
Appendices for the Submission: Learned Index with Dynamic ✏521

Our appendices include the following content:522

• Sec.A: the full proof of Theorem 1.523

• Sec.B: the analysis about the learned slopes of other ✏-bounded methods.524

• Sec.C: the details of the binary search and exponential search, and the connections between525

prediction error and these specific searching strategies.526

• Sec.D: the summarized algorithm of the proposed method.527

• Sec.E: the discussion about how the proposed framework inherits the good abilities of528

existing learned index methods.529

• Sec.F: the implementation details of experiments.530

• Sec.G: the detailed introduction and visualization of the adopted datasets.531

• Sec.H: more experimental results including the overall index performance, ablation study532

and theoretical validation on other datasets and methods. Besides, we explore an indica-533

tive quantity (the CV value) to provide further insight into the rational of the proposed534

framework.535

A Proof of Theorem 1536

Given a learned segment Si : y = aix+ bi, denote ci as the stored position of the last covered data537

for the (i� 1)-th segment (c1 = 0 for the first segment). We can write the expectation of SegErri538

for the segment Si as the following form:539

E[SegErri] = E

2

4
(j⇤�1)X

j=0

|aiXj + bi � (j + ci + 1)|

3

5 ,

where j⇤ indicates the length of the segment, and Xj indicates the j-th key covered by the segment Si.540

As studied in [10], the linear-approximation problem with ✏ guarantee can be modeled as random walk541

processes. Specifically, Xj = X0 +
Pj

k=0 Gk (for j 2 Z>0) where Gk is the key increment variable542

whose mean and variance is µ and �
2 respectively. Denote the Zj = Xj�j/ai+(bi�ci�1)/ai as the543

j-th position of the transformed random walk {Zj}j2N, and j
⇤ = max{j 2 N|� ✏/ai Zj ✏/ai}544

as the random variable indicating the maximal position when the random walk is within the strip of545

boundary ±✏/ai. The expectation can be rewritten as546

E

2

4
(j⇤�1)X

j=0

|aiXj � j + (bi � ci � 1)|

3

5 = aiE

2

4
(j⇤�1)X

j=0

|Zj |

3

5

= ai

1X

n=1

E
"
n�1X

j=0

|Zj |
#
Pr(j⇤ = n).

(3)

The last equality in Eq. (3) is due to the definition of expectation. Following the MET algorithm that547

the Si goes through the point (X0, Y0 = ci + 1), we get bi = �aiX0 + ci + 1 and we can rewrite548

Zj as the following form:549

Z0 = 0, Zj
j>0
= Xj �X0 � j/ai =

jX

k=1

Gk � j/ai

=
jX

k=1

(Gk � 1/ai) =
jX

k=1

(Wk),

where Wk is the walk increment variable of Zj , E[Wk] = µ � 1/ai and V ar[Wk] = �
2. Under550

the MET algorithm setting where ai = 1/µ and "� �/µ, the transformed random walk {Zj} has551

increments with zero mean and variance �
2, and many steps are necessary to reach the random walk552

13

boundary. With the Central Limit Theorem, we can assume that Zj follows the normal distribution553

with mean µzj and variance �
2
zj , and thus |Zj | follows the folded normal distribution:554

Zj ⇠ N
�
(µ� 1/ai)j, j�

2
�
,

E(|Zj |) = µzj [1� 2�(� µzj/�zj)] + �zj

p
2/⇡ exp(�µ2

zj/2�
2
zj),

where � is the normal cumulative distribution function. For the MET algorithm, ai = 1/µ and thus555

the µzj = 0, �zj = �
p
j, and E(|Zj |) =

p
2/⇡�

p
j. Then the Eq. (3) can be written as556

1
µ

1X

n=1

E
"
n�1X

j=0

|Zj |
#
Pr(j⇤ = n) <

1
µ

1X

n=1

n�1X

j=0

E [|Zj |] Pr(j⇤ = n)

=
�
µ

r
2
⇡

1X

n=1

n�1X

j=0

p
j Pr(j⇤ = n).

(4)

For the inner sum term in Eq. (4), we have (
Pn�1

j=0

p
j) < 2

3n
p
n since557

n�1X

j=0

p
j <

n�1X

j=0

p
j +

p
n
2

<

Z n

0

p
x dx =

2
3
n
p
n,

then the result in Eq. (4) becomes558

E[SegErri] <
2
3

r
2
⇡
�
µ

1X

n=1

n
p
nPr(j⇤ = n)

=
2
3

r
2
⇡
�
µ
E[(j⇤)

3
2] =

2
3

r
2
⇡
�
µ
E
�

(j⇤)2
� 3

4

�

 2
3

r
2
⇡
�
µ

⇣
E[(j⇤)2]

⌘ 3
4
,

where the last inequality holds due to the Jensen inequality E[X 3
4] (E[X])

3
4 . Using E[j⇤] = µ

2

�2
✏
2

559

and V ar[j⇤] =
2

3

µ
4

�4
✏
4 derived in MET algorithm [10], we get E[(j⇤)2] = 5

3

µ
4

�4
✏
4, which yields the560

following upper bound:561

E[SegErri] <
2

3

r
2

⇡
(
5

3
)

3
4 (

µ

�
)2✏3.

For the lower bound, applying the triangle inequality into the Eq. (3), we have562

1
µ

1X

n=1

E
"
n�1X

j=0

|Zj |
#
Pr(j⇤ = n)

>
1
µ

1X

n=1

E
"
|
n�1X

j=0

Zj |
#
Pr(j⇤ = n)

=
1
µ

1X

n=1

E [|Z|] Pr(j⇤ = n),

(5)

where Z =
Pn�1

j=0 Zj . Since Zj ⇠ N(0,�2
zj), the Z follows the normal distribution:563

Z ⇠ N
⇣
µZ = 0, �

2
Z =

n�1X

j=0

�
2
zj +

n�1X

j=0

n�1X

k=0,k 6=j

rjk�zj�zk

⌘
,

where rjk is the correlation between Zj and Zk. Since µZ = 0, the |Z| follows the folded normal564

distribution with E[|Z|] = �Z

p
2/⇡. Since the random walk {Zj} is a process with i.i.d. increments,565

the correlation rjk � 0. With �zj = �
p
j > 0 and rjk � 0, we have566

E[|Z|] >
r

2

⇡

n�1X

j=0

�zj > �

p
n(n� 1)/⇡ >

�(n� 1)p
⇡

,

14

and the result in Eq. (5) becomes:567

E[SegErri] >
1

µ

1X

n=1

E

2

4|
n�1X

j=0

Zj |

3

5Pr(j⇤ = n)

>
�

µ

r
1

⇡

1X

n=1

(n� 1)Pr(j⇤ = n)

=
�

µ

r
1

⇡
E [j⇤ � 1] =

r
1

⇡
(
µ

�
✏
2 � �

µ
).

Since ✏� �
µ , we can omit the right term

q
1
⇡

�
µ and finish the proof.568

B Learned Slopes of Other ✏-Bounded Methods569

As shown in Theorem 1, we have known how ✏ impacts the SegErri of each segment learned by570

the MET algorithm, where the theoretical derivations largely rely on the slope condition ai = 1/µ.571

Here we prove that for other ✏-bounded methods, the learned slope of each segment (i.e., ai of Si)572

concentrates on the reciprocal of the expected key interval as shown in the following Theorem.573

Theorem 2. Given an ✏ 2 Z>1 and an ✏-bounded learned index algorithm A. For a linear segment574

Si : y = aix + bi learned by A, denote its covered data and the number of covered keys as Di575

and Len(Di) respectively. Assuming the expected key interval of Di is µi, the learned slope ai576

concentrates on ã = 1/µi with bounded relative difference:577

(1� 2✏
E[Len(Di)]� 1

)ã E[ai] (1 +
2✏

E[Len(Di)]� 1
)ã.

Proof. For the learned linear segment Si, denote its first predicted position and last predicted position578

as y
0
0 and y

0
n respectively, we have its slope ai =

y0
n�y0

0
xn�x0

. Notice that y0 � ✏ y
0
0 y0 + ✏ and579

yn � ✏ y
0
n yn + ✏ due to the ✏ guarantee, we have yn � y0 � 2✏ y

0
n � y

0
0 yn � y0 + 2✏ and580

the expectation of ai can be written as581

E[yn � y0 + 2✏
xn � x0

] E[ai] =
y0
n � y0

0

xn � x0
 E[yn � y0 + 2✏

xn � x0
].

Note that for any learned segment Si whose first covered data is (x0, y0) and last covered data is582

(xn, yn), we have E[xn�x0
yn�y0

] = µi and thus the inequalities become583

1

µ
� E[2✏

xn � x0
] E[ai]

1

µ
+ E[2✏

xn � x0
].

Since ã = 1/µi and E[xn � x0] = (E[Len(Di)]� 1)µi, we finish the proof.584

The Theorem 2 shows that the relative deviations between learned slope ai and ã are within585

2✏/(E[Len(Di)] � 1). For the MET and PGM learned index methods, we have the following586

corollary that depicts preciser deviations without the expectation term E[Len(Di)].587

Corollary 2.1. For the MET method [10] and the optimal ✏-bounded linear approximation method588

that learns the largest segment length used in PGM [12], the slope relative differences are at O(1/✏).589

Proof. We note that the segment length of a learned segment is at O(✏2) for the MET algorithm,590

which is proved in the Theorem 1 of [10]. Since PGM achieves the largest learned segment length591

that is larger than the one of the MET algorithm, we finish the proof.592

C Connecting Prediction Error with Searching Strategy593

As we mentioned in Section 3.1, we can find the true position of the queried data point in O(log(N)+594

log(|ŷ � y|)) where N is the number of learned segments and |ŷ � y| is the absolute prediction error.595

A binary search or exponential search finds the stored true position y based on ŷ. It is worth pointing596

15

out that the searching cost in terms of searching range |ŷ � y| of binary search strategy corresponds597

to the maximum absolute prediction error ✏, whereas the one of exponential search corresponds to598

the mean absolute prediction error (MAE). In this paper, we decouple the quantity SegErri as the599

product of Len(Di) and MAE(Di|Si) in the derivation of Theorem 1. Built upon the theoretical600

analysis, we adopt exponential search in experiments to better leverage the predictive models.601

To clarify, let’s consider a learned segment Si with its covered data Di. Let |ŷk � yk| be the absolute602

prediction error of k-th data point covered by this segment, and ✏i be the maximum absolute prediction603

error of Si, i.e., |ŷk � yk| ✏i for all k 2 [len(Di)].604

• The binary search is conducted within the searching range [ŷk ± ✏i] for each data point 2,605

thus the mean search range is 1
len(Di)

Plen(Di)
k=1 2✏i = O(✏i), which is independent of the606

preciseness of the learned segment and an upper bound of MAE(Di|Si).607

• The exponential search first finds the searching range where the queried data may exist by608

centering around the ŷ, repeatedly doubling the range [ŷ ± 2q] where the integer q grows609

from 0, and comparing the queried data with the data points at positions ŷ±2q . After finding610

the specific range such that a qk satisfies 2log(qk)�1 |ŷk � yk| 2dlog(qk)e for the k-th611

data, an binary search is conducted to find the exact location. In this way, the mean search612

range is 1
len(Di)

Plen(Di)
k=1 (2dlog(qk)e+1) = O

�
MAE(Di|Si)

�
, which can be much smaller613

than O(✏i) especially for strong predictive models and the datasets having clear linearity.614

D The Algorithm of Dynamic ✏ Adjustment615

Algorithm Dynamic ✏ Adjustment with Pluggable ✏ Learner
Input: D: Data to be indexed, A: Learned index algorithm, ✏̃: Expected ✏, ⇢: Length percentage

for look-ahead data
Output: S: Learned segments with varied ✏s

1: initial parameters w1,2,3 of the learned function: f(✏, µ,�) = w1(
µ
�)

w2 ✏̃
w3

2: initial mean length of learned segments so far: Len(DS) 404
3: S ?, (µ̂/�̂) 0
4: repeat
5: Get data statistic:
6: (µ/�) lookahead(D, Len(DS) · ⇢)
7: Adjust ✏ based on the learner:

8: ✏
⇤

⇣
^SegErr/w1(

µ
�)

w2

⌘1/w3

9: Learn new segment Si using adjusted ✏
⇤:

10: [Si,Di] A(D, ✏
⇤)

11: S S [Si

12: D D \ Di, DS DS [Di

13: Online update Len(DS):
14: Len(DS) running-mean

�
Len(DS), Len(Di)

�

15: (µ̂/�̂) running-mean
�
(µ̂/�̂), (µ/�)

�

16: Train the learner with ground-truth:
17: w1,2,3 optimize(f, Si, SegErri)

18: ^SegErr w1(µ̂/�̂)w2 ✏̃
w3

19: until D = ?

In Section 3.4, we provide detailed description about the initialization and adjustment sub-procedures.616

The lookahead() and optimize() are in the “Look-ahead Data” and “ ^SegErr and Optimization”617

paragraph respectively.618

2The lower bound and upper bounds of searching ranges should be constricted to 0 and len(Di) respectively.
For brevity, we omit the corner cases when comparing these two searching strategies as they both need to handle
the out-of-bounds scenario.

16

E Inheriting the Abilities of Existing Works619

In this Section, we discuss the benefits of our proposed framework brought by its pluggable property620

with two example scenarios, the dynamic data update and hard limitation on user-required index size.621

We note that the data insert operation has been discussed in the adopted baseline methods, FITing-Tree622

[14] and PGM [12]. More importantly, neither of these two methods altered the notion of ✏ when623

dealing with the data insertion, and they still relied on their ✏-bounded piece-wise segmentation624

algorithms. The proposed framework is still valid when using their respective solutions to handle625

the data insertion. Specifically, FITing-Tree proposes to introduce a buffer for each learned segment,626

which is used to store the inserted keys, and when the buffer is full, the data covered by the segment627

will be re-segmented (see Section 5 in [13]). PGM adopts a logarithmic method [28, 27] that maintains628

a series of sorted sets {S0, S1, ..., Sb} where b = ✓(log(|D|)), and builds multiple PGM-INDEX629

models over the sets. When a key x is inserted, a new PGM-INDEX will be built over the merged630

sets (see Section 3 in [12]). In general, these solutions proposed by existing methods for inserting631

keys are based on re-indexing for a piece of data along with the inserted data, and the re-indexing632

processes are the same as the original piece-wise linear segmentation processes but for different633

data, therefore, we can still apply the proposed dynamic-✏ framework for these methods in insertion634

scenarios just like we adjust ✏ and learn index according to the new data to be re-indexed.635

For the hard size limitation case, we observe that the existing work PGM introduced a multi-criteria636

variant that auto-tunes itself with pre-defined hard size requirement from users. Our proposed637

framework is pluggable and still valid when using the PGM variant to handle the size requirement.638

Specifically, given a space constraint, the multi-criteria PGM propose to iteratively estimate the639

relationship between ✏ and size with a learnable function size(✏) = a✏
�b, and automatically outputs640

the index that minimizes its query time via different estimated ✏s. Given a size requirement, we can641

just do the same thing in dynamic ✏ scene by setting our ✏̃ as ✏ estimated by the original PGM method.642

F Implementation Details643

All the experiments are conducted on a Linux server with an Intel Xeon Platinum 8163 2.50GHz644

CPU. We first introduce more details and the implementation of baseline learned index methods.645

MET [10] fixes the segment slope as the reciprocal of the expected key interval, and goes through646

the first available data point for each segment. FITing-Tree [14] adopts a greedy shrinking cone647

algorithm and the learned segments are organized with a B+-tree. Here we use the stx::btree (v0.9)648

implementation [2] and set the filling factors of inner nodes and leaf nodes as 100%, i.e., we adopt649

the full-paged filling manner. Radix-Spline [18] adopts a greedy spline interpolating algorithm to650

learn spline points, and the learned spline segments are organized with a flat radix table. We set651

the number of radix bits as r = 16 for the Radix-Spline method, which means that the leveraged652

radix table contains 216 entries. PGM [12] adopts a convex hull based algorithm to achieve the653

minimum number of learned segments, and the segments can be organized with the help of binary654

search, CSS-Tree [29] and recursive structure. Here we implement the recursive version since it beats655

the other two variants in terms of indexing performance. For all the baselines and our method, we656

adopt exponential search to better leverage the predictive models since the query complexity using657

exponential search corresponds the preciseness of models (MAE) as we analyzed in Appendix C.658

We then describe a few additional details of the proposed framework in terms of the ✏-learner659

initialization and the hyper-parameter setting. For the w1,2,3 of the ✏-learner shown in the Eq. (2), at660

the beginning, we learn the first five segments with the ✏ sequence [14 ✏̃,
1
2 ✏̃, ✏̃, 2✏̃, 4✏̃], then track their661

rewarded SegErri and update the parameters w1,2,3 using least square regression. We empirically662

found that this light-weight initialization leads to better index performance compared to the versions663

with random parameter initialization, and it benefits the exploration of diverse ✏
⇤, i.e., leading to664

the larger variance of the dynamic ✏ sequence [✏1, . . . , ✏i, . . . , ✏N]. As for the hyper-parameter ⇢665

(described in the Section 3.4), we conduct grid search over ⇢ 2 [0.1, 0.4, 0.7, 1.0] on Map an IoT666

datasets. We found that all the ⇢s achieve better N -MAE trade-off (i.e., smaller AUNEC results) than667

the fixed ✏ versions. Since the setting ⇢ = 0.4 achieves averagely best results on the two datasets, we668

set ⇢ to be 0.4 for the other datasets.669

17

G Dataset Details670

Our framework is verified on several widely adopted datasets having different data scales and671

distributions. Weblogs [19, 14, 12] contains about 715M log entries for the requests to a university web672

server and the keys are log timestamps. IoT [14, 12] contains about 26M event entries from different673

IoT sensors in a building and the keys are recording timestamps. Map dataset [19, 14, 9, 12, 21]674

contains location coordinates of 200M places that are collected around the world from the Open675

Street Map [25], and the keys are the longitudes of these places. Lognormal [12] is a synthetic dataset676

whose key intervals follow the lognormal distribution: ln(Gi) ⇠ N (µlg,�
2
lg). To simulate the varied677

data characteristics among different localities. We generate 20M keys with 40 partitions by setting678

µlg = 1 and setting �lg with a random number within [0.1, 1] for each partition.679

We normalize the positions of stored data into the range [0, 1], and thus the key-position distribution680

can be modeled as Cumulative Distribution Function (CDF). We plot the CDFs and zoomed-in CDFs681

of experimental datasets in Figure 7 and Figure 8 respectively, which intuitively illustrate the diversity682

of the adopted datasets.683

1.450 1.455 1.460 1.465 1.470 1.475 1.480
Key �109

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Weblogs

1.485 1.490 1.495 1.500 1.505 1.510 1.515
Key �109

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

IoT

�100 0 100
Key

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Map

0 1 2 3 4 5 6
Key �107

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Lognormal

Figure 7: CDFs of adopted datasets.

1.4718 1.4720 1.4722 1.4724
Key �109

0.640

0.645

0.650

0.655

0.660

Zoomed-in Weblogs

3.95 4.00 4.05 4.10
Key �107

0.640

0.645

0.650

0.655

0.660

Zoomed-in Lognormal

Figure 8: Zoomed-in CDFs of adopted datasets.

H Additional Experimental Results684

Overall Index Performance. For the N -MAE trade-off improvements and the actual querying685

efficiency improvements brought by the proposed framework, we illustrate more N -MAE trade-off686

curves in Figure 9 and querying time results in Figure 10. We also mark the 99th percentile (P99)687

latency as the right bar, which is a useful metric in industrial-scale practical systems. Recall that the688

N -MAE trade-off curve adequately reflects the index size and querying time: (1) the segment size689

in bytes and N are only different by a constant factor, e.g., the size of a segment can be 128bit if it690

consists of two double-precision float parameters (slope and intercept); (2) the querying operation can691

be done in O(log(N) + log(|y � ŷ|) as we mentioned in Section 3.1, thus a better N -MAE trade-off692

indicates a better querying efficiency. From these figures, we can see that the dynamic ✏ versions of693

all the baseline methods achieve better N -MAE trade-off and better querying efficiency, verifying the694

effectiveness and the wide applicability of the proposed framework. Regards the p99 metrics, we can695

see that the dynamic version achieves comparable or even better P99 results than the static version,696

showing that the proposed method not only improves the average lookup time, but also has a good697

robustness. This is because of that our method can effectively adjust ✏ based on the expected ✏̃ and698

data characteristic, making the {✏i} fluctuated within a moderate range.699

CV as an Indicative Quantity. The coefficient of variation (CV) value, i.e., CV =�/µ, plays an700

important factor in our bounds to reflect the linearity degree of the data. We have seen that CV is701

effective to help dynamically adjust ✏ in our framework as shown in our experiments. Here we explore702

that whether the CV value can be an indicative quantity to shed light on what types of data will703

18

Figure 9: The additional N -MAE trade-off curves for learned index methods.

benefit from our dynamic adjustment? To be specific, we calculate the CV values of the experimental704

datasets and compare them with the trade-off improvements. The global CV values of IoT, Map,705

Lognormal and Weblogs are 65.24, 11.12, 0.85, and 0.013 respectively, while their AUNEC improved706

by 20.71%, 6.47%, 21.89% and 26.96% respectively. With the exception of IoT, the rest of the results707

show that the smaller the CV value is, the greater the trade-off improvement of dynamic ✏ brings.708

We find that IoT is a locally linear but globally fluctuant dataset. We then divide the data into 5000709

segments and calculate their average CV values. The local CV values of IoT, Map, Lognormal710

and Weblogs are 0.95, 2.18, 0.63, and 0.005 respectively, which is consistent with the improvement711

trends. Intuitively, when the local CV value is small, the local data is hard-to-fit with a few linear712

segments if we adopt an improper ✏, and we need more fine-grained ✏ adjustment rather than the713

fixed setting. Thus we can expect more performance improvements in this case. The calculation714

of actual CV values of real-world datasets helps to validate our ✏ analysis based on the CV values,715

and provides further insight into the scenarios where the proposed method has strong potential to716

outperform existing methods.717

Ablation Study. To examine the necessity and the effectiveness of the proposed framework, in718

Section 4.3, we compare the proposed framework with three dynamic ✏ variants for the FITing-Tree719

method. Here we demonstrate the AUNEC relative changes for the Radix-Spline method with the720

same three variants in Table 4 and similar conclusions can be drawn.721

Theoretical Validation. In Section 4.4, we show that all the learned index baseline methods learn722

similar segment slopes on the Map dataset. Here we illustrate the learned slope results on the IoT,723

Weblogs and Lognormal datasets in Figure 11, which supports the Theorem 2 that the learned segment724

slopes concentrate on the 1/µi with a bounded relative difference.725

19

Figure 10: Improvements in terms of querying time for learned index methods with dynamic ✏.

Besides, for the comparison between the theoretical bounds and the actual SegErri of all the adopted726

learned index methods, we show more results on another two datasets Gamma and Uniform in Figure727

12, where the key intervals of the two datasets follow gamma distribution and uniform distribution728

respectively. These results show that the MET method gains actual SegErri within the bounds,729

verifying the correctness of the Theorem 1 again. Here all the learned index methods also achieve the730

same trends, showing that these methods have the same mathematical forms w.r.t. the SegErri, ✏731

and µ/�, and hence the ✏-learner can effectively learn the estimator and adaptively choose suitable ✏.732

20

Table 4: The AUNEC relative changes of dynamic ✏ variants compared to the Radix-Spline method
with the proposed framework.

Random ✏
Polynomial

Learner
Least Square

Learner

Weblogs +81.23% +56.20% -9.56%
IoT +74.78% +53.28% +9.81%
Map +60.67% +7.34% +0.45%

Lognormal +83.16% +55.01% �11.23%
Average +74.96% +42.96% �2.63%

0.85 0.90 0.95 1.00
1/µi

0.85

0.90

0.95

1.00

a
i

Weblogs Dataset
ai = 1/µi

FITing-Tree

RadixSpline

PGM

0.25 0.30 0.35
1/µi

0.25

0.30

0.35

a
i

Lognormal Dataset
ai = 1/µi

FITing-Tree

RadixSpline

PGM

Figure 11: Learned slopes on the IoT, Weblogs and Lognormal datasets.

100 200 300 400
�

0

5

10

15

20

25

30

35

40

L
o
g
(S

eg
E
rr

)

Gamma, k = 1.0, � = 1.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
�

0

5

10

15

20

25

30

35

40

L
o
g
(S

eg
E
rr

)

Gamma, k = 2.0, � = 3.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
�

0

5

10

15

20

25

30

35

40

L
o
g
(S

eg
E
rr

)

Gamma, k = 3.0, � = 6.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
�

0

5

10

15

20

25

30

35

40

L
o
g
(S

eg
E
rr

)

Uniform, low = 0.0, high = 1.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
�

0

5

10

15

20

25

30

35

40

L
o
g
(S

eg
E
rr

)

Uniform, low = 0.0, high = 10.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
�

0

5

10

15

20

25

30

35

40

L
o
g
(S

eg
E
rr

)

Uniform, low = 10.0, high = 100.0
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

Figure 12: Illustrations of the derived bounds on Gamma and Uniform datasets.

21

	Introduction

