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Supplementary Material

In this supplementary material we report additional re-
sults, visualizations, and implementation details that could
not be included in the main paper due to space limitations.
We begin by providing evidence in Section 1 that GRIN can
be minimally modified to process multiple images, achiev-
ing state of the art results in generalized stereo depth estima-
tion as well. Afterwards, in Section 2 we show additional
visualizations on different evaluation benchmarks, and in
Section in Section 3 we qualitatively ablate the effects of
global conditioning. We then ablate the effect of large-scale,
image-text pre-training on GRIN depth estimation perfor-
mance in Section 4, provide additional architecture details
in Section 5, and finally in Section 6 we discuss potential
limitations of our proposed architecture.

1. Generalized Stereo Depth Estimation

Although our main focus is zero-shot metric monocular
depth estimation, here we explore how GRIN can be min-
imally modified to accommodate multi-view tasks. This
is achieved by globally conditioning the diffusion process
on information from multiple images, with geometric em-
beddings calculated relative to a shared frame of reference.
This extension requires known relative camera extrinsics
T =

[
R t
0 1

]
. This information is used to augment the ge-

ometric embeddings (Section 4.2 of the main paper) such
that rjk = (KR)−1 [ujk, vjk, 1]

T and tjk = [x, y, z]
T . This

is aligned with a recent trend of implicit multi-view geome-
try [4, 5, 24], in which explicit constraints such as epipolar
projections and cost volumes [7, 23] are eschewed in fa-
vor of input-level inductive biases that enable the implicit
learning of useful multi-view correlations. Local condition-
ing remains the same, thus allowing the generation of pixel-
level predictions from specific (or multiple) viewpoints.

Note that, because in our monocular experiments we
used a canonical camera transformation T =

[
I 0
0 1

]
to pro-

duce geometric embeddings, the same model can be directly
repurposed for the multi-view setting. Thus, we fine-tuned
our pre-trained monocular GRIN model on a combination
of the stereo split of ScanNet [2], with 94212 training pairs;
and DeMoN [20], with 166285 training pairs collected from
three distinct datasets: SUN3D [22], RGBD-SLAM [19],
and Scenes11 [20]. Evaluation was performed in-domain,
on the test splits from the same datasets following [10],
with results in Table 1. As we can see, GRIN also achieves
state of the art performance in stereo depth estimation, out-
performing methods that rely on explicit multi-view geome-
try as well as recent implicit multi-view geometry methods.

Method Abs.Rel.↓ RMSE↓

Sc
an

N
et

DPSNet [7] 0.126 0.315
NAS [10] 0.107 0.281
IIB [24] 0.116 0.281
DeFiNe [3] 0.093 0.246
GRIN 0.088 0.224

SU
N

3D

DeepMVS [6] 0.282 0.944
DPSNet [7] 0.147 0.449
NAS [10] 0.127 0.378
IIB [24] 0.099 0.293
GRIN 0.097 0.274

R
G

B
D

DeepMVS [6] 0.294 0.868
DPSNet [7] 0.151 0.695
NAS [10] 0.131 0.619
IIB [24] 0.095 0.550
GRIN 0.092 0.512

Table 1. Stereo depth estimation results. The same GRIN model
was used in all evaluations, with quantitative results on the left and
qualitative examples on the right.

2. Additional Qualitative Results

In Figure 1 we show additional GRIN qualitative results on
different indoor and outdoor images from our evaluation
benchmarks. We used the same model from our quantita-
tive evaluation (Table 1, main paper) to produce these re-
sults. Due to the generative properties of GRIN, we can
obtain multiple depth predictions from the same input im-
age, and use those to (i) improve accuracy by calculating
the median of all samples, as shown in the middle rows;
and (ii) produce an uncertainty map by calculating the stan-
dard deviation of all samples, as shown in the bottom rows.
From these results we can see that the calculated uncertainty
maps follow our expectations, i.e., longer ranges are less
accurate, as well as object boundaries and sharp discontinu-
ities. Interestingly, these uncertainty maps also accurately
detect failure cases of our model, such as the mirror on the
bottom of the second column, due to the higher variance
between predictions. Similarly, in Figure 2 we show recon-
structed pointclouds generated from GRIN predicted depth
maps, unprojected to 3D via the camera intrinsics.

3. Effects of Global Conditioning

In Figure 3 we ablate the effects of global conditioning by
incrementally removing a percentage of global vectors dur-
ing inference. As we can see, quality degrades as we de-
crease the amount of global information available to con-
dition the diffusion process, and this degradation takes the
form of less-defined boundaries and overall loss of fine-
grained details. Interestingly, removing 50% of global vec-
tors does not affect results significantly, and it is still possi-



Figure 1. Zero-shot GRIN qualitative results, including input image (top), predicted depth map (middle), and uncertainty map (bottom).

ble to observe details in the predicted depth map with as few
as 25%. We attribute this robustness to our dropout strat-
egy (Section 4.4, main paper), that promotes robustness to
sparse global conditioning. However, as shown in our abla-
tion study (Table 2, main paper), the introduction of global
conditioning significantly improves results, relative to the
baseline of using only local conditioning on sparse data.

4. Image-Text Pre-Training

We now ablate the effect of large-scale pre-training and re-
port the results in Table 2. To this end, we follow [13] and
pre-train GRIN on 400M text-image pairs [17] for the task
of text-to-image diffusion. We set the image resolution to
256×256 and use a VQ encoder [26] with a down-sampling
factor of 4. Captions are encoded with CLIP [12] (the ViT-



Figure 2. Zero-shot reconstructed pointclouds, obtained by unprojecting RGB pixels onto 3D space using GRIN depth predictions and
camera intrinsics.

L/14 variant) and conditioning is performed by concatenat-
ing the caption encoding to the RIN latent tokens. We train
the model for 1 million iterations with a batch size of 1024
using the LION optimizer [1] and a learning rate of 1.5e-5
and weight decay of 2.0e-1. Following [8], we use a warm
up schedule and a cosine learning rate decay. The resulting

model achieves a comparable Inception Score [14] to that
of StableDiffusion [13] on the COCO validation set [11],
confirming the effectiveness of our pre-training approach.

Quantitative results obtained when training GRIN initial-
ized from this checkpoint, relative to training GRIN from
scratch, are shown in Table 2. Interestingly, starting from a
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Figure 3. Degradation in depth estimation performance when removing global conditioning vectors during inference. The percentage
value indicates how many global conditioning vectors are maintained, randomly sampled from the total of HW

16
vectors.

Method
KITTI NYUv2

AbsRel RMSE δ < 1.25 AbsRel RMSE δ < 1.25

GRIN (LAION) 0.047 2.228 0.979 0.058 0.213 0.978
GRIN (scratch) 0.046 2.251 0.983 0.058 0.209 0.980

Table 2. Effect of large-scale image-text pre-training on zero-
shot GRIN depth estimation results.

pre-trained checkpoint did not improve results significantly.
We hypothesize that this is due to the different target tasks
(i.e. RGB vs depth generation), as well as the availability
of ample target domain data (i.e. depth labels). We leave
as future work a more in-depth evaluation on the trade-off
between text-image pre-training versus the number of target
domain labels.

5. Architecture Details
We implemented GRIN with a Z ∈ R256×1024 latent space,
16 read-write heads, 16 latent heads, and a sequence of 4
RIN blocks, each with a depth of 6. Global image embed-
dings Fglob used a ResNet18 encoder, resulting in HW

16 960-
dimensional vectors that were projected to 512 dimensions
using a 1 × 1 convolutional layer. Local image embed-
dings Floc used a 9 × 9 convolutional layer with reflexive
padding to generate HW 128-dimensional vectors. Geo-
metric embeddings gjk were calculated using 16 bands with
a maximum frequency of 2, based on cameras matching the
resolution of corresponding image embeddings. Depth es-
timates were generated between 0.1 and 200 meters, with
base 10 for the log-scale parameterization. During train-
ing, we subsampled L = 1024 valid pixels as supervision,
and G = 2048 global embeddings for conditioning. During
inference, following [9] we generate 10 estimates by sam-
pling different noise values and output the median value as
our final prediction. In total, our implemented GRIN ar-
chitecture has 341, 563, 599 parameters. We build upon the

open-source RIN PyTorch implementation from [21]. For
additional details, we refer the reader to the supplementary
material. Our code and pre-trained models will be made
available upon acceptance.

6. Limitations
GRIN enables training with unstructured sparse data by op-
erating at the pixel-level, which removes the need for latent
autoencoders that require inputs with explicit spatial struc-
ture (i.e., 2D image grids). This is possible in large part due
to the efficiency inherent to the RIN architecture, with bot-
tleneck latent tokens where self-attention is computed. Al-
though powerful, further work is still required to improve
efficiency, especially during inference due to the multiple
denoising steps required to produce depth estimates. Re-
cent developments in how to speed up image generation,
such as sample efficient denoising [18] and distillation [25],
should improve performance significantly. In accordance to
[16], we have noticed that log-space depth parameterization
improves performance, however there is still some trade-
off between accuracy in shorter and longer ranges (Table 2,
main paper) that we believe can be addressed with better
parameterization and the use of alternative diffusion objec-
tives [15]. Moreover, we noticed some instability during
training, both in terms of the optimizer choice (LION [1]
performed the best) and learning rate (larger learning rates
led to mid-training divergence). We also observed some
sensitivity to the training datasets, ensuring a similar ratio
of real-world and synthetic datasets, as well as indoor and
outdoor datasets, was key to achieving our reported perfor-
mance.
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