +

∑
ZI

PZI

∣∣∣ 1
N

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZI

)
− 1

M

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZIp

)∣∣∣
=

b(N −M)

N
H(ZI) +

∑
ZI

PZI

∣∣∣[ 1
N
− 1

M
]
∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZI

)∣∣∣
+
∑
ZI

PZI

∣∣∣ 1
M

∑
i∈Ip

ℓ(ĥt, zi)[log
( 1

PZI

)
− log

( 1

PZIp

)
]
∣∣∣

=
b(N −M)

N
H(ZI) + b

∑
ZI

PZI

∑
i∈Ip

N −M

NM
log

( 1

PZI

)
+ b

∑
ZI

PZI
1

M

∑
i∈Ip

∣∣∣ log ( 1

PZI

)
− log

( 1

PZIp

)∣∣∣
=

b(3N − 2M)

N
H(ZI)− bH(ZIP ).

According to the above analysis and Lemma 2, we can directly bound the second term and have,∣∣∣∑
ZIp

PZIp

1

M

∑
i∈Ip

ℓ(ĥt, zi) log
( 1

PZIp

)
− 1

K

∑
i∈It

∑
zi∈Z

PZi
ℓ(ĥt, zi) log

( 1

PZi

)∣∣∣
≤ 2b(M −K)

M
H(ZIP ) + bH(ZIP )− b

K

∑
i∈It

H(Zi).

To sum up, we can derive the final participation gap in this scenario as follows,∣∣∣LZI (ĥt)− LZIt
(ĥt)

∣∣∣ ≤ b(3N − 2M)

N
H(ZI) +

2b(M −K)

M
H(ZIp)− b

K

∑
i∈It

H(Zi)

=
b(3N − 2M)

N
H(ZI) +

b(2MK − 2K2 −M)

MK
H(ZIp) +

b

K

[
H(ZIp)−

∑
i∈It

H(Zi)
]

= b(3− 2M

N
)H(ZI) + b(2− 2K

M
− 1

K
)H(ZIp) +

b

K

[
H(ZIp)−

∑
i∈It

H(Zi)
]
.

The term b
K

[
H(ZIp)−

∑
i∈It

H(Zi)
]

can be further derived as follows,

b

K

[
H(ZIp)−

∑
i∈It

H(Zi)
]
≤ b

K

[
H(ZIp)−H(ZIt)

]
≤ b

K

[
H(ZIp)−H(ZIt |ZIp\It)

]
=

b

K

[
H(ZIp)−H(ZIp |ZIp\It)

]
=

b

K
I(ZIp ;ZIp\It).
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The first inequality holds since the chain rule property of entropy and the second inequality holds
since conditioning reduces entropy. The mutual information I(ZIp ;ZIp\It) can be rewritten by the
form of KL-divergence, i.e., I(ZIp ;ZIp\It) = KL(PZIp∥PZIpPZIp\It ), we thus have,

b

K

[
H(ZIp)−

∑
i∈It

H(Zi)
]
≤ b

K
KL(PZIp∥PZIpPZIp\It )

=
b

K

∑
ZIp

PZIp log
( PZIp

PZIpPZIp\It

)
=

b

K

∑
ZIp\It

PZIp\It log
( 1

PZIp\It

)
=

b

K
H(ZIp\It)

≤ b

K

∑
i∈Ip\It

H(Zi)

≤ b

K

∑
i∈Ip\It

H(PZi , PZj ),∀j ̸= i, j ∈ I.

Rooted on the results obtained in Theorem 1, we can similarly have the following upper bound of
generalization gap in the client selection scenario,

LZI (ĥ∗
t )− LZIt

(ĥ∗
t ) ≤ L∥ĥ∗

t − h∗
t ∥H(ZI) + b(3− 2M

N
)H(ZI) + b(2− 2K

M
− 1

K
)H(ZIp)

+
b

K

∑
i∈Ip\It

H(PZi , PZj ) + Et + cb

√
V C(G)∑|It|

i=1 ni

+ b

√
log(1/δ)

2
∑|It|

i=1 ni

.

where c is a constant. h∗ := suph∈H L∥ĥ∗ − h∥H(ZI) and L is the Lipschitz constant. Et =
2b

∑
i∈It

∑
zi∈Z P 2

Zi
. H(PZi

, PZj
) is the cross entropy between distributions PZi

and PZj
.

B GENERALIZATION ANALYSIS OF IN-DISTRIBUTION SCENARIO

In this section, we will add the detail of generalization analysis in terms of the in-distribution scenario
that all the clients participate in FL, i.e., Ip = I and thus N = M . We will show that the average
participation gap is related to the entropy rate of stochastic process {Zi}i∈I .

Recall that the participation gap defined in this paper is as follows,∣∣∣EZI

[ 1

N

∑
i∈I

ℓ(ĥ, Zi) log
( 1

PZI

)]
−

∑
i∈Ip

αiEZi

[
ℓ(ĥ, Zi) log

( 1

PZi

)]∣∣∣ (13)

Now we assume all the possible clients participate in FL and the server selects all the participating
clients in each round of FL, therefore we have Ip = I and N = M . Eventually, the participation gap
in this scenario becomes a generalization gap from the discrepancy between distributed learning and
centralized training:

gen(ZI , ĥ) :=
∣∣∣E[∑

i∈I
αiℓ(ĥ, Zi) log

1

PZI

]
−

∑
i∈I

αiE
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣
Theorem 3. Assume ℓ(w,Z) is bounded by b.

gen(ZI , ĥ) =
∣∣∣E[∑

i∈I
αiℓ(ĥ, Zi) log

1

PZI

]
−

∑
i∈I

αiE
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣ ≤ bH(ZI)− b
∑
i∈I

αiH(Zi)

(14)
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Proof.

gen(ZI , ĥ) =
∣∣∣E[∑

i∈I
αiℓ(ĥ, Zi) log

1

PZI

]
−
∑
i∈I

αiE
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣
=

∣∣∣∑
i∈I

αiE
[
ℓ(ĥ, Zi) log

1

PZI

]
−
∑
i∈I

αiE
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣
≤

∑
i∈I

αi

∣∣∣E[ℓ(ĥ, Zi) log
1

PZI

]
− E

[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣
=

∑
i∈I

αi

∣∣∣∑
ZI

PZI ℓ(ĥ, z) log
1

PZI
−

∑
Z

PZi
ℓ(ĥ, z) log

1

PZi

∣∣∣
=

∑
i∈I

αi

∣∣∣∑
ZI

PZI ℓ(ĥ, z) log
1

PZI
−

∑
Z

∑
ZI\i

PZi
PZI\iℓ(ĥ, z) log

1

PZi

∣∣∣
=

∑
i∈I

αi

∣∣∣∑
ZI

PZI
[
ℓ(ĥ, z) log

1

PZI
− ℓ(ĥ, z) log

1

PZi

]∣∣∣
≤

∑
i∈I

αi

∑
ZI

PZI

∣∣∣ℓ(ĥ, z) log 1

PZI
− ℓ(ĥ, z) log

1

PZi

∣∣∣
≤ b

∑
i∈I

αi

∑
ZI

PZI

∣∣∣ log 1

PZI
− log

1

PZi

∣∣∣
= b

∑
i∈I

αi

∑
ZI

PZI

[
log

1

PZI
− log

1

PZi

]
= bH(ZI)− b

∑
i∈I

αiH(Zi)

Corollary 1. We denote the cardinality of the considered sample space Z as |Z|. Let the weighting
factor αi be 1

N for each client, we have,∣∣∣E[∑
i∈I

ℓ(ĥ, Zi)

N
log

1

PZI

]
− 1

N

∑
i∈I

E
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣ ≤ b(N − 1) log |Z| (15)

Remark 3. Corollary 1 states that in the in-distribution scenario defined above, the cardinality of Z
and the number of clients impact the generalization performance of FL.

Proof. Similarly, referring to the proof of Theorem 3, we can have,∣∣∣E[∑
i∈I

ℓ(ĥ, Zi)

N
log

1

PZI

]
− 1

N

∑
i∈I

E
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣ ≤ b
[
H(ZI)− 1

N

∑
i∈I

H(Zi)
]

≤ b
[∑
i∈I

H(Zi)−
1

N

∑
i∈I

H(Zi)
]

≤ b(N − 1)

N

∑
i∈I

H(Zi)

≤ b(N − 1)

N

∑
i∈I

log |Z|

= b(N − 1) log |Z|
(16)

Furthermore, we assign the weighting factor αi = αj =
1
N ,∀i, j ∈ I for each client and we define

the average participation gap as,
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Definition 4 (Averaged generalization gap between distributed and centralized training).

1

N

∣∣∣EZI

[ 1

N

∑
i∈I

ℓ(ĥ, Zi) log
( 1

PZI

)]
− 1

N

∑
i∈I

EZi

[
ℓ(ĥ, Zi) log

( 1

PZi

)]∣∣∣
Remark 4. This definition represents the average generalization gap between distributed and central-
ized training for each participating clients.
Theorem 4. Assume the entropy rate H(Z) = limN→∞

1
NH(ZI) of stochastic process {Zi}i∈I

exists. Let the weighting factor αi be 1
N for each client, we have,

lim
N→∞

1

N

∣∣∣E[∑
i∈I

ℓ(ĥ, Zi)

N
log

1

PZI

]
− 1

N

∑
i∈I

E
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣ ≤ bH(Z) (17)

Remark 5. Theorem 4 indicates that if the entropy rate H(Z) of {Zi}i∈I exists, it can serve as an
upper bound for the average generalization gap defined above, which essentially represent that the
average information rate or average uncertainty associated with the considered stochastic process
{Zi}i∈I influences the generalization performance of FL.

Proof. Following the proof of Theorem 3, we can have,

1

N

∣∣∣E[∑
i∈I

ℓ(ĥ, Zi)

N
log

1

PZI

]
− 1

N

∑
i∈I

E
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣ ≤ b

N
[H(ZI)− 1

N

∑
i∈I

H(Zi)]

≤ b

N
[H(ZI)− 1

N
H(ZI)]

=
bH(ZI)

N
− 1

N

bH(ZI)

N
(18)

Since the limit limN→∞
H(ZI)

N exists and it is denoted by H(Z), then we can have,

lim
n→∞

1

N

∣∣∣E[∑
i∈I

ℓ(ĥ, Zi)

N
log

1

PZI

]
− 1

N

∑
i∈I

E
[
ℓ(ĥ, Zi) log

1

PZi

]∣∣∣ ≤ lim
N→∞

{bH(ZI)

N
− 1

N

bH(ZI)

N
}

= bH(Z)
(19)

C DETAILS OF METHODS

C.1 EMPIRICAL ENTROPY-BASED WEIGHTING

Recall that this paper only focuses on the label distribution skew scenario for verifying the proposed
empirical entropy-based weighting method. In other words, the aggregation weighting factor can be
designed as follows:

αi =
exp (Ĥi)∑

i∈Ip
exp (Ĥi)

. (20)

where Ĥi = −
∑

y∈Y

∑
j I

y=yi
j

ni
log

∑
j I

y=yi
j

ni
, yij is the label of j-th sample of local dataset Si of

client i and I denotes the indicator function.

The detailed workflow of the proposed empirical entropy-based weighting method is introduced as
follows. Before the start of FL, each participating client is required to calculate the empirical entropy
in equation 20 based on its local dataset and further uploads the empirical entropy to the server. The
server can thus assign the aggregating weighting factors for all the clients rooted on the received
empirical entropy prior to the first round of FL.

Privacy Computations and Communication Costs: Privacy computation techniques can be be
integrated into the proposed methods: clients upload the empirical entropy of local data sources via
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homomorphic encryption or secure multi-party computation with low computation overhead since the
empirical entropy is a scalar value. We assume that data sources of participating clients are stationary
during the whole FL process and hence clients only need to upload the empirical entropy to the server
before FL starts only for one time, which can reduce the communication cost.

C.2 GRADIENT SIMILARITY-BASED CLIENT SELECTION

Recall that the workflow of the client selection stage discussed in this paper. In general, the server
iterates through the following steps in each round of FL:

• (Update the gradient table): After updating the global model based on local gradients
uploaded by clients i,∀i ∈ It following the update rule of wt+1 ← wt −

∑
i∈It

αig
i
t, the

server updates and maintains a table that stores the latest local gradients uploaded by the
clients selected in each round. More specifically, the server performs the following actions:
gi
s ← gi

t,∀i ∈ It and gi
s ← gi

s,∀i ∈ Ip \ It to maintain the table {gi
s}i∈IP

.
• (Execute the selection algorithm): The server applies the client selection algorithms

described below, utilizing the local gradients stored in the gradient table {gi
s}i∈Ip in order

to determine the clients It+1 to participate in the next round of FL.

We then describe the detail procedures of two client selection methods proposed in this paper.

C.2.1 MINIMAX GRADIENT SIMILARITY-BASED CLIENT SELECTION

We now provide the formal procedure of the proposed Minimax gradient similarity-based client
selection in the following:

• (Constructing the similarity set): First, we develop a "similarity set" Si for each stored
gradients gi

s,∀i ∈ Ip. This "similarity set" Si of i-th stored gradients gi
s contains the cosine

similarities Si,j =
<gi

s,g
j
s>

∥gi
s∥∥g

j
s∥

between gi
s and all the other stored gradients gj

s,∀j ̸= i, j ∈ Ip,

i.e., Si = {Si,j}j∈Ip,j ̸=i.
• (Calculating the maximum similarity): Next, the server builds another set Smax to store

the maximum similarity max
Si,j

Si in each Si,∀i ∈ Ip while this maximum similarity measures

the degree of the similarity between one data source i and other data sources.
• (Selecting clients with the smallest maximum similarity ): In the final step, the server

determines the clients whose maximum similarity max
Si,j

Si is the smallest in the maximum

similarity set Smax.

The fundamental idea behind the aforementioned operations is to identify data sources that are
“distant” from other data sources, thereby approximately achieving the objective stated in equation 11.

C.2.2 CONVEX HULL CONSTRUCTION-BASED CLIENT SELECTION

Prior to delving into the specifics of the client selection method based on convex hull construction,
we will begin by providing the definition of the convex hull. The convex hull of a set C, denoted as
convC, refers to the set of all convex combinations of points in C (Boyd and Vandenberghe, 2004):

convC := {λ1x1 + λ1x2 + ...+ λnxn : xi ∈ C, λi ≥ 0, i = 1, 2, ..., n,

n∑
i=1

λi = 1}. (21)

Notice that the convex hull of point set C represents the smallest convex set that encompasses all the
points in C. The definition of the convex hull is visually depicted in Fig. 2.

The core idea of the proposed convex hull construction-based client selection is to identify the vertices
of the convex hull formed by the stored gradients in the server’s table. Subsequently, the clients
whose gradients are located at these vertices of the constructed convex hull are selected.

The formal work process of the proposed convex hull construction-based client selection is outlined
as follows. a) The server initiates the execution of the quickhull algorithm proposed in Barber et al.
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Figure 2: The convex hull of a point set in R2. The convex hull of a point set of 15 points is the
pentagon (shown shaded).

(1996) to construct the convex hull of the local gradients stored in the gradient table {gi
s}i∈Ip

. b)
Once the vertices of the considered point set, which comprises all the gradients stored in {gi

s}i∈Ip

are identified, the server proceeds to select the corresponding clients whose gradients are located on
these discovered vertices. These selected clients are then required to participate in the subsequent
round of FL.

Intuitively, the distances between points located on the vertices of the convex hull and all other
points tend to be larger. This observation served as inspiration for our client selection method.
Local gradients generated by possible unparticipating clients can be considered as "random points"
occurring within or around a given point set. By utilizing the vertices of the convex hull, we can more
effectively "cover" these "random points", providing a geometric perspective to further explain our
method.

From an alternative interpretation, any points in a point set C can be linearly represented by the
convex hull convC, which is the smallest convex set contains C. This implies that only the gradients
located on the vertices of the constructed convex hull can linearly represent gradients of the entire set.
In other words, the data sources generating gradients located on the vertices of the convex hull can
effectively represent other data sources, thereby reducing the intrinsic information redundancy in FL.

D EXPERIMENTAL DETAILS

In this section, we fill in the details of the numerical experiments in Section 5. The convergence
analysis of different weighting aggregation methods and client selection methods is carried out in the
following.

D.1 CONVERGENCE ANALYSIS OF WEIGHTING AGGREGATION METHODS

We first perform the convergence analysis on weighting aggregation methods for EMNIST-10 and
CIFAR-10. The label distribution skew of FL is considered in this part. More specifically, we split the
total training set into different clients via the Dirichlet distribution spitting. The splitting parameter α
of the Dirichlet distribution is set as 0.1 and 0.05 for EMNIST-10 and CIFAR-10 respectively.

The convergence behavior of the proposed empirical entropy-based weighting method compared
with other baselines for EMNIST-10 and CIFAR-10 is presented in Figure 3. For EMNIST-10, the
proposed empirical entropy-based weighting method converges faster than the other two baselines
and it also maintains the highest OOD test accuracy among these weighting methods after about 20-th
communication round. For CIFAR-10, both the proposed empirical entropy-based weighting method
and equality weighting method converge faster than the data size-based weighting method while the
proposed weighting method converges more stably than other baselines. The above results show that
giving higher aggregation weights to local gradients trained on data sources with greater information
entropy will improve the generalization performance of the global model, which is matched with our
theoretical basis in Theorem 1 comprehensively.
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Figure 3: The convergence analysis on OOD test accuracy of empirical entropy weighting method
compared with other weighting aggregation methods on EMNIST-10 and CIFAR-10.

D.2 CONVERGENCE ANALYSIS OF CLIENT SELECTION METHODS

We then compare the convergence behavior of different client selection methods for the three datasets
mentioned in Section 5. For EMNIST-10 and CIFAR-10, we still split the total training set via the
Dirichlet distribution spitting. The splitting parameter α of the Dirichlet distribution is set as 0.5
and 0.1 for EMNIST-10 and CIFAR-10 respectively in this part. As mentioned in Section 5, for the
Shakespeare dataset, each speaking role in each play is set as a local dataset.

We now focus on the convergence performance of the two proposed client selection methods in
comparison with full sampling, power-of-choice selection, random selection and other proposed
baselines for EMNIST-10 and Shakespeare in Figure 4.
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Figure 4: The convergence analysis on OOD test accuracy of two proposed client selection methods
compared with random selection and other proposed baselines on Shakespeare and EMNIST-10.

For the Shakespeare dataset, we can find that the two proposed client selection methods (Minimax
gradient similarity-based selection and convex hull construction-based selection) almost converge at
the same rate and converge faster than full sampling, power-of choice selection, random selection
and other baselines. For EMNIST-10, the Minimax gradient similarity-based selection can achieve
the highest OOD test accuracy among all the client selection methods. In addition, it can be found
that the full sampling scheme converges fastest and the most stably.

For Shakespeare and EMNIST-10 dataset, the reason why full sampling scheme achieves worse
OOD test accuracy than the proposed selection methods may be that the randomness induced by the
selection will even improve the out-of-distribution performance of the global model. From another
perspective, the nature of the proposed methods is to "compress" the information from participating
data sources, i.e., removing the redundant information from some data sources making contribution
to OOD generalization less.

Besides, we also carry out experiments on the CIFAR-10 dataset for evaluating the convergence
performance of the two proposed client selection methods and other baselines. The results in Figure 5
show that the two proposed client selection methods converge faster than their ablation baselines
and random selection. And the two proposed methods converge more stably than power-of-choice
selection. It indicates that selecting clients with more dissimilar local gradients and selecting clients
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with local gradients in the convex hull not in the interior will both improve the generalization
performance of the global model. According to Assumption 3 about the relationship between
the gradient dissimilarity and the distribution discrepancy, we can get the following conclusion
immediately: selecting clients with more diverse local distributions will improve the generalization
performance of FL.
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(b) CIFAR-10, comparison experiment with Power-
of-Choice selection
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(c) CIFAR-10, comparison experiment with Ran-
dom selection
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(d) CIFAR-10, ablation study of Convex hull selec-
tion

0 25 50 75 100 125 150 175 200
Communication Round

0.10

0.15

0.20

0.25

0.30

0.35

OO
D 

Te
st

 A
CC

CIFAR-10 Dirichlet alpha=0.1

MinMaxSim
MaxSim

(e) CIFAR-10, ablation study of MinimaxSim selec-
tion

Figure 5: The convergence analysis on OOD test accuracy of two proposed client selection methods
in comparison with Full sampling, Power-of-choice selection, random selection respectively and their
ablation studies respectively.

On the other hand, the reason why the full sampling scheme performs more stably than all the client
selection methods for CIFAR-10 is that training a model performing well on unseen distributions for
CIFAR-10 is the most difficult among three tasks hence more participating clients will generalize the
global model to unseen data source better.

26


	Introduction
	Related Work
	Theoretical Framework
	Preliminaries
	Federated Generalization

	Methods
	Maximum Entropy Aggregation
	Gradient similarity-based client selection 
	Minimax gradient similarity-based client selection 
	Convex hull construction-based client selection


	Experiment
	Conclusion
	Proof of theorems in federated generalization
	 Proof of Theorem 1
	Proof of Theorem 2

	Generalization analysis of In-distribution scenario
	Details of Methods
	Empirical entropy-based weighting
	Gradient similarity-based Client selection
	Minimax gradient similarity-based client selection 
	Convex hull construction-based client selection


	Experimental Details
	Convergence Analysis of weighting aggregation methods
	Convergence Analysis of client selection methods


