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ABSTRACT

Large language models (LLMs), like ChatGPT, have shown that even trained with
noisy prior data, they can generalize effectively to new tasks through in-context
learning (ICL) and pre-training techniques. Motivated by this, we explore whether
a similar approach can be applied to scientific foundation models (SFMs) for solv-
ing PDEs. Our methodology is structured as follows: (i) we collect low-cost
physics-informed neural network (PINN)-based approximated prior data in the
form of solutions to partial differential equations (PDEs) constructed through an
arbitrary linear combination of mathematical dictionaries; (ii) we utilize Trans-
former architectures with self and cross-attention mechanisms to predict PDE so-
lutions without knowledge of the governing equations in a zero-shot setting; (iii)
we provide experimental evidence on the one-dimensional convection-diffusion-
reaction equation, which demonstrate that pre-training remains robust even with
approximated prior data, with only marginal impacts on test accuracy. Notably,
this finding opens the path to pre-training SFMs with realistic, low-cost data in-
stead of (or in conjunction with) numerical high-cost data. These results support
the conjecture that SFMs can improve in a manner similar to LLMs where fully
cleaning the vast set of sentences crawled from the Internet is nearly impossible.

1 INTRODUCTION

In developing large-scale models, one fundamental challenge is the inherent noisiness of the data
used for training. Whether dealing with natural language, scientific data, or other domains, large
datasets almost inevitably contain noise. Large language models (LLMs), such as ChatGPT, present
an interesting paradox: despite being trained on noisy datasets, they consistently produce remarkably
clean and coherent output. This observation raises an important question for the development of
scientific foundation models (SFMs): Can an SFM, like an LLM, learn from noisy data and still
generate accurate, dynamic results for solving PDEs, one essential task of sciences?

Figure 1: An end-to-end schematic diagram of our model. Our model performs in-context learn-
ing based on the given observations (i.e., context) to infer the solution. Even when trained with
noisy PINN-prior, our model can obtain clean solutions due to its Bayesian inference capability.
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In recent years, LLMs have revolutionized the field of natural language processing by introducing
highly flexible and scalable architectures (Brown et al., 2020; Kaplan et al., 2020; Touvron et al.,
2023; Frieder et al., 2023; Chowdhery et al., 2023). Notably, the in-context learning (ICL) paradigm
has demonstrated powerful generalization capabilities, enabling LLMs to adapt to new tasks with-
out explicit fine-tuning (Brown et al., 2020; Radford et al., 2019; Dai et al., 2023; Gruver et al.,
2023). This success has motivated the application of such foundation models across a variety of do-
mains (Xu et al., 2024; Xie et al., 2024; Yang et al., 2023a). Scientific machine learning (SciML) is
one such emerging domain which merges physics-based models with machine learning methodolo-
gies (Raissi et al., 2019; Willard et al., 2022; Subramanian et al., 2023; Kim et al., 2024; 2023; Choi
et al., 2024). SciML aims to leverage the power of machine learning to solve complex scientific
problems, including those governed by partial differential equations (PDEs). Recent efforts in this
direction have led to the development of foundation models specifically designed for scientific tasks,
called SFMs (Yang et al., 2023b; Xie et al., 2024; Yang et al., 2023a; Moor et al., 2023; Bodnar et al.,
2024; Herde et al., 2024). These models aim to generalize across a wide range of scientific prob-
lems using prior data, much like how LLMs generalize across various language tasks. For example,
the versatility of in-context operator networks (ICONs), as illustrated in studies like Yang & Osher
(2024) and Yang et al. (2023b), underscores their generalization capabilities in various PDE-related
tasks, particularly in the context of few-shot learning. Moreover, the integration of in-context op-
erator learning into multi-modal frameworks, as demonstrated by ICON-LM (Yang et al., 2023c),
has pushed the boundaries of traditional models by combining natural language with mathemati-
cal equations. Additionally, several other studies have focused on solving a family of PDEs with
a single trained model (Cho et al., 2024). However, all these studies are limited in their ability to
fully harness the capabilities of large foundation models. Our methodology, called Massive prior
Data-assisted AI-based Scientist (MaD-Scientist), addresses these limitations and offers significant
advantages in the following four aspects.

No prior knowledge of physical laws Our goal is to predict solutions from observed quantities,
such as velocity and pressure, without relying on governing equations, a common challenge in many
real-world scenarios (Lee & Cant, 2024; Nicolaou et al., 2023; Rouf et al., 2021; Beck & Kurz, 2021;
Chien et al., 2012). In complex systems, such as those governing semiconductor manufacturing, the
exact governing equations are often unknown and may change over time (Chien et al., 2012; Quirk
& Serda, 2001). Therefore, excluding these equations from the model input is a strategic choice
aimed at enhancing the applicability of our method across various domains.

Zero-shot inference Our goal is to achieve zero-shot inference for predicting PDE solutions. For
instance, ICON-LM requires few-shot “demos”1 for an unknown target operator before making pre-
dictions. In contrast, our foundation model eliminates the need for such demos, as collecting them
implies that inference cannot occur until these few-shot examples are available; see e.g., Figure 1.
Our approach is designed to enable immediate inference as soon as the model is queried.

Bayesian inference We incorporate Bayesian inference into the prediction process by leveraging
prior knowledge obtained from numerical solutions in PDE dictionaries. This approach allows the
model to make more accurate and well-informed predictions by defining a prior distribution over un-
seen PDE coefficients. During training, the model learns to capture relationships among known data
points using self-attention mechanisms, while cross-attention enables it to extrapolate and infer solu-
tions for new, unseen points. When tested, the model utilizes this prior data to generalize effectively
to novel data points, achieving zero-shot predictions without the need for additional fine-tuning.

Approximated prior data For LLMs, one of the most challenging steps is collecting prior data,
which typically involves crawling and cleaning sentences from the Internet. However, this process is
far from perfect due to two key issues: (i) the Internet, as a data source, is inherently unreliable; (ii)
cleaning such vast amounts of data requires significant manual effort. Consequently, LLMs are often
trained on incomplete or imperfect prior data. Remarkably, this realistic yet critical issue has been
largely overlooked in the literature on SFMs, despite their similarities to LLMs. For example, when
generating data using numerical solvers for PDEs without known analytical solutions, numerical
errors inevitably arise, manifesting as a form of measurement noise — for this, we conducted pre-

1In ICON and ICON-LM, a demo means a set of (input, output) pairs of an operator to infer.
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liminary experiments for training SFMs with noisy data in Appendix G, which shows the possibility
of training SFMs with data inexact to some degree.

Moreover, numerical solvers running on large-scale servers are frequently expensive and time-
consuming and they are typically optimized towards certain types of PDEs, e.g., the finite-difference
time-domain (FDTD) method for Maxwell’s equations. In this work, we are the first to explore the
potential of pre-training SFMs with PINN-based low-cost/noisy/approximated data.

CDR Study For our empirical studies, we use a family of the convection-diffusion-reaction (CDR)
equation with various types of reaction, which serves as a paradigm problem representing generic
elliptic equations. By solving the CDR equation, our approach can be extended to a wide range
of other problems. We compare our method with two state-of-the-art machine learning techniques
for solving parameterized PDEs. Additionally, we introduce three different types of noise into the
numerical solutions of the CDR equation. Our approach not only outperforms the two baseline
methods but also demonstrates stable performance, even when noise is added to the prior data during
pre-training.

2 BACKGROUND

Consider a sequence of pairs (X1, Y1), (X2, Y2), . . ., each within the measurable space (X ×Y,A),
where Xi represents the spatiotemporal coordinate, Yi denotes the corresponding solution in this
paper’s context and A denotes the Borel σ-algebra on the measurable space X × Y . For simplicity,
we adopt this notation in this section. These pairs are drawn from a family of probability density
distributions {pq : q ∈ Q}, commonly referred to as the statistical model, where Q represents
the parameter space equipped with a σ-algebra B ensuring that the mappings q 7→ pq(x, y) are
measurable. The true underlying density function π is a member of Q, and the pairs (Xi, Yi) are
sampled according to pπ . Lacking information about π, we adopt a Bayesian framework to establish
a prior distribution Π which is defined as probability measure on (Q,B). Then we have, for any
measurable set A ∈ B,

Π(A | X,Y ) =

∫
A
pq(X,Y )dΠ(q)∫

Q pq(X,Y )dΠ(q)
. (1)

Let us adopt the notation pq = q. This prior is updated with the observed data to form the posterior
distribution, which is defined as

Π(A | Dn) =

∫
A
Ln(q)dΠ(q)∫

Q Ln(q)dΠ(q)
, (2)

where Ln(q) =
∏n

i=1
q(Xi,Yi)
π(Xi,Yi)

for A ⊂ Q and Dn = {(Xi, Yi)}ni=1. The resulting posterior density
is

qn(X,Y | Dn) =

∫
Q
q(X,Y )dΠ(q | Dn), (3)

and the posterior predictive distribution (PPD) is formulated as

π(y | x,Dn) =

∫
Q
q(y | x) dΠ(q | Dn). (4)

The behavior of Dn plays a crucial role in this formulation. As noted by Walker (2004b;a); Blasi &
Walker (2013); Walker (2003); Nagler (2023), for a well-behaved prior, the PPD converges toward
π as n increases. This aligns with findings in Blasi & Walker (2013), demonstrating that in well-
specified scenarios, strong consistency is achieved as

Πn ({q : H(π, q) > ϵ}) → 0 almost surely, (5)

for any ϵ > 0, where Πn(A) =
∫
A
dΠ(q | Dn) is the posterior measure and H is the Hellinger

distance defined by

H(p, q) =

(∫
X×Y

(
√
p−√

q)2
)1/2

.
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Theorem 2.1. Suppose that for any ϵ > 0, there exists a Transformer parameterized by θ̂ such that

Ex

[
KL

(
pθ̂(· | x,Dn), π(· | x,Dn)

)]
< ϵ,

for any realization of Dn. If the posterior consistency condition equation 5 holds, and for any q ∈ Q,
q(x) = π(x) almost everywhere on X , then the following holds almost surely (see Appendix A for
proof):

Ex

[
H

(
pθ̂(· | x,Dn), π(· | x)

)] n→∞−−−−→ 0.

This result demonstrates sensitivity of the neural network’s posterior distribution approximation to
the data size Dn. As the data size increases, the network becomes increasingly sensitive to the
posterior distribution, converging to the expected value under the prior distribution. This sensitivity
to the data reflects the consistency and robustness of the Bayesian inference process.

Our model leverages this observation by performing Bayesian inference that incorporates prior data,
allowing it to infer spatiotemporal points that align with an appropriate partial differential equa-
tion (PDE) solution under given spatiotemporal conditions. Experimental results in (Appendix M)
confirm this behavior, showing how, as Dn increases, the network’s solution converges to the true
underlying solution.

3 METHODS

Suppose the dataset D = {(Xi, Ti, Yi)}ni=1 is independently and identically distributed (i.i.d.)
and sampled from a distribution qα, where α is the parameter vector representing the coefficients
governing the PDE dynamics, including convection, diffusion, and reaction terms. Specifically,
Yi ∼ u(Xi, Ti | α) + noise, where the noise represents the difference between the PINN-predicted
solution ũ(α) and the true solution u(α). The PPD of the solutions given the dataset can be ex-
pressed as

q(y | x, t,D) =

∫
H

qα(y | x, t) dΠ(qα | D), (6)

which represents the likelihood distribution of y given D, capturing the most probable solution
distribution for the given parameter α. In this work, we aim to predict the solution from D by
minimizing the mean squared error (MSE) between the PPD-derived solution and the true solution,
even in the presence of noise. This requires constructing a prior over the PDE solution space, which
is detailed next.

Benchmark PDE The following one-dimensional convection-diffusion-reaction (CDR) equation
is used for the benchmark PDE,

1D CDR: ut + βux − νuxx − ρf(u) = 0, x ∈ [0, 2π], t ∈ [0, 1], (7)

where f : R → R is a reaction term such as Fisher, Allen-Cahn and Zeldovich. This equation
consists of three key terms with distinct properties: convective, diffusive, and reactive, making it an
ideal benchmark problem. It is commonly used in the PINN literature due to the diverse dynamics
introduced by its three parameters: β, ν, and ρ, which include various failure modes (Krishnapriyan
et al., 2021). To our knowledge, however, our work is the first predicting all those different reaction
terms with a single model.

In this paper, we use the following dictionary of CDR-related terms, incorporating a linear combi-
nation of J nonlinear reaction terms, for generating prior data.

ut = N (·), N (t, x, u, β, ν, ρ1, · · · , ρJ) = −βux + νuxx +

J∑
j=1

ρjfj(u), (8)

where each fj represents specific reaction term. This expansion allows for the introduction of diverse
reaction dynamics. One can solve CDR equations with numerical solvers. In this work, however,
we are interested in building low-cost PINN-based prior data. In the future, one may need to build
prior data for not only CDR but also many other equations for which none of analytical/numerical
solutions are obtainable in a low-cost manner, e.g., Naiver-Stokes equations. We think our PINN-
based prior data will play a crucial role in such a case.

4
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Figure 2: A schematic diagram of Transformer. (Left) The Transformer ũθ takes prior of solution-
known D and querying task T drawn from the prior distribution D and infers solutions of the queried
points in the training phase. ICL is leveraged with a self-attention among D (blue rods) and a cross-
attention from T (red rods) to D. (Right) In the testing phase, ũθ takes an input of unseen data D̃

and T̃ drawn from the ground truth distribution U , and the model predicts the queried points T̃ .

PINN-Prior of PDE Solution Space To approximate the solution space for PDEs, we construct a
parameter space, Ω, which is the collection of coefficients in equation 8:

Ω = {α := (β, ν, ρ1, · · · , ρJ)}, (9)

which has a dictionary form. Consequently, the target exact prior U represents the collection of
solutions u(α) at equation 8 for each parameter α ∈ Ω, where X and T correspond to the spatial
and temporal domains of interest, respectively

U =
⋃
α∈Ω

{u(α) |ut = N (t, x, u, α)}, U : X × T → R. (10)

Since the target exact prior data U is hard to obtain, we instead use a PINN-prior D that closely
approximates U as follows. Suppose ũ(α) is the prediction by PINN (Appendix E) which is trained
to predict the PDE ut = N (·). The PINN-prior D is a collection of approximated solutions ũ(α)
for each α ∈ Ω,

D =
⋃
α∈Ω

{ũ(α)}, p(D) ∼ p(U). (11)

Subsequently, the model learns the PPD of the generated prior p(D) through ICL.

Training From a given parameter space Ω, the parameter α is randomly drawn i.i.d. from Ω. This
method is adopted from meta learning (Finn et al., 2017) which optimizes the model parameter to
adapt to various tasks, in our case the prediction over wide prior space D expressed as a dictionary
over α. After that, the previous ũ(α) is then given as an input to Transformer ũθ to minimize
the mean square error (MSE) at the predicted points, see equation 12. The MSE loss criterion is
proposed as the Transformer’s task is to perform regression of the solution over the spatial and
temporal domain for given ũ(α),

Lα =
1

NT

NT∑
j=1

[
ũθ(x

(j)
T , t

(j)
T | D)− ũ(x

(j)
T , t

(j)
T )

]2
. (12)
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Table 1: Major comparisons between Hyper-LR-PINN, P2INN, and our model. While both Hyper-
LR-PINN and P2INN require the knowledge of governing equation, our model only needs observed
quantities. The notations used in the table are fully aligned with those in Figure 2.

Properties Hyper-LR-PINN P2INN Ours

Target function u(x, t;α ∈ Ω) u(x, t;α ∈ Ω) u(x, t)|D
Governing equation N (·) given ✓ ✓ ✗

Train dataset D ∪ T ∪ D̃ D ∪ T ∪ D̃ D ∪ T

Test dataset T̃ T̃ D̃ ∪ T̃

Dataset with a solution None None D,T, D̃

Evaluation To illustrate the model’s zero-shot learning capability in scenarios commonly encoun-
tered in practical applications, we assess the model’s performance using data D̃ sampled i.i.d. from
U , not overlapping with the training set D∪T . For evaluation, we employ both L1 absolute and rela-
tive L2 errors between the model’s predicted solutions for test queries and the numerically computed
ground truth. Errors are then averaged over the target parameter space Ω used during training.

4 EXPERIMENTS

Our experiment section is divided into two phases: in the first phase, we conduct a focused study
with the basic reaction term, Fisher, to understand the base characteristics of SFMs, and in the
second phase we conduct comprehensive studies with various reaction terms.

4.1 EXPERIMENTAL SETUP

Baseline methods We compare our model with 2 baselines: Hyper-LR-PINN (Cho et al., 2023)
and P2INN without fine tuning (Cho et al., 2024). Both models are parametrized PINNs designed to
learn parameterized PDEs. Hyper-LR-PINN emphasizes a low-rank architecture with a parameter
hypernetwork, while P2INN focuses on a parameter-encoding scheme based on the latent space of
the parameterized PDEs.

Following this, as shown in Figure 2, the model takes D∪T ∼ p(D) in training phase and D̃∪ T̃ ∼
p(U) in testing phase. In addition, the dataset D∪T requires the prior ũ, and D̃ requires the solution
u. For a fair comparison, we use D, T , and D̃ as the training dataset for both Hyper-LR-PINN and
P2INN. Notably, while Hyper-LR-PINN and P2INN do not rely on solution points during training
and testing, our model operates without any knowledge of the governing equation N (·). This setup
ensures a valid and balanced comparison (Table 1). The additional comparison details are elaborated
in Appendix C, providing further insights into the distinctions between these models.

Training algorithm The concrete flow of training phase is described in Algorithm at Appendix F.

4.2 FOCUSED STUDY TO BETTER UNDERSTAND SFMS’ BASE CHARACTERISTICS

In this section, we employ six different dynamics derived from the 1D CDR equation with a Fisher
reaction term, ut + βux − νuxx − ρu(1− u) = 0 (Appendix ??). We begin with an in-depth study
using the Fisher reaction term, chosen for its simplicity among the reaction terms, which has been
extensively studied in population dynamics (Al-Khaled, 2001). This allows us to better understand
the core characteristics of the SFM, facilitating a more effective analysis of the model’s behavior.

4.2.1 TIME DOMAIN INTERPOLATION FOR SEEN PDE PARAMETERS WITH A NUMERICAL
PRIOR

We first verify the ICL capability of Transformer with a numerical prior, i.e., ũ(α) equals to
the solution u of the PDE ut = N (t, u, x, α), before we dive into using a PINN prior. For
each equation, we set the parameter space Ω with three different coefficient (β, ν, ρ) range:
([1, 5] ∩ Z)m , ([1, 10] ∩ Z)m, and ([1, 20] ∩ Z)m, where m is the number of nonzero coefficients.

6
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Table 2: The L1 absolute and L2 relative errors over the 1D-CDR equation using a numerical prior.
P2INN is tested without fine-tuning, and *-marked cases are evaluated with a reduced number of
parameters due to the extensive computational requirements.

System Coefficient range Hyper-LR-PINN P2INN Ours
Abs.err Rel.err Abs.err Rel.err Abs.err Rel.err

Convection
β ∈ [1, 5] ∩ Z 0.0104 0.0119 0.0741 0.1020 0.0192 0.0184
β ∈ [1, 10] ∩ Z 0.0172 0.0189 0.1636 0.1801 0.0250 0.0251
β ∈ [1, 20] ∩ Z 0.0340 0.0368 0.2742 0.2743 0.0764 0.0864

Diffusion
ν ∈ [1, 5] ∩ Z 0.0429 0.0570 0.3201 0.3652 0.0096 0.0120
ν ∈ [1, 10] ∩ Z 0.0220 0.0282 0.3550 0.4029 0.0108 0.0137
ν ∈ [1, 20] ∩ Z 0.1722 0.1991 0.4553 0.5166 0.0095 0.0134

Reaction
ρ ∈ [1, 5] ∩ Z 0.0124 0.0428 0.0109 0.0354 0.0102 0.0154
ρ ∈ [1, 10] ∩ Z 0.2955 0.3562 0.0192 0.0708 0.0129 0.0202
ρ ∈ [1, 20] ∩ Z 0.7111 0.7650 0.1490 0.2915 0.0160 0.0322

Convection-Diffusion
β, ν ∈ [1, 5] ∩ Z 0.0046 0.0055 0.1329 0.1554 0.0195 0.0231
β, ν ∈ [1, 10] ∩ Z 0.0268 0.0295 0.1609 0.1815 0.0211 0.0274
β, ν ∈ [1, 20] ∩ Z *0.1487 *0.1629 0.1892 0.2044 0.0226 0.0305

Reaction-Diffusion
ν, ρ ∈ [1, 5] ∩ Z 0.0817 0.1160 0.0579 0.1346 0.0139 0.0189
ν, ρ ∈ [1, 10] ∩ Z 0.0317 0.0446 0.4398 0.5457 0.0122 0.0189
ν, ρ ∈ [1, 20] ∩ Z *0.3228 *0.3844 0.1513 0.2955 0.0165 0.0331

Convection-Diffusion-Reaction
β, ν, ρ ∈ [1, 5] ∩ Z 0.0231 0.0307 0.0418 0.0595 0.0143 0.0209
β, ν, ρ ∈ [1, 10] ∩ Z *0.3135 *0.3732 0.0367 0.0624 0.0276 0.0411
β, ν, ρ ∈ [1, 20] ∩ Z *0.9775 *0.9958 0.0446 0.1211 0.0159 0.0310

Statistics Average 0.1805 0.2033 0.1709 0.2222 0.0196 0.0267
Standard Deviation 0.2581 0.2727 0.1423 0.1549 0.0147 0.0164

The Transformer ũθ is trained with D ∪ T ⊆ u(α) where α ∈ Ω is selected uniformly at random
for each epoch. After that, we test ũθ with D̃ ∪ T̃ ⊆ u(α) for all α ∈ Ω and evaluate average L1

absolute and L2 relative errors (Table 2).

We highlight two key observations: First, our model outperforms baseline models applied to dif-
fusion, reaction, reaction-diffusion, and convection-diffusion-reaction systems. Second, it demon-
strates stable performance across a wide range of coefficient values. For instance, all baselines show
difficulties in predicting accurate solutions for high coefficients, especially in diffusion and reaction
systems, while ours do not. When we measure the standard deviation of L2 relative error over three
coefficient range for diffusion system, ours have 9.1 × 10−4 while others show 10−2 scale value.
These observations not only verify the effectiveness of the Transformer’s ICL capability, but also
suggest its potential to handle larger parameter space Ω.

4.2.2 TIME DOMAIN INTERPOLATION FOR SEEN PDE PARAMETERS WITH A PINN-PRIORS

The Transformer has demonstrated strong ICL capabilities when trained with numerical priors. Our
main focus now is to determine if this same success can be achieved using a PINN-prior. As out-
lined in Appendix C, our preliminary results show that the Transformer remains robust even when
numerical priors are subject to various types of noise. Building on this, we examine how the model
performs when mixing low-cost PINN-priors with numerical priors in different proportions, assess-
ing its stability and robustness when incorporating PINN-priors.

Specifically, we train the model using the convection, diffusion, and Fisher reaction equations with
integer coefficients ranging from 1 to 20. For each equation, we evaluate the model with a prior that
is a mixture of PINN-prior and numerical prior in varying ratios: 0%, 20%, 40%, 60%, 80%, and
100% PINN-priors. Table 3 indicates the L1 absolute and L2 relative errors for each setup compared
to the baseline results in Section 4.2.1. Furthermore, the average error of the PINN-prior, compared
to the numerical solution, is presented to demonstrate the quality of the PINN-prior.

As a result, mixing PINN-priors with numerical priors does not significantly impact performance,
as the L1 absolute and L2 relative errors remain consistent with other baselines. This indicates
that a Transformer can maintain ICL capability even when trained with PINN-prior data. Also, this
finding confirms that the model can effectively infer solutions from limited observed data D̃, even
in the presence of inaccurate PINN-priors.

7
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Table 3: Evaluation for convection, diffusion, and reaction equations measured at seen parameters,
where the parameter values range from 1 to 20. Results are provided for each PINN-Prior Ratio, and
for comparison, the results of baseline models are also included.

Model Error
Metric

convection
β ∈ [1, 20] ∩ Z

diffusion
ν ∈ [1, 20] ∩ Z

reaction
ρ ∈ [1, 20] ∩ Z

Ours

0% Abs. err 0.0764 0.0095 0.0160
Rel. err 0.0864 0.0134 0.0322

20% Abs. err 0.1197 0.0088 0.0169
Rel. err 0.1276 0.0148 0.0390

40% Abs. err 0.1543 0.0103 0.0286
Rel. err 0.1582 0.0149 0.0677

60% Abs. err 0.1743 0.0172 0.0267
Rel. err 0.1746 0.0208 0.0679

80% Abs. err 0.1677 0.0217 0.0327
Rel. err 0.1713 0.0300 0.0970

100% Abs. err 0.1563 0.0200 0.0362
Rel. err 0.1654 0.0265 0.1136

Prior Loss Abs. err 0.0439 0.1262 0.0215
Rel. err 0.0441 0.1444 0.0845

Hyper-LR-PINN Abs. err 0.0340 0.1722 0.7111
Rel. err 0.0368 0.1991 0.7650

P2INN Abs. err 0.2742 0.4553 0.1490
Rel. err 0.2743 0.5166 0.2915

Remark 4.1. Notably, in diffusion case, the prior exhibits an error of 14%, yet our prediction error
stands at just 2.6%. This discrepancy not only highlights the Transformer model’s strong ICL capa-
bility but also demonstrates a form of superconvergence, where the model significantly outperforms
expectations given the inaccurate prior. Such a result underscores the robustness and adaptability
of our approach, reinforcing the idea that even with flawed prior information, the Transformer can
extract meaningful insights and achieve high accuracy in predictions.

4.2.3 TIME DOMAIN INTERPOLATION FOR UNSEEN PDE PARAMETERS

From this point, we train our model using only PINN-priors and further explore the base char-
acteristics of SFMs’. In this section, we test our model with unseen parameters at convection,
diffusion, and reaction systems. For each system, the model is trained with [1, 20] ∩ Z range coeffi-
cients and tested with unseen coefficient 1.5, 2.5, · · · , 19.5 which is included in interval [1, 20] and
20.5, 21.5, 22.5, · · · , 30.5 which is not in range of [1, 20]. The L2 relative error measured for each
coefficient value is plotted in Figure 3, along with the baselines Hyper-LR-PINN and the non-fine-
tuned P2INN.

Over the trained coefficient range, our model effectively interpolates the coefficients β, ν, and ρ,
achieving performance comparable to that seen with known coefficients. Moreover, the model
demonstrates stable extrapolation in diffusion and reaction systems. Compared to the baselines,
our model significantly outperforms it, particularly in diffusion and reaction systems. This result
indicates that the Transformer can effectively learn the PPD of the prior space D, even without
observing the complete prior.

4.2.4 TIME DOMAIN EXTRAPOLATION FOR SEEN PDE PARAMETERS

One major limitation of the PINN is an extrapolation at the temporal domain that infer solutions at
unknown points. Our model demonstrates extrapolation capability in the 1D convection equation,
where the solution exhibits wave-like fluctuations in the inference region. In particular, the model
trained with the PINN-prior D over the coefficient range β ∈ [1, 20] ∩ Z can predict β values in
1.5, 2.5, · · · , 16.5 for equations where the test points T̃ fall within t ∈ (0.6, 1.0], even though D̃
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(a) convection (b) diffusion (c) reaction

Figure 3: The L2 relative error measured at unseen parameters is presented for (a) convection, (b)
diffusion, and (c) reaction, comparing our model with baseline methods. For Hyper-LR-PINN, both
fine-tuned and non-fine-tuned results are plotted together. The grey area indicates the region where
the model extrapolates the coefficient β, ν, or ρ.

Figure 4: (Left) The L2 relative error is evaluated for each convection coefficient β =
1.5, 2.5, · · · , 16.5 as an extrapolation task. (Right) The graph illustrates the extrapolation of con-
vection equation with β = 10.5 at 0.6 ≤ t ≤ 1.0.

is only distributed within t ∈ [0.0, 0.6]. We then evaluate the L2 relative error and plot for each
coefficient β with our baselines. Both baselines are not fine-tuned for each test β to make a fair
comparison with our zero-shot model.

As a result, our model demonstrates effective extrapolation capabilities in convection equation (Fig-
ure 4, Left). In addition, our model outperforms both Hyper-LR-PINN and P2INN across most
values of β, while maintaining a stable L2 relative error over a wider range. The diagram in Figure
4, Right presents the detailed performance at β = 10.5. This capability emphasizes our model’s
potential for advancing solutions to PDEs in unknown spatial regions and for enhancing time series
predictions.

4.3 COMPREHENSIVE STUDY WITH VARIOUS REACTION TERMS

In this section, we expand the parameter space to following Ω using three different reaction terms:
Fisher (f1), Allen-Cahn (f2), and Zeldovich (f3),

ut = N (·), N (t, x, u, α) = −βux + νuxx +

3∑
j=1

ρjfj(u),

f1 := u(1− u), f2 := u(1− u2), f3 := u2(1− u),

Ω = {α := (β, ν, ρ1, ρ2, ρ3)}.

(13)

To justify the expansion, we train the Transformer with β = 0, ν = 0, and ρj ∈ [1, 5] ∩ Z for
j = 1, 2, 3 to evaluate its ICL capability in handling linear combinations of the reaction terms. The
model is then tasked with inferring the solutions of the PDEs ut = ρ1f1, ut = ρ2f2, and ut = ρ3f3
to test whether it can generalize to CDR with unseen parameters and accurately distinguish between
each component.

According to the result at Table 4, the L1 absolute and L2 relative errors are comparable to those
obtained when trained with ρ1 ∈ [1, 5] ∩ Z, suggesting the potential for expanding the parameter

9
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Table 4: The Transformer is trained using a linear combination of Fisher, Allen-Cahn, and Zeldovich
reaction terms with a given train parameter range. The L1 absolute and L2 relative errors for infer-
ring each reaction term are then averaged over the given test parameter range. For comparison, the
results for the Fisher reaction term tested in Section 4.2.1 are also included.

Train Parameter Range ρ1 ∈ [1, 5] ∩ Z ρ1, ρ2, ρ3 ∈ [1, 5] ∩ Z
Test Parameter Range ρ1 ∈ [1, 5] ∩ Z ρ1 ∈ [1, 5] ∩ Z ρ2 ∈ [1, 5] ∩ Z ρ3 ∈ [1, 5] ∩ Z
L1 Abs Err. 0.0102 0.0755 0.0381 0.0611
L2 Rel Err. 0.0154 0.1098 0.0734 0.0830

space. Specifically, the results demonstrate that our model can accurately distinguish between the
three different reaction terms, even when trained with their linear combination. Although the model
was trained using arbitrary linear combinations of terms commonly found in real-world applications,
it is capable of effectively solving PDEs composed of meaningful combinations of these terms dur-
ing testing. This demonstrates the model’s ability to generalize beyond its training data and infer
significant governing relationships from complex systems.

5 RELATED WORKS

In-context learning Transformers have shown remarkable ICL abilities across various studies.
They can generalize to unseen tasks by emulating Bayesian predictors (Panwar et al., 2024) and
linear models (Zhang et al., 2024), while also efficiently performing Bayesian inference through
Prior-Data Fitted Networks (PFNs) (Müller et al., 2021). Their robustness extends to learning dif-
ferent classes of functions, such as linear and sparse linear functions, decision trees, and two-layer
neural networks even under distribution shifts (Garg et al., 2022). Furthermore, Transformers can
adaptively select algorithms based on input sequences, achieving near-optimal performance on tasks
like noisy linear models (Bai et al., 2023). They are also highly effective and fast for tabular data
classification (Hollmann et al., 2022).

Foundation model Recent studies have advanced in-context operator learning and PDE solving
through Transformer-based models. Ye et al. (2024) introduces PDEformer, a versatile model for
solving 1D PDEs with high accuracy and strong performance in inverse problems. In-context op-
erator learning has also been extended to multi-modal frameworks, as seen in Yang et al. (2023c),
where ICON-LM integrates natural language and equations to outperform traditional models. Addi-
tionally, Yang & Osher (2024) and Yang et al. (2023b) demonstrate the generalization capabilities of
In-Context Operator Networks (ICON) in solving various PDE-related tasks, highlighting ICON’s
adaptability and potential for few-shot learning across different differential equation problems. Sev-
eral other studies have addressed the problem of solving various PDEs using a single trained model
(Hang et al., 2024; Herde et al., 2024) . However, many of these approaches rely on symbolic PDE
information, true or near-true solutions and/or do not support zero-shot in-context learning, making
their objectives different from ours.

6 CONCLUSION AND LIMITATIONS

In this work, we presented MaD-Scientist for scientific machine learning that integrates in-context
learning and Bayesian inference for predicting PDE solutions. Our results demonstrate that Trans-
formers, equipped with self-attention and cross-attention mechanisms, can effectively generalize
from prior data, even in the presence of noise, and exhibit robust zero-shot learning capabilities.
These findings suggest that foundation models in SciML have the potential to follow the devel-
opment trajectory similar to that of natural language processing foundation models, offering new
avenues for further exploration and advancement in the field.

The Transformer used in our study clearly demonstrates the ICL capability, when trained with PINN-
based prior. However, it is limited to the CDR equations in our paper. We will consider other types
of PDE and more diverse initial and boundary conditions in the future, enhancing its adaptability to
real-world scenarios and its role as a foundation model.
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A THE PROOF OF THEOREM 2.1

Proof. For any n, ϵ, we derive that
Ex

[
H

(
pθ̂(· | x,Dn), π(· | x)

)]
≤ Ex

[
H

(
pθ̂(· | x,Dn), π(· | x,Dn)

)]
(1)

+ Ex [H (π(· | x,Dn), π(· | x))]

≤
√

1

2
Ex

[
KL

(
pθ̂(· | x,Dn), π(· | x,Dn)

)]
(2)

+ Ex [H (π(· | x,Dn), π(· | x))]

≤
√

ϵ

2
+ Ex

[
1−

∫
Y

√∫
q(y | x)π(y | x)dΠn(q)dy

]1/2

(3)

≤
√

ϵ

2
+

[
1−

∫
X
π(x)

∫
Y

1

π(x)

√∫
q(y, x)π(y, x)dΠn(q)dydx

]1/2

≤
√

ϵ

2
+

[
1−

∫
X

∫
Y

∫ √
q(y, x)π(y, x)dΠn(q)dydx

]1/2
=

√
ϵ

2
+

[∫
H (q, π)

2
dΠn(q)

]1/2
≤

√
ϵ

2
+

[∫
H (q, π) dΠn(q)

]1/2
=

√
ϵ

2
+

[∫
{q:H(π,q)>ϵ}

H (q, π) dΠn(q)

]1/2

+

[∫
{q:H(π,q)≤ϵ}

H (q, π) dΠn(q)

]1/2

(4)

=

√
ϵ

2
+ (Πn({q : H(π, q) > ϵ}) + ϵ)1/2 →

√
ϵ

2
+
√
ϵ a.s.

(5)

The first inequality (1) is derived from the triangle inequality for the Hellinger distance, which states
that for any intermediate distribution q(· | x,Dn), we have

H
(
pθ̂(· | x,Dn), π(· | x)

)
≤ H

(
pθ̂(· | x,Dn), q(· | x,Dn)

)
+H (q(· | x,Dn), π(· | x)) .

The second inequality (2) uses the fact that the Hellinger distance H(p, q) is bounded above by the
square root of the KL divergence KL(p ∥ q), such that

H(p, q)2 ≤ 1

2
KL(p ∥ q).

Thus, we can bound the Hellinger distance by the KL divergence. In the third inequality (3), we
make use of assumption

Ex

[
KL

(
pθ̂(· | x,Dn), π(· | x,Dn)

)]
< ϵ,

and utilize the definition of the Hellinger distance. In (4), we partition the domain into two regions–
one where the Hellinger distance H(π, q) exceeds ϵ and another where it is less than or equal to
ϵ–and use this partitioning to demonstrate the inequality.

Finally, in (5), by posterior consistency, the region where the Hellinger distance is greater than ϵ
vanishes as n → ∞ such that

Πn {q : H(π, q) > ϵ} → 0 almost surely.
Since ϵ is arbitrary, we can conclude that

Ex

[
H

(
pθ̂(· | x,Dn), π(· | x)

)] n→∞−−−−→ 0 almost surely.
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B ENVIRONMENTS

We conducted the experiments using Python 3.8.19, PyTorch 2.4.0+cu121, scikit-learn 1.3.2,
NumPy 1.24.4, and pandas 2.0.3, with CUDA 12.1, NVIDIA Driver 535.183.01, and an NVIDIA
RTX A6000. Additionally, we used CUDA 12.4, NVIDIA Driver 550.67, and either an NVIDIA
GeForce RTX 3090 or an NVIDIA TITAN RTX.

C COMPARISON BETWEEN BASELINES

In addition to the comparison between baselines in 1, the additional comparisons between baselines
is shown below in Table 5. For Hyper-LR-PINN, the results are estimated solely for Phase 1 and the
number of model parameters estimated refers specifically to the model used in sections 4.2.

Table 5: Additional comparisons between baselines and our model in 1D CDR experiments.

Properties Hyper-LR-PINN P2INN Ours

Number of model parameters 28,151 76,851 21,697
Training time per epoch(s) 1.8613 0.9640 0.1187
GPU memory usage(MB) 1,175 1,108 998

For the 2D CDR experiments, Table 6 shows the training time per epoch, number of parameters and
GPU memory usage for our model and the baselines in their best settings.

Table 6: Additional comparisons between baselines and our model in 2D CDR experiments.

Task Model Number of
model parameters

Training time
per epoch(s) GPU memory usage(MB)

Interpolation with numerical prior Ours 30,273 1.6869 12,435.89
DeepONet 650,113 0.5742 25.70

Extrapolation with numerical prior

Ours 60,065 1.5077 7,536.04
A-FNO 385,728 1.6085 21.29
F-FNO 173,063,937 0.8825 2,080.55
FNO 8,980,929 1.5927 196.18

DeepONet 21,377 0.7818 28.76

Interpolation with PINN prior Ours 30,273 1.6526 12,435.91
DeepONet 1,357,697 0.5941 43.04

Extrapolation with PINN prior

Ours 47,361 1.5072 9,309.12
A-FNO 687,296 1.6755 25.46
F-FNO 173,063,937 0.8847 2,080.55
FNO 8,980,929 1.6135 196.18

DeepONet 25,537 0.7854 31.53

D DATASETS

The specific information about PDE types used in the study is following. n represent the maximum
values for each parameter β, ν, ρ1, ρ2 and ρ3’s range, which are set to 5, 10, and 20 in our study.

For each specific PDE, we collect 256 initial points, 1,000 collocation points, 100 boundary points,
and 1,000 test points. For each 1,000 collocation points, we sample 800 points for D ∪ T and
200 points for D̃ which are not overlapped. During the training phase, 30% of the data points are
designated as D, while the remaining 70% are allocated to T .

E PINN USED IN PRIOR GENERATION

In this study, we utilize the PINN introduced by Raissi et al. (2019) to generate PINN-priors. The
loss function employed during the training of the PINN is as follows:

L = Lu + Lf + Lb, (14)
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Table 7: PDEs used in our study and corresponding dataset information for each section. “CDR”
means “convection-diffusion-reaction.”

Section Equation Type Equation Parameter Range Number of
Datasets

4.2

convection ut = −βux β ∈ [1, n] ∩ Z n
diffusion ut = νuxx ν ∈ [1, n] ∩ Z n
reaction ut = ρ1u(1− u) ρ1 ∈ [1, n] ∩ Z n
convection-diffusion ut = −βux + νuxx β, ν ∈ [1, n] ∩ Z n2

reaction-diffusion ut = νuxx + ρ1u(1− u) ν, ρ1 ∈ [1, n] ∩ Z n2

CDR ut = −βux+νuxx+ρ1u(1−u) β, ν, ρ1 ∈ [1, n] ∩ Z n3

4.3 Table 4 ut = ρ1u(1−u)+ρ2u(1−u2)+
ρ3u

2(1− u)
ρ1, ρ2, ρ3 ∈ [1, n] ∩ Z n3

where Lu,Lf and Lb is defined as

Lu =
1

Nu

∑
(ũ(x, 0)− u(x, 0))

2
, Lf =

1

Nf

∑
(N (t, x, u, α))

2
, Lb =

1

Nb

∑
(ũ(0, t)− ũ(2π, t))

2
,

(15)
for Nu points at initial condition, Nf collocation points and Nb boundary points.

F TRAINING ALGORITHM

We train the Transformer like following.

Algorithm 1 Training a Transformer

1: Input: A prior dataset D ∪ T drawn from prior p(D)
2: Output: A Transformer ũθ which can approximate the PPD
3: Initialize the Transformer ũθ

4: for i = 1 to n do
5: Sample α ∈ Ω and D ∪ T ⊆ ũ(α) ∼ p(D)

6: (D := {(x(i)
D , t

(i)
D )}ND

i=1, T := {(x(j)
T , t

(j)
T )}NT

j=1)

7: Compute loss Lα = 1
NT

∑NT

j=1

{
ũθ(x

(j)
T , t

(j)
T |Dn)− ũ(x

(j)
T , t

(j)
T )

}2

.

8: Update parameters θ with an Adam optimizer
9: end for

G ICL OF TRANSFORMERS WITH NOISY PRIOR

In order to study the ICL capability of Transformers with noisy prior, we introduce four kinds of
prior D like

P1 (noiseless) : p(D) = p(U), P2 (Gaussian noise) : p(D) ∼ N (U , σ2I),

P3 (salt-and-pepper noise) : p(D) ∼ p(s · U) where s =


min(U) with probability γ

2 ,

max(U) with probability γ
2 ,

1 with probability 1− γ,

P4 (uniform noise) : p(D) ∼ p(U + U(−ϵ, ϵ)) (U : uniform distribution).
We sample D ∪ T ∼ p(D), where D is a noisy prior, and train the Transformer ũθ. We then test ũθ

with D̃ ∪ T̃ ∼ p(U), demonstrating that the model can predict the true solution even when trained
on noisy prior data. The experiment is conducted on reaction and convection-diffusion-reaction
equations, which outperform other baselines, under three different noises: the Gaussian noise (P2),
the salt-and-pepper noise (P3), and the uniform noise (P4). The standard deviation σ of Gaussian
noise is set to 1%, 5%, and 10% of the mean value of the ground truth solution. Additionally, for
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Table 8: The L1 absolute and L2 relative errors for the reaction and convection-diffusion-reaction
systems using the P2 prior with varying levels of Gaussian noise σ, P3 prior with varying levels of
noise probe γ, and P4 prior with varying levels of noise ϵ (1%, 5%, and 10%). For a comparison,
the result of using P1 prior is notated.

System Prior Type
Noisy Prior with a Noise Level P1 Prior

1% Noise 5% Noise 10% Noise
Abs. err Rel. err Abs. err Rel. err Abs. err Rel. err Abs. err Rel. err

Reaction
P2 0.0210 0.0392 0.0213 0.0399 0.0210 0.0392

0.0160 0.0322P3 0.0309 0.0598 0.0286 0.0517 0.0354 0.0619

P4 0.0285 0.0568 0.0293 0.0583 0.0306 0.0607

Convection
-Diffusion
-Reaction

P2 0.0175 0.0296 0.0220 0.0431 0.0235 0.0431
0.0159 0.0310P3 0.0246 0.0459 0.0263 0.0453 0.0267 0.0496

P4 0.0210 0.0420 0.0215 0.0422 0.0230 0.0426

the experiment, the probe γ for salt-and-pepper noise and the range ϵ for uniform noise are also set
to 1%, 5%, and 10%.

Our model demonstrates robust performance across different types of noise injection as shown in
Table 8. It shows our Transformer can perform ICL with zero-shot learning even if it is trained with
inaccurate or noisy prior D ∪ T ∼ p(D).

H EXPERIMENTS AT PINN FAILURE MODES

Referring to Cho et al. (2024) and Krishnapriyan et al. (2021), we test our method on PINN’s major
failure modes: β ∈ [30, 40] with an initial condition 1 + sin(x) and ρ ∈ [1, 10] with an initial
condition N

(
π,

(
π
2

)2)
. We have trained our model with this range with P1 prior and evaluate

L1 absolute and L2 relative errors. The following are major results and solution profiles at failure
modes.

(a) β = 30 (b) β = 31 (c) β = 32 (d) β = 33

(e) ρ = 4 (f) ρ = 5 (g) ρ = 6 (h) ρ = 7

Figure 5: The solution profiles at PINN failure modes: (a), (b), (c) and (d) for β ∈ [30, 40] with
initial condition 1+sin(x) and (e), (f), (g) and (h) for ρ ∈ [1, 10] with initial condition N

(
π,

(
π
2

)2)
.

The solution profile is constructed using the union of 1,000 test prediction points and the remaining
ground truth points.
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Table 9: The L1 absolute and L2 relative error at PINN failure modes.

Trained Coefficient Range Test Coefficient Value L2 Error Type Average Error
Abs.err Rel.err Abs.err Rel.err

β ∈ [30, 40]

β = 30 0.2483 0.2516

0.1280 0.1328β = 31 0.1029 0.1111

β = 32 0.0803 0.0882

β = 33 0.0806 0.0801

ρ ∈ [1, 10]

ρ = 4 0.0071 0.0160

0.0048 0.0097ρ = 5 0.0029 0.0054

ρ = 6 0.0033 0.0063

ρ = 7 0.0058 0.0112

I ADDITIONAL EXPERIMENTS ON 2D CDR

In this section, we extend our evaluation to the two-dimensional convection-diffusion-reaction (2D
CDR) equation, which represents a more complex and higher-dimensional setting compared to the
1D CDR experiments discussed earlier. The goal of this experiment is to evaluate how well our
model handles higher-dimensional PDEs and compare its performance with widely used neural
operator methods in both interpolation and extrapolation tasks. The following two-dimensional
convection-diffusion-reaction (CDR) equation is used for the benchmark PDE,

2D CDR: ut + βxux + βyuy − νuxx − νyuyy − ρu(1− u) = 0,

, x ∈ [0, π], y ∈ [0, π], t ∈ [0, 0.7], βx, βy, νx, νy, ρ ∈ [1, 3] ∩ Z.
(16)

We only consider the equations with all non-zero coefficients in 2D CDR experiments.

I.1 EXPERIMENTAL SETUP AND BASELINES

For the 2D CDR experiments, we compare our model with neural operator-based baselines: Deep-
ONet, FNO, F-FNO, and A-FNO. These baselines are selected for their scalability and ability to han-
dle high-dimensional PDEs effectively. Due to memory constraints, baselines like Hyper-LR-PINN
and P2INN from the 1D CDR experiments are excluded. The detailed hyperparameters, training and
testing settings, and computational costs used in the 2D CDR experiments are described thoroughly
in Appendix N.

Baseline methods We compare our model with 4 baselines: deep operator network (Deep-
ONet) (Lu et al., 2021), Fourier Neural Operator(FNO) (Li et al., 2020), Factorized Fourier Neural
Operator(F-FNO) (Tran et al., 2021), and Adaptive Fourier Neural Operator(A-FNO) (Guibas et al.,
2021). These models are based on neural operator.

• DeepONet is a neural operator architecture designed to learn operators mapping input func-
tions to output functions. It combines branch and trunk networks to predict values in a
function space.

• FNO learns solution operators for partial differential equations using the Fourier transform.
By mapping inputs to a frequency domain, FNO captures complex patterns and long-range
dependencies and models complex systems.

• F-FNO extends the Fourier Neural Operator by factorizing its layers to reduce computa-
tional costs. This factorization enables efficient learning of solution operators for complex
systems.

• A-FNO is a variant of the Fourier Neural Operator that dynamically adjusts the resolution
of the frequency domain during training. This adaptation aims to capture relevant features
across scales, enabling more flexible modeling of complex systems.

Interpolation Task DeepONet is the sole baseline used for the interpolation task. FNO, F-FNO,
and A-FNO were specifically designed to take grid input at a specific time point and predict grid out-
put subsequent time steps. As these models were originally developed for time trajectory prediction
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tasks, they are not suitable for interpolation. Consequently, DeepONet serves as the sole baseline
for comparison in this task.

Extrapolation Task All baselines, including DeepONet, FNO, F-FNO, and A-FNO, are evaluated
to compare their rollout performance in predicting future time steps.

I.2 TIME DOMAIN INTERPOLATION FOR SEEN PDE PARAMETERS WITH A NUMERICAL
PRIOR

We first conduct an experiment on time domain interpolation for seen PDE Parameters with a nu-
merical prior. Our model follows the same experimental setup as in Section 4.2.1, while using the
increased number of data points. For DeepONet, we implement a structure where it takes initial and
boundary points as inputs and predicts data points. Table 10 shows the evaluation results measured
by L1 absolute error, L2 relative error, and L∞ relative error. Additionally, we evaluate on another
test dataset in grid format for the H1 norm metric, and the corresponding results have been included
as well.

Table 10: Evaluation for interpolation task in 2D CDR equation with Fisher reaction term us-
ing numerical prior. They are measured at seen parameters, where the parameter values are
βx, βy, νx, νy, ρ ∈ [1, 3] ∩ Z. Best performance is marked in bold.

Metric Ours DeepOnet

L1 Abs.error 0.00584 0.00763
L2 Rel.error 0.01185 0.01368
L∞ Rel.error 0.05862 0.04533

H1 Abs.error 0.04885 0.11168

As a result, our model outperforms DeepONet on L1 absolute error, and L2 relative error, and H1 ab-
solute error. We can confirm that our model maintains its performance in the 2D CDR interpolation
task based on the numerical prior when extended from the 1D CDR to higher dimensions.

I.3 TIME DOMAIN EXTRAPOLATION FOR SEEN PDE PARAMETERS WITH A NUMERICAL
PRIOR

In this section, we conduct an experiment on time domain extrapolation for seen PDE Parameters
with a numerical prior. The training data D and T are randomly distributed over t ∈ [0.0, 0.7].
During the test phase, grid data D̃ at t = 0.7 is provided as input to predict the values of grid points
T̃ at t = 0.8, 0.9, 1.0. For the baselines, the models are trained to take grid data D at a specific time
point as input and predict the grid point values T at the next time step. During testing, the grid data
D̃ at t = 0.7 is provided as input, and the models conduct rollout to predict the grid point values T̃
at t = 0.8, 0.9, 1.0. Table 11 shows the evaluation results measured by L1 absolute error, L2 relative
error, and L∞ relative error.

Table 11: Evaluation for extrapolation task in 2D CDR equation with Fisher reaction term us-
ing numerical prior. They are measured at seen parameters, where the parameter values are
βx, βy, νx, νy, ρ ∈ [1, 3] ∩ Z. Best performance is marked in bold.

Metric Ours A-FNO F-FNO FNO DeepOnet

L1 Abs.error 0.00115 0.00283 0.00284 0.00291 0.01530
L2 Rel.error 0.00127 0.00353 0.00355 0.00361 0.02308
L∞ Rel.error 0.00261 0.00976 0.01230 0.01182 0.13671

As a result, our model surpasses all baseline models across the three evaluation metrics. These re-
sults indicate that our model successfully generalizes from the 1D CDR to the 2D CDR extrapolation
task with the numerical prior.
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I.4 TIME DOMAIN INTERPOLATION FOR SEEN PDE PARAMETERS WITH A PINN-PRIOR

In this section, we explore time-domain interpolation for previously seen PDE parameters using a
100% PINN prior. Table 12 presents the quality of the PINN prior and the evaluation results, mea-
sured by L1 absolute error, L2 relative error, and L∞ relative error. The PINN loss indicates the
degree of error between the PINN-prior data used for model training and the corresponding numeri-
cal values, providing a quantitative measure of the PINN-prior quality. Furthermore, we additionally
evaluate on another test dataset in grid format for the H1 norm metric, and the corresponding results
have been included as well.

Table 12: PINN-prior quality and evaluation for interpolation task in 2D CDR equation with Fisher
reaction term using 100% PINN-prior. They are measured at seen parameters, where the parameter
values are βx, βy, νx, νy, ρ ∈ [1, 3] ∩ Z. Best performance is marked in bold.

Metric PINN loss Ours DeepOnet

L1 Abs.error 0.01225 0.00730 0.00818
L2 Rel.error 0.01740 0.01319 0.01480
L∞ Rel.error 0.04980 0.05769 0.05171

H1 Abs.error 0.11530 0.06488 0.09756

As a result, our model achieves superior performance compared to DeepONet in L1 absolute error,
and L2 relative error, and H1 absolute error. These results emphasize the capability of our model
to excel in interpolation tasks, not only with the numerical prior (Table 10) but also with the PINN
prior (Table 12), as it adapts and generalizes effectively while transitioning from the 1D CDR to
higher-dimensional scenarios.

I.5 TIME DOMAIN EXTRAPOLATION FOR SEEN PDE PARAMETERS WITH A PINN-PRIOR

In this section, we conduct an experiment on time domain extrapolation for seen PDE parameters
with a 100% PINN-prior. Table 13 shows the PINN-prior quality and the evaluation results measured
by L1 absolute error, L2 relative error, and L∞ relative error.

Table 13: PINN-prior quality and evaluation for extrapolation task in 2D CDR equation with Fisher
reaction term using 100% PINN-prior. They are measured at seen parameters, where the parameter
values are βx, βy, νx, νy, ρ ∈ [1, 3] ∩ Z. Best performance is marked in bold.

Metric PINN loss Ours A-FNO F-FNO FNO DeepOnet

L1 Abs.error 0.00619 0.00296 0.00619 0.00978 0.00431 0.01150
L2 Rel.error 0.00763 0.00328 0.00763 0.01217 0.00568 0.01495
L∞ Rel.error 0.00763 0.00702 0.01869 0.04701 0.2175 0.08218

As a result, our model outperforms other baselines across all three metrics. This result confirms that
when extending from the 1D CDR to higher dimensions, our model maintains its performance in the
extrapolation task not only with the numerical prior but also with the PINN prior.

J ADDITIONAL EXPERIMENTS ON BIHARMONIC EQUATION

To demonstrate the performance of our model on PDEs involving higher-order derivatives, we con-
ducted an additional experiment. Specifically, we evaluated the model’s performance on an inter-
polation task using the Biharmonic equation, a commonly studied PDE that involves higher-order
derivatives.

J.1 EXPERIMENTAL SETUP AND BASELINES

The following two-dimensional biharmonic equation is used:

2D biharmonic: ut + uxxxx + 2uxxyy + uyyyy = 0, x ∈ [0, 2π], y ∈ [0, 2π], t ∈ [0, 0.5],

Initial condition: u(0, x, y) = sin(x) sin(y).
(17)
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The two-dimensional biharmonic equation has an exact solution under certain initial conditions.
Therefore, we adopt initial conditions with known exact solutions and use them as the analytical
prior for both training and testing.

Exact solution: u(t, x, y) = e−t sin(x) sin(y). (18)

Baseline methods We compare our model with deep operator network (DeepONet). DeepONet
uses the same model architecture as in the 2D CDR interpolation task. Additionally, since this exper-
iment focuses on the interpolation task, FNO, F-FNO, and A-FNO are excluded from the baselines.
Hyper-LR-PINN and P2INN, which are Parameterized PINNs designed for learning multiple PDEs,
are also excluded as they are not suited for this specific experiment.

J.2 TIME DOMAIN INTERPOLATION WITH AN ANALYTICAL PRIOR

We conduct an experiment on time domain interpolation for the biharmonic equation with an analyt-
ical prior. Our model and DeepONet follow the same experimental setup as in Appendix K.2. Table
14 shows the evaluation results measured by L1 absolute error, L2 relative error, and L∞ relative
error.

Table 14: Evaluation for interpolation task in biharmonic equation using analytical prior. Best
performance is marked in bold.

Metric Ours DeepOnet

L1 Abs.error 0.01525 0.12730
L2 Rel.error 0.05307 0.43996
L∞ Rel.error 0.08986 0.58891

As a result, our model outperforms DeepONet across all three metrics. We can confirm that our
model maintains its performance in the biharmonic equation interpolation task based on the analyt-
ical prior, which involves higher-order derivatives.

K ADDITIONAL EXPERIMENTS ON BURGERS’ EQUATION

To evaluate the performance of our model on PDEs involving stiffness, we conduct an additional
experiment using the Burgers’ equation. This equation is a well-known PDE that serves as a sim-
plified model in various scientific and engineering fields, such as fluid dynamics and wave propaga-
tion. It captures key nonlinear phenomena, including advection and diffusion, making it a valuable
benchmark for testing computational methods. When the viscosity parameter is small, the Burgers’
equation can develop shock formations, which pose significant challenges for classical numerical
methods. This characteristic makes it an ideal test case for assessing whether models can effectively
handle such complexities.

K.1 EXPERIMENTAL SETUP AND BASELINES

In this experiment, we focus on time-direction extrapolation. We train the models on data in the
domain prior to the appearance of the shock and then test on data in the domain after the shock
occurs. Specifically, the model are trained on data within the time range t ∈ [0.0, 0.25], and then
tested on its ability to predict the solution at later time points, t ∈ {0.4, 0.5, 0.6}, given data at
t = 0.3. The data used for training and testing are generated by a physics-informed neural network
(PINN) (Raissi et al., 2019).

In one spatial dimension, the Burgers’ equation with Dirichlet boundary conditions is expressed as:

ut + uux − 0.01

π
uxx = 0, x ∈ [−1, 1], t ∈ [0.0, 0.99],

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1).

(19)
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Baseline methods We compare our model with deep operator network (DeepONet) and Fourier
Neural Operator (FNO). Since we conduct the experiment on 1D PDE, our model uses the same
structure as in the 1D CDR extrapolation task. Also, we adapt the architectures of DeepONet and
FNO, which were used in the 2D CDR extrapolation experiment, to suit the 1D problem. Factor-
ized Fourier Neural Operator (F-FNO) and Adaptive Fourier Neural Operator (A-FNO), Hyper-LR-
PINN, and P2INN are also excluded as they are not suited for this specific experiment.

K.2 TIME DOMAIN EXTRAPOLATION WITH AN ANALYTICAL PRIOR

We conduct an experiment on time domain interpolation for Burgers’ equation with a numerical
prior. Table 15 shows the evaluation results measured by L1 absolute error, L2 relative error, and
L∞ relative error.

Table 15: Evaluation for extrapolation task in Burgers’ equation using numerical prior. Best perfor-
mance is marked in bold.

Metric Ours with PINN loss Ours FNO DeepOnet

L1 Abs.error 0.03078 0.06367 0.06153 0.13612
L2 Rel.error 0.15044 0.21786 0.15619 0.26794
L∞ Rel.error 0.73430 0.80187 0.62267 0.62590

The experimental results show that our model outperforms DeepONet in two metrics but performs
worse than FNO across all three metrics. This indicates that our current model structure struggles
to infer values for unexpected patterns, such as shocks, when trained on data from before the shock
occurs.

To address this issue, we experiment with incorporating a PINN loss into our model during training.
As a result, the model achieves better performance than the baselines on two metrics. This demon-
strates the potential of leveraging PINN loss as a way to improve our model in future developments.

L EXTENSION OF EXPERIMENTS IN SECTION 4.3

In this section, we conducted additional experiments to further enhance the analysis of reaction
equations with various reaction terms presented in Section 4.3. The experiments presented here
incorporate fine-tuning, which was not used in our model that relied solely on pre-training through
in-context learning (ICL). Through these experiments, we aim to demonstrate that while our model
performs well with pre-training alone, fine-tuning can further improve its performance when higher
accuracy is desired. Additionally, All experiments were conducted entirely based on PINN prior.

L.1 FINE-TUNING FOR ADAPTING TO EACH REACTION SYSTEM

To enhance the performance of our model discussed in Section 4.3 by adapting to each reaction
system, we perform fine-tuning on each target reaction equation. First, we performed pre-training
on reaction equation having all reaction terms with nonzero coefficients ρ1, ρ2, ρ3 ∈ [1, 5] ∩ Z.
Subsequently, we fine-tuned the model on target reaction equation containing only a single reaction
term, ρj ∈ [1, 5] ∩ Z with j = 1, 2, 3, respectively. Afterward, we evaluated the model.

Table 16: Evaluation after fine-tuning the model with target test parameter range.

Train Parameter Range ρ1, ρ2, ρ3 ∈ [1, 5] ∩ Z
Test Parameter Range ρ1 ∈ [1, 5] ∩ Z ρ2 ∈ [1, 5] ∩ Z ρ3 ∈ [1, 5] ∩ Z
L1 Abs Err. 0.0159 0.0142 0.0112
L2 Rel Err. 0.0279 0.0333 0.0184
L∞ Rel Err. 0.0937 0.1407 0.0442

Table 17 shows the evaluation results measured by L1 absolute error, L2 relative error, and L∞
relative error. Experimental results demonstrate that the fine-tuning can improve our model’s per-
formance compared to the performance in Section 4.3.
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L.2 EXPANDING PARAMETER SPACE

In this section, we expand the parameter space of the pre-training dataset, originally defined in
Section 4.3 as {(β, ν, ρ1, ρ2, ρ3) | β = ν = 0, ρ1, ρ2, ρ3 ∈ [1, 5] ∩ Z}. Here, we generalize it
to {(β, ν, ρ1, ρ2, ρ3) | β, ν, ρ1, ρ2, ρ3 ∈ [1, 5] ∩ Z}, thereby including nonzero coefficients for β
and ν. In other words, we conducted experiments on the 1D CDR equation with three reaction
terms. Following the same procedure as outlined in Appendix L.1, pre-training was performed on
1D CDR equations with nonzero coefficients β, ν, ρ1, ρ2, ρ3 ∈ [1, 5] ∩ Z. Subsequently, fine-tuning
was carried out on target convection, diffusion, and three distinct reaction equations, followed by
evaluation.

Table 17: Evaluation of training over the expanded parameter space followed by fine-tuning.

Train Parameter Range β, ν, ρ1, ρ2, ρ3 ∈ [1, 5] ∩ Z
Test Parameter Range β ∈ [1, 5] ∩ Z ν ∈ [1, 5] ∩ Z ρ1 ∈ [1, 5] ∩ Z ρ2 ∈ [1, 5] ∩ Z ρ3 ∈ [1, 5] ∩ Z
L1 Abs Err. 0.0817 0.0418 0.0466 0.0334 0.0257
L2 Rel Err. 0.0842 0.0477 0.0850 0.0883 0.0365
L∞ Rel Err. 0.1459 0.0731 0.2487 0.3294 0.0845

Table 17 presents the evaluation results, measured by L1 absolute error, L2 relative error, and L∞
relative error. The experimental results demonstrate that the model successfully distinguishes be-
tween five distinct equations, even when trained on an expanded parameter space. Additionally, the
results highlight the model’s robustness and adaptability to the expanded parameter space.

M SENSITIVITY TO THE NUMBER OF TEST GIVEN DATA POINTS

In this section, we provide empirical validation of Theorem 2.1, which establishes the theoretical
consistency of the neural network’s posterior predictive distribution (PPD) as the size of the data Dn

increases. Specifically, we evaluate the sensitivity of the neural network’s PPD to the number of the
given data D̃ provided during the test process.

To this end, we conduct experiments by varying the number of the given data D̃ while keeping
other factors unchanged, including the best hyperparameter settings for the numerical prior-based
interpolation task in 2D CDR. The results, depicted in Figure 6, clearly demonstrate that as the size
of D̃ increases, the error consistently decreases across all three evaluation metrics. This behavior
aligns perfectly with the theoretical prediction in Theorem 2.1, where the posterior approximation
is shown to converge toward the true distribution as the data size grows.

Figure 6: Sensitivity to the number of the given data D̃ during test.

These experimental findings not only validate the theoretical insights of Theorem 2.1 but also em-
phasize the robustness and accuracy of the neural network’s PPD approximation under the given
prior. The decreasing error trend highlights how the model effectively integrates increasing amounts
of data to produce predictions that are more consistent with the true underlying posterior distribu-
tion. This synergy between theory and empirical observation strongly supports the reliability and
effectiveness of the proposed approach.
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N EXPERIMENTAL DETAILS

In this section, we describe the hyperparameters and the number of training and testing data used
in the experiments for each model. For the 1D CDR experiments in Section 4, we used the same
number of data across all tasks when training or testing each equation. For the 2D CDR experiments
in Appendix I, different numbers of data are used for interpolation and extrapolation task. Addition-
ally, experiments using different priors within the same task are conducted under identical settings.
For the 2D biharmonic experiment in Appendix J, we use fewer training data points compared to the
2D CDR interpolation task, as the experiment is conducted over a shorter time range. The number
of data used for training and testing each task can be found in Table 18.

Table 18: Data number used in training and test of all experiments.

Task Model Train data
D ∪ T number

Test given data
D̃ number

Test target points
T̃ number

1D CDR
Ours 1,156 200 1,000
Hyper-LR-PINN 1,156 200 1,000
P2INN 1,156 200 1,000

2D CDR interpolation Ours 21,828 3,000 15,000
DeepONet 24,828 9,828 15,000

2D CDR extrapolation

Ours 21,828 1,024 3,072
A-FNO 22,264 1,024 3,072
F-FNO 22,264 1,024 3,072
FNO 22,264 1,024 3,072
DeepONet 22,264 1,024 3,072

2D biharmonic interpolation Ours 19,348 3,000 15,000
DeepONet 22,348 9,828 15,000

Burgers’ extrapolation
Ours 2,508 256 256
FNO 2,560 256 256
DeepONet 2,560 256 256

The hyperparameters for our model and the baselines in the 1D CDR experiment can be found in
Table 19. Among them, the hyperparameters used in the reduced version setting of Hyper-LR-PINN,
as shown in Table 2, are marked separately with an (*). Table 20 presents the hyperparameters of
baselines and our model used in the 2D CDR experiments. It indicates the best hyperparameter
settings for each task and prior used separately. Table 22 presents the best hyperparameters settings
of our model and DeepONet used in the 2D biharmonic experiments.

Table 19: Hyperparameter used in 1D CDR experiments.
Model Hyperparameter Name Best Hyperparameter Setting

Ours Transformer layers number 3
Transformer hidden size 32

Hyper-LR-PINN phase 1 layers number 2
phase 2 layers number 2
hidden dimension 50 (*20)

P2INN
parameter encoder layers number 4
spatiotemporal coordinate encoder layers number 3
decoder layers 7

PINN-prior training loss threshold 1× 10−3

maximum training epoch 100
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Table 20: Hyperparameters used in 2D CDR experiments.

Model Hyperparameter Name
Best hyperparameter setting

in interpolation task
Best hyperparameter setting

in extrapolation task

Numerical prior PINN prior Numerical prior PINN prior

Ours Transformer layers number 3 3 3 5
Transformer hidden size 64 64 64 64

DeepONet
branch net depth 3 4 4 4
trunk net depth 5 5 4 5
hidden size 64 128 64 64

FNO layers number - - 4 4
hidden size - - 64 64

F-FNO layers number - - 20 20
hidden size - - 256 256

A-FNO layers number - - 8 16
hidden size - - 64 64

PINN prior training loss threshold 1× 10−4

maximum training epoch 200

Table 21: Hyperparameter used in 2D biharmonic equation experiments.

Model Hyperparameter Name Best Hyperparameter Setting

Ours Transformer layers number 3
Transformer hidden size 64

DeepONet
branch net depth 4
trunk net depth 5
hidden size 128

Table 22: Hyperparameter used in 2D Burgers’ equation experiments.

Model Hyperparameter Name Best Hyperparameter Setting

Ours with PINN loss Transformer layers number 7
Transformer hidden size 512

Ours Transformer layers number 3
hidden size 1,024

FNO layers number 6
hidden size 256

DeepONet
branch net depth 5
trunk net depth 5
hidden size 512
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O MODEL ARCHITECTURE

Figure 7: A schematic diagram of the Transformer architecture. The detailed model architecture,
comprising an encoder and decoder, is presented as an extension of Figure 2. The figure shows the
use of three encoder layers, but the number of encoder layers was determined through hyperparam-
eter optimization.

The terminology used in this description corresponds to the terms used in main text and carries
the same meaning. Additionally, we assume the training scenario and refers to the data as D and
T . The model is fundamentally designed based on the vanilla Transformer architecture (Vaswani,
2017). Initially, the spatiotemporal coordinates and solution points of the input D∪T are separately
embedded using linear layers. These embeddings are then concatenated and provided as input to
the encoder layer. In each encoder layer, which is basically a Transformer block, the source mask
is utilized to enable both self-attention and cross-attention mechanisms which are shown with red
and blue arrows in Figure 2. The mask is used to enable the self-attention among D while allowing
the cross-attention from T to D. The number of the blue rods for D and the red rods for T in this
figure is determined by a fixed ratio during training as described in D. Furthermore, we omit the use
of positional encoding to maintain equivariance between data points, since they are derived from
the same PDE prior. Instead of multi-head attention, the encoder employs a single-head attention
with several stacked layers. While the figure illustrates the use of three encoder layers, the number
of encoder layers was optimized as a hyperparameter. The decoder adopts a multi-layer perceptron
(MLP) structure to produce the inferred solutions effectively.
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