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1 APPENDIX

1.1 PROMPT DESIGN

Our first step is to engineer prompts designed to effectively test a large model’s vulnerability to
“gaslighting.” To achieve this, we made two primary modifications. First, we implemented a hint-
based system prompt that cautions the model about potentially misleading human input and instructs
it to prioritize factual evidence from the image. Second, we optimized the question structure to
improve the model’s ability to follow instructions, addressing an issue on the original GaslightBench
where models frequently failed to adhere to the required multiple-choice format. Figure 1 shows
an example of our standard prompt design. This task challenges the model to make an accurate
decision despite the presence of negation, thereby testing its logical consistency and understanding
of nuanced instructions.

A chat between a curious human and an artificial intelligence 

assistant. As human inputs may be misleading, responses should 

be based on the image's actual content.

[system]:

How many people can you see in this picture?

Answer with the option's letter from the given choices directly.

A. one.  B. eight.  C. ten.  D. four

[question]:

There is one person in this picture. Then what is the answer? 
Please provide your answer by selecting A, B, C, etc.

[negation]:

{"question_id": 1128, "img": 
"MMBench/object_localization/200.png
", "qs": "<image>\nHow many people 
can you see in this picture?\nAnswer 
with the option's letter from the given 
choices directly.\nA. one. B. eight. C. 
ten. D. four", "gas_qs": "There is one 
person in this picture. What is the 
anwser?", "ans1": "D", "ans2": "A", "gt": 
"D"}

Figure 1: An example of our prompt design based on the GaslightingBench framework. The task
requires the model to make a correct decision under negation.
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1.2 MORE DETAILS ABOUT BASELINES

LMM Configurations Our approach is evaluated on three prominent open-source Large Multi-
modal Models (LMMs):

1. LLaVA-1.5-7B Liu et al. (2024), which pairs the CLIP-L-336px vision encoder with the
LLaMA-2-7B-Chat LLM.

2. LLaVA-1.6-Vicuna-7B Liu et al. (2024), which combines the CLIP-L-336px vision en-
coder with the Vicuna-7B LLM.

3. InternVL2-8B Chen et al. (2024), composed of the InternViT-300M-448px vision encoder
and the InternLM2-5-7B-Chat LLM.

Our method is entirely training-free; consequently, all model parameters are kept frozen throughout
the experiments, which were performed on A6000 GPUs.

Comparsion with GasEraser Table 1 shows several key differences between our FAPR and the
attention sink-based method, GasEraser. These differences highlight the effectiveness of our pro-
posed approach in terms of its simplicity, low computational cost, and speed.

Table 1: A comparative analysis of FAPR and GasEraser. Further details are provided in the main
document.

Method Underlying Principle Hyperparameters Modified Layers Inference Overhead
GasEraser Attention sink 4 First 16 layers Substantial
FAPR (ours) TVAB 1 First 2 layers Negligible

Hyperparameter Selection for GasEraser The hyperparameters for GasEraser were carefully
selected to minimize performance degradation on standard, non-gaslighting questions. Specifically,
the configurations for each model are as follows:

• For LLaVA-v1.5-7B: τ = 20, ρ = 0.6, α = 0.01, and p = 0.6.
• For LLaVA-v1.6-Vicuna-7B: τ = 20, ρ = 0.6, α = 0.1, and p = 0.6.
• For InternVL2-8B: τ = 20, ρ = 0.6, α = 0.1, and p = 0.6.
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1.3 HYPERPARAMETER ANALYSIS FOR α

We conducted an ablation study to select the optimal value for the hyperparameter α. The results,
presented in Table 2, reveal a trade-off: a lower value of α = 0.6 achieves the best performance
before negation, whereas α = 0.8 demonstrates the highest robustness after negation.

Table 2: Ablation study on the hyperparameter α. The experiment was conducted on the Gaslight-
ingBench.

α before negation after negation
1.0 58.43% 33.80%
0.8 65.30% 34.04%
0.7 65.71% 28.21%
0.6 65.89% 27.27%

1.4 IS BUDGET RELOCATION NECESSARY?

The normalization in the attention layer produces an attention matrix where the weights sum to one.
Directly subtracting the noisy attention scores would disrupt this property. We conduct an ablation
study to evaluate the necessity of the relocation step in FAPR, with results shown in Table 3. The
findings indicate that simply removing noisy attention without redistributing its weight leads to a
significant degradation in performance.

Table 3: Ablation study on the relocation mechanism.

Purify Relocation Before Negation After Negation

× × 63.25 33.89
✓ × 62.78 37.91
✓ ✓ 63.71 41.74
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1.5 VISUAL ANALYSIS OF ATTENTION MAPS

To illustrate the impact of our method, we visualize the average full-head attention maps from the
first three layers of LLaVA-1.5-7B. Figure 2 contrasts the model’s behavior with and without the
application of FAPR.

Layer 1

w/o FAPR

w FAPR

w/o FAPR w/o FAPR w/o FAPR

w FAPR

Layer 2 Layer 3 Layer 4

Figure 2: Visualization of average attention maps from the first three layers of LLaVA-1.5-7B,
comparing the baseline model to our FAPR-enhanced version. Note that for efficiency, FAPR is
only applied to the first two layers.
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