
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RAC-LORA: A THEORETICAL OPTIMIZATION
FRAMEWORK FOR LOW-RANK ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning has become a popular approach to adapting large foundational mod-
els to specific tasks. As the size of models and datasets grows, parameter-efficient
fine-tuning techniques are increasingly important. One of the most widely used
methods is Low-Rank Adaptation (LoRA), with adaptation update expressed as the
product of two low-rank matrices. While LoRA was shown to possess strong per-
formance in fine-tuning, it often underperforms when compared to full-parameter
fine-tuning (FPFT). Although many variants of LoRA have been extensively stud-
ied empirically, their theoretical optimization analysis is heavily under-explored.
The starting point of our work is a demonstration that LoRA and its two extensions,
Asymmetric LoRA and Chain of LoRA, indeed encounter convergence issues. To
address these issues, we propose a general optimization framework that rigorously
analyzes the convergence rates of LoRA-based methods. Our approach inherits the
empirical benefits of LoRA-style heuristics, but introduces several small but impor-
tant algorithmic modifications which turn it into a provably convergent method.
Our framework serves as a bridge between FPFT and low-rank adaptation. We
provide provable guarantees of convergence to the same solution as FPFT, along
with the rate of convergence. Additionally, we present a convergence analysis for
smooth, non-convex loss functions, covering gradient descent, stochastic gradient
descent, and federated learning settings. Our theoretical findings are supported by
experimental results.

1 INTRODUCTION

Many real-world Deep Learning (DL) applications require adapting a large pre-trained model to
specific tasks in order to improve its performance (Church et al., 2021). This process, known as
fine-tuning, involves adjusting the model from its pre-trained state to better handle the nuances of
particular tasks or domains. Fine-tuning is a specialized form of transfer learning, where knowledge
gained during pre-training is adapted for new, specific applications (Vrbančič & Podgorelec, 2020).

Parameter-Efficient Fine-Tuning. While fine-tuning all model parameters has been effective, mod-
ern models with billions of parameters pose significant challenges due to their scale. Full-parameter
fine-tuning is often computationally impractical with standard resources. To address this challenge,
Parameter-Efficient Fine-Tuning (PEFT) (He et al., 2021) has emerged as a solution, focusing on up-
dating a subset of parameters only (Richtárik & Takáč, 2016), or adding task-specific modules (Xu
et al., 2023). PEFT reduces computational costs by modifying fewer parameters or adding external
modules, enabling more efficient resource use and lowering storage requirements. This approach
significantly reduces both training time and computational demands, making it a practical solution
for adapting large models to new tasks (Han et al., 2024).

1.1 LOW-RANK ADAPTATION (LORA)

One of the most popular PEFT methods is Low-Rank Adaptation (LoRA) (Hu et al., 2021). The core
idea behind LoRA is that fine-tuning large pre-trained models can be effectively achieved by utilizing
lower-dimensional parameter spaces (Li et al., 2018; Aghajanyan et al., 2020). Instead of updating
all parameters of a large and potentially dense matrix associated with the weights of a linear layer,
LoRA works with the product of two trainable low-rank matrices, which significantly reduces the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

number of parameters updated during fine-tuning. These matrices are trained such that their product
is added to the pre-trained model weights.

In LoRA (Hu et al., 2021), the weight adaptation is represented as the product of two low-rank
matrices (and a scalar multiplier), resulting in the final model

W = W 0 +
α

r
BA,

where W 0 ∈ Rm×n, B ∈ Rm×r, and A ∈ Rr×n. Here, r and α respectively denote the LoRA
rank and its scaling factor. Typically, since the dimensions of (particularly deep learning) models
are enormous, we have rank r ≪ min{m,n}. This approach saves computational resources and
minimizes the risk of overfitting or catastrophic forgetting (Biderman et al., 2024). Hence, LoRA has
become a lightweight and efficient technique for adapting large models to various tasks, particularly
in resource-constrained environments (Sun et al., 2022). It is important to note that W 0 remains
fixed and does not receive updates, while A and B are optimized during the training process. The
scaling factor α serves as a “step size” for the adaptation, and it is normalized by rank r. The matrix
A is typically initialized with random Gaussian values, while the matrix B is set to zero, ensuring
∆W = 0 at the start of training. Alternative initialization strategies were explored by Zhu et al.
(2024).

1.2 CHAIN OF LORA (COLA)

While LoRA offers significant computational advantages in practice, it remains less effective than
full-parameter fine-tuning (FPFT) if efficiency is not a major concern (Biderman et al., 2024). To
balance efficiency and performance, Xia et al. (2024) proposed an iterative method called Chain of
LoRA (COLA). Essentially, COLA simply means the successive application of several LoRA updates.

Chain of LoRA (COLA) constructs a sequence of LoRA modules through an iterative process of
parameter fine-tuning, merging, and extending. The chain length is defined by the number of op-
timized LoRA modules. COLA’s central concept involves applying LoRA adaptations iteratively T
times. COLA can be summarized as training a LoRA module, merging the updates with the fixed pa-
rameters, reinitializing the LoRA matrices, and repeating the process (Xia et al., 2024). The resulting
model can be represented by:

W = W 0 +
α

r

T−1∑
t=0

BtAt,

where At and Bt indicate the low-rank matrices in the t-th block in the chain, which are typically
initialized in the same manner as in standard LoRA. The motivation behind COLA is that standard
LoRA may clearly fail to find the optimal adaptation since such an adaptation may not in general
be of a low rank. To address this, COLA proposes using a sequence of low-rank matrix decomposi-
tions to approximate a middle-to-high-rank update. The hypothesis is that this sequence of updates
can provide a better approximation than a single LoRA adaptation and may be easier to optimize
compared to learning the optimal adaptation from scratch.

2 PROBLEM FORMULATION AND SUMMARY OF CONTRIBUTIONS

2.1 PROBLEM FORMULATION

The primary approach for training supervised machine learning models is to formulate the task as an
optimization problem where the goal is to minimize a loss function, which measures the discrepancy
between the model’s predictions and the actual outcomes. In this work, we explore this optimization
problem in the specific context of fine-tuning, where a pre-trained model is adapted to a new task or
dataset, requiring efficient adjustments to its parameters to achieve better performance on the target
task. In particular, we consider the model-agnostic problem formulation

min
∆W∈Rm×n

f(W 0 +∆W), (1)

where W 0 ∈ Rm×n represents the parameters of a pre-trained model (or of a single linear layer,
with the others being fixed), and ∆W ∈ Rm×n denotes the adaptation term. The function f :

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Sections where we conduct a theoretical convergence analysis of RAC-LoRA for solving
Problem (1) when using a specific optimizer for approximately solving the subproblem in Step 4.
The results for the RAC-LoRA + GD combination are described in Section 5, while the proofs can
be founded in Appendix C. The results and proofs for all other combinations can be found in the
indicated appendices.

Problem Fine-tuner Subproblem Optimizer Non-convex PL
(1) RAC-LoRA Gradient Descent (GD) C.1 C.2
(1) RAC-LoRA Random Reshuffling (RR) D.1 D.2
(1) RAC-LoRA Stochastic Gradient Descent (SGD) E.1 E.2
(15) Fed-RAC-LoRA Random Reshuffling (RR) F.1 F.2

Rm×n → R corresponds to the empirical loss over the adaptation dataset, or any other loss function
of interest. As the total dimensionality m × n is typically very large for deep learning models, the
adaptation term ∆W needs to have a specific structure to be feasible in real-world applications.

2.2 NO REASONABLE THEORY FOR LOW-RANK ADAPTATION

We claim that a satisfying theoretical understanding of prevalent fine-tuning methods based on low-
rank updates, such as LoRA and COLA, is lacking.

• First, as already noted by Sun et al. (2024), the LoRA re-parameterization of the domain
effectively transforms a smooth Lipschitz loss into a non-smooth Lipschitz loss, which
poses additional theoretical challenges to those related to proper handling of the low-rank
structure of the updates. While this hints at a possible source of issues with providing a
good theory for methods based on low-rank adaptation, this observation does not on its
own mean that a good theory is impossible to obtain.

• More importantly, the existing theoretical analysis of COLA (Xia et al., 2024) replaces low-
rank optimization over matrices A and B with full-rank matrix optimization (∆W). This
makes the theoretical analysis irrelevant at worst and unsatisfactory at best as it completely
ignores to model and to explain the key component of LoRA: low-rank updates.

• Third, it is known that LoRA can be highly sensitive to the choice of the hyper-parameters
(Khodak et al., 2021; Kuang et al., 2024). A good theory should be able to explain or
remove this issue. No such theory exists, to the best of our knowledge.

• Finally, and this is the true starting point of our exploration in this work, we observe that
COLA may simply fail to converge to the optimal solution. We give a simple example (with
3×3 matrices) of this divergence behavior in Section 3. Hence, COLA is merely a heuristic.
Providing a fix is an open problem – the problem we address in this work.

While clearly LoRA and COLA are enormously useful in practice, these methods remain mere heuris-
tics since they do not come with solid theoretical backing. This is problematic and raises valid
concerns about the robustness and reliability of LoRA-type methods in scenarios beyond current
datasets, models and practice.

2.3 CONTRIBUTIONS

To address the aforementioned fundamental issues of LoRA-type heuristics, and to firmly ground the
fine-tuning-via-low-rank adaptation line of work in a theoretically sound algorithmic framework,
we propose a new generic low-rank adaptation framework for which we coin the name Randomized
Asymmetric Chain of LoRA (RAC-LoRA); see Algorithm 1.

• Similarly to COLA (Xia et al., 2024), our method is iterative: we perform a chain of low-
rank updates (see Step 2 in Algorithm 1). In each step of the chain, one matrix (e.g., A)
is chosen randomly from a pre-defined distribution, and the other (e.g., B) is trainable (see
Step 3 in Algorithm 1). Which of these two update matrices is chosen randomly and which
one is trainable is decided a-priori, and hence our method is asymmetric in nature, similarly
to AsymmLoRA (Zhu et al., 2024). We propose two options, depending on which matrix is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

trainable and which one is chosen randomly: in Option 1, A is trainable, and in Option 2,
B is trainable.

• In order to make our framework flexible, we offer a variety of strategies for updating the
trainable matrix in each step of the chain. This is possible since in each such step we
formulate an auxiliary optimization subproblem in the trainable matrix, and once can thus
chose essentially any optimizer for approximately solving it (see Step 4 in Algorithm 1).
We theoretically analyze several such optimizers within our RAC-LoRA framework, includ-
ing Gradient Descent (GD) in Appendix C (however, we include and describe the theorems
in Section 5.2), Random Reshuffling RR in Appendix D, and Stochastic Gradient Descent
(SGD) in Appendix E. See Table 1 for a quick overview. Our analysis applies to the smooth
nonconvex regime, in which we prove fast sublinear (i.e., O(1/T)) convergence rates to a
stationary point, and fast linear (i.e., O(e−T)) rates to the globally optimal solution under
the Polyak-Łojasiewicz (PL) condition.

• The update is applied (see Step 5 in Algorithm 1), and the method moves on to the next
step of the chain.

Experiments. We apply our method to several machine learning tasks. We start from convex
problems with traditional models, such as logistic and linear regression, to provide clear illustrations
of our theoretical findings. In addition, we present empirical analyses for multilayer perception
(MLP) on MNIST and RoBERTa on the GLUE benchmark tasks (Wang, 2018). See Appendix 6.

Federated Learning. Furthermore, we extend our findings from the simple problem (1) to the more
challenging distributed/federated problem (15), where we consider solving a distributed optimiza-
tion problem via our new Fed-RAC-LoRA method (Algorithm 2). These additional results can be
found in Section F. For illustrative purposes, we provide an analysis for RR as the optimizer for the
subproblem; see also Table 1. Previous research (Sun et al., 2024) has shown that using a single
learnable matrix in this context provides several key advantages, particularly in terms of preserving
privacy, ensuring the correctness of model aggregation, and maintaining stability when adjusting the
scaling factor (Sun et al., 2024). These benefits are crucial in Federated Learning (Konečný et al.,
2016), where data is distributed across multiple clients, and privacy constraints must be upheld
while performing model updates. Building on this asymmetric approach, we integrate the concept
of chained updates to develop Fed-RAC-LoRA, a more robust and scalable distributed method. Our
approach maintains the computational efficiency of the original RAC-LoRA while ensuring rigorous
convergence properties in the distributed setting, offering a theoretically sound method for large-
scale Federated Learning scenarios.

3 SHINING SOME LIGHT ON LORA’S CONVERGENCE ISSUES

In contemporary machine learning, loss function minimization is primarily accomplished using
gradient-based (first-order) optimization techniques (Ruder, 2016). Most advanced methods build
on the vanilla Gradient Descent (GD) in various ways, e.g., by adding support for stochastic approx-
imation, momentum, adaptive stepsizes and more (Shapiro & Wardi, 1996; Gower et al., 2019).

It is therefore meaningful to start our exploration of LoRA-style methods in connection with GD
steps. In particular, we analyze the update process of LoRA matrices through a GD step, focusing
on the application of the chain rule of differentiation. The gradient with respect to the low-rank
matrices B and A consists of two components,

∇B,Af(W +
α

r
BA) =

(
∇Af(W + α

rBA)
∇Bf(W + α

rBA)

)
=

α

r

(
∇B⊤f(W + α

rBA)
∇f(W + α

rBA)A⊤

)
.

and hence the update rules for the matrices A and B are given by

A+ = A− η
α

r
B⊤∇f(W +

α

r
BA), B+ = B − η

α

r
∇f(W +

α

r
BA)A⊤,

where η > 0 is a step size, and A+ and B+ are the updated matrices. Since both A and B are train-
able, the gradients are multiplied by B⊤ and A⊤, which adds complexity to the optimization process
and complicates the interpretation of its evolution. This interaction between low-rank matrices and
gradients creates a non-trivial structure that challenges rigorous analysis and may disrupt Lipschitz

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
of gradients

10 2

10 1

100

101

f(W
t)

f*

RAC-LoRA, lr = 1/L
LoRA, lr = 1/L
LoRA, lr = 1/(10L)
LoRA, lr = 1/(20L)
LoRA, lr = 1/(50L)
LoRA, lr = 1/(100L)

0 50 100 150 200 250 300
of gradients

10 3

10 2

10 1

100

101

f(W
t)

f*

RAC-LoRA, lr = 1/L
AsymmLoRA, lr = 1/L
AsymmLoRA, lr = 1/(2L)
AsymmLoRA, lr = 1/(5L)
AsymmLoRA, lr = 1/(10L)

0 50 100 150 200 250 300
of gradients

10 1

100

101

f(W
t)

f*

RAC-LoRA, lr = 1/L, iters per block = 1
COLA, lr = 1/L, iters per block = 1
COLA, lr = 1/L, iters per block = 2
COLA, lr = 1/L, iters per block = 1
COLA, lr = 1/L, iters per block = 4
COLA, lr = 1/L, iters per block = 5
COLA, lr = 1/L, iters per block = 10

Figure 1: Convergence of LoRA, Asymmetric LoRA (AsymmLoRA), Chain of LoRA (COLA), and
our proposed Randomized Asymmetric Chain of LoRA (RAC-LoRA) on the problem in Equation 2.

continuity, raising concerns about convergence guarantees. While LoRA is effective for deep learn-
ing adaptation, a deeper understanding of this process is needed to ensure that the optimization
scheme is theoretically sound.

Loss of Lipschitz smoothness. Lipschitz continuity of the gradient is a commonly invoked as-
sumption in the theoretical analysis of gradient-based optimization methods (Zhou, 2018; Khaled &
Richtárik, 2020; Demidovich et al., 2023). This property ensures that the gradient does not change
too rapidly, which in turn guarantees a controlled behavior of the optimization process, and plays
a key role in establishing convergence rates and in providing stability guarantees for various opti-
mization algorithms (Nesterov, 2004; Sun, 2020). A formal definition follows.
Assumption 3.1 (Lipschitz Gradient). Function f is differentiable, and there exists L > 0 such that

∥∇f(W)−∇f(V)∥ ≤ L∥W − V ∥, ∀W,V ∈ Rm×n,

where ∥·∥ denotes the Frobenius matrix norm, the gradient is computed w.r.t. the trace inner product.

However, the property of Lipschitz smoothness does not necessarily hold when applying LoRA adap-
tation. Specifically, even if the original function f(W) is Lipschitz smooth, meaning that the gradi-
ent of f(W) satisfies the Lipschitz continuity condition (as stated in Assumption 3.1), this smooth-
ness property is generally lost when the function is expressed in the adapted form f(W 0 + BA).
In particular, the function f(W 0 + BA) is not Lipschitz smooth with respect to the set of variables
{B,A} for any constant. This breakdown of smoothness is a significant limitation, as it complicates
the theoretical analysis of optimization algorithms when using LoRA. The formal proof of this result
is provided in Theorem 2 of the work by Sun et al. (2024), highlighting the challenges in extending
standard gradient-based methods to such adaptations.

Numerical counterexample. We present a clear and illustrative example demonstrating that the
LoRA and COLA methods may not converge to the solution of the optimization problem. To illustrate
this, let us consider a quadratic function of the following form:

f(x) = x⊤Mx+ b⊤x, (2)

where x ∈ Rd is a vector of parameters, M ∈ Rd×d is a positive definite matrix, and b ∈ Rd

is a vector corresponding to the linear term. In our numerical example, we consider d = 9,
M = Diag(10, 1, 1, 1, 1, 1, 1, 1, 1), and b = (1, 1, 1, 1, 1, 1, 1, 1, 1)⊤. This function has a Lipschitz
gradient (Assumption 3.1) with L = 10. We represent the vector x ∈ R9 as a matrix W ∈ R3×3. In
the LoRA adaptation, we use a rank r = 1 and set α = r.

Figure 1 shows experiments on LoRA, AsymmLoRA, our RAC-LoRA, and COLA. In the case of
COLA, we varied the step sizes and the number of gradients per block. Our results indicate that, when
using the theoretical step size 1

L , both LoRA and COLA may diverge, while AsymmLoRA converges
to a different stationary point. When smaller step sizes are applied to LoRA and COLA, these methods
do converge, but to a stationary point that is significantly distant from the optimal solution. In
contrast, our RAC-LoRA converges linearly to the optimal solution without such issues. These results
provide clear evidence that the choice of LoRA-type updates has a significant impact on both the
convergence and the quality of the final solution. The divergence, convergence to suboptimal points,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Randomized Asymmetric Chain of LoRA (RAC-LoRA)
1: Parameters: pre-trained model W 0 ∈ Rm×n, rank r ≪ min{m,n}, learning rate γ > 0,

scaling factor α > 0, chain length T , sketch distribution DB
S (Option 1) or DA

S (Option 2).
2: for t = 0, 1, . . . , T − 1 do
3: Sample a sketch matrix

(Option 1) Bt
S ∼ DB

S (Option 2) At
S ∼ DA

S

4: Using some iterative solver, approximately solve the subproblem

(Option 1) Ât ≈ min
A

f(W t +
α

r
Bt

SA) (Option 2) B̂t ≈ min
B

f(W t +
α

r
BAt

S)

5: Apply the update

(Option 1) W t+1 = W t +
α

r
Bt

SÂ
t (Option 2) W t+1 = W t +

α

r
B̂tAt

S

6: end for

and sensitivity to step sizes in traditional methods underscore the need for careful selection and
design of update mechanisms. Our findings suggest that RAC-LoRA offers a more reliable approach
for achieving optimal solutions in the context of LoRA-based adaptations.

4 RANDOMIZED ASYMMETRIC CHAIN OF LORA (RAC-LORA)

To address the convergence issues in LoRA updates, we propose Randomized Asymmetric Chain of
LoRA (RAC-LoRA). This method introduces an asymmetric LoRA mechanism with a chain-based
structure to enhance convergence while preserving model flexibility and efficiency. The method is
summarized in Algorithm 1.

Description of the algorithm. At the start of each iteration (or block), one matrix is randomly ini-
tialized and fixed throughout training, while the other remains fully trainable. This strategy prevents
optimization within a restricted subspace, reducing the risk of convergence to suboptimal points.
There are two configurations: freeze matrix B and train A, or freeze A and train B. We now for-
mally define the sampling/sketch schemes.
Definition 4.1 (Left Sketch). By a “left sketch” (of rank r) we refer to the update rule

∆W =
α

r
BSÂ,

where BS ∼ DB is sampled from some fixed distribution over matrices of dimensions n × r, and
only the matrix Â is adjustable.
Definition 4.2 (Right Sketch). By a “right sketch” (of rank r) we refer to the update rule

∆W =
α

r
B̂AS ,

where AS ∼ DA is sampled from some fixed distribution over matrices of dimensions r × m, and
only the matrix B̂ is adjustable.

In both sampling schemes, we update the trainable matrix over several epochs. This step effec-
tively corresponds to training a LoRA block within the chain, following the standard LoRA approach.
While this procedure mirrors the conventional LoRA method, we can formally characterize it as an
approximate optimization problem, allowing for a structured analysis of the training process. These
procedures for both matrices can be formally expressed via

(Option 1) Ât ≈ min
A

f(W t +
α

r
Bt

SA) (Option 2) B̂t ≈ min
B

f(W t +
α

r
BAt

S).

Similarly to COLA, t identifies the block in the chain. Next, we incorporate the product of the
trained matrix and the sampled matrix into the current model. The merging process involves adding

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the product of the two matrices—one sampled and the other trained. This addition is scaled by a
factor of α

r , ensuring the appropriate weighting of the update within the model:

(Option 1) W t+1 = W t +
α

r
Bt

SÂ
t (Option 2) W t+1 = W t +

α

r
B̂tAt

S .

5 THEORY

5.1 DERIVATION OF THE UPDATE STEP

Without loss of generality, let us focus on the Left Sketch scheme (Definition 4.1). Specifically, for
each model in the chain, the update rule is given as follows:

W t+1 = W t +
α

r
Bt

SÂ
t.

Next, we apply the Lipschitz gradient condition (Assumption 3.1) to the loss function f :

f(U) ≤ f(V) + ⟨∇f(V), U − V ⟩+ L

2
∥U − V ∥2F , ∀U, V ∈ Rm×n

Applying this with U = W t, V = Bt
SÂ

t and η ≤ 1
L leads to

f(W t+1) ≤ f(W t) + ⟨∇f(W t), Bt
SÂ

t⟩+ L

2
∥Bt

SÂ
t∥2F

≤ f(W t) + ⟨(Bt
S)

⊤∇f(W t), Ât⟩+ 1

2η
⟨(Bt

S)
⊤Bt

SÂ
t, Ât⟩.

Let us minimize the left hand side term in Ât, when the gradient vanishes: (Bt
S)

⊤∇f(W t) +
1
η (B

t
S)

⊤(Bt
S)Â

t = 0. One such solution is given by1

Ât = −η
(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤∇f(W t),

and his leads to the following gradient update:

W t+1 = W t +
α

r
Bt

SÂ
t = W t − α

r
ηBt

S

(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤∇f(W t)

= W t − γHt
B∇f(W t), (3)

where Ht
B = Bt

S

(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤ is projection matrix and α
r η = γ. Similarly, we can obtain

the update for Right Sketch scheme (Definition 4.2):

W t+1 = W t − γ∇f(W t)(At
S)

⊤ (At
S(A

t
S)

⊤)† At
S = W t − γ∇f(W t)Ht

A, (4)

where Ht
A = (At

S)
⊤ (At

S(A
t
S)

⊤)† At
S is also projection matrix. Notably, the scaling factor α

r is
combined with the parameter η, allowing us to work with the effective step size γ. This simplifies
the learning process by unifying the scaling and learning rate. Using this type of update, we provide
convergence results for both standard and stochastic gradient descent methods.

5.2 CONVERGENCE RESULTS

To derive the convergence results, a key factor in our analysis is the smallest eigenvalue of the ex-
pected value of the projection matrix introduced in Section 5.1. This eigenvalue plays a critical role
in shaping the optimization process. As we will show, a well-conditioned projection matrix—with a
sufficiently large smallest eigenvalue—ensures more efficient and reliable convergence. Therefore,
we make an important assumption that this smallest eigenvalue must remain strictly positive.
Assumption 5.1. Consider a projection matrix H generated by Left Sketch 4.1 or Right Sketch 4.2.
Assume that the sampling distributions DB

S and DA
S are such that the smallest eigenvalue of the

expected projection matrix H generated by sampled matrix is positive:

λH
min = λmin [E [H]] > 0.

1The dagger notation refers to the Moore-Penrose pseudoinverse.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In particular, it is important to observe that the eigenvalues of the projection matrix are either zero or
one, with the smallest eigenvalue being zero. However, the smallest eigenvalue of the expected value
of the projection matrix can be strictly greater than zero. Additionally, it is essential to establish a
lower bound for the loss function.
Remark. Assumption 5.1 is easily satisfied. Let H be the projection matrix as defined below Equa-
tion (4) and assume that the A matrices are drawn from an isotropic distribution (the rows of A are
isotropic). Then H is the projection onto the rank of A, which is a subspace of dimension r dis-
tributed isotropically in Rn. The matrix E[H] is then invariant under rotations, so must be a scalar
multiple of the identity. By taking traces, one finds that E[H] = r

nI so λH
min = r

n .
Assumption 5.2. Function f is bounded from below by an infimum f⋆ ∈ R.

We now present the convergence result for RAC-LoRA with Gradient Descent (GD) updates.
Theorem 5.3. Let Assumptions 3.1 and 5.1 hold, and let the stepsize satisfy 0 < γ ≤ 1

L . Then, the
iterates of RAC-LoRA (Algorithm 1) with GD updates (Equation 3 or 4) satisfy

E
[∥∥∥∇f(W̃T)

∥∥∥2] ≤ 2(f(W 0)− f⋆)

λH
minγT

,

where the output W̃T is chosen uniformly at random from W 0,W 1, . . . ,WT−1.

We obtain a sub-linear convergence rate, as is expected in general non-convex settings. To achieve
a stronger convergence result, we employ an additional assumption: the Polyak-Lojasiewicz (PL)
condition. This assumption generalizes strong convexity but applies to certain non-convex functions.
Assumption 5.4 (PL-condition). Function f satisfies the Polyak-Łojasiewicz (PL) condition with
parameter µ > 0 if

1

2
∥∇f(W)∥2 ≥ µ (f(W)− f⋆)

for all W ∈ Rm×n, where f⋆ = inf f , assumed to be finite.

Next, we establish a convergence rate for RAC-LoRA in the Polyak-Łojasiewicz setting.
Theorem 5.5. Let Assumptions 3.1, 5.1 and 5.4 hold, and let the stepsize satisfy 0 < γ ≤ 1

L . Then,
for each T ≥ 0, the iterates of RAC-LoRA (Algorithm 1) with GD updates (Equation 3 or 4) satisfy

E
[
f(WT)

]
− f⋆ ≤

(
1− γµλH

min

)T (
f(W 0)− f⋆

)
.

We achieved a linear convergence rate, which is significantly better than previous results; however,
this improvement applies to a more limited class of functions. Importantly, we can recover the
classical results of GD by setting λH

min = 1, which corresponds to the full-rank scenario.

The comprehensive analysis of different optimizers and their performance across various settings is
provided in the appendix, as summarized in Table 1.

6 EXPERIMENTS

In this section, we explore the performance of RAC-LoRA as an optimization algorithm in machine
learning applications. In Section 6.1 we validate the theoretical results in convex problems, while
in Section 6.2 we evaluate the method applied to neural networks.

6.1 CONVEX OPTIMIZATION PROBLEMS

Linear Regression. We conducted our analysis in a controlled setting involving linear regression
with quadratic regularization applied to synthetic data. Specifically, we utilized 3,000 samples for
pre-training the model and 1,000 samples for fine-tuning. In this setup, we have d = 100 with weight
matrices of size 10× 10, and the regularization term is set to 0.0001. As illustrated in Figure 2, the
method converges for various ranks and the convergence speed is proportional to n

r , and when the
rank is set to the full rank, we observe convergence identical to that of FPFT. We remark that COLA
would suffer from the same divergence behavior as in Figure 1 on this quadratic problem.

Logistic Regression. Analogous results for logistic regression are shown in Appendix A.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
of gradients

10 14

10 11

10 8

10 5

10 2

101

f(W
t)

f*

Full fine-tuning (GD)
RAC-LoRA: rank = 1
RAC-LoRA: rank = 3
RAC-LoRA: rank = 5
RAC-LoRA: rank = 7
RAC-LoRA: rank = 10

0 200 400 600 800 1000
of gradients

10 6

10 5

10 4

10 3

10 2

10 1

100

101

f(W
t)

f*

RAC-LoRA: lr = 1/L
RAC-LoRA: lr = 1/(2L)
RAC-LoRA: lr = 1/(5L)
RAC-LoRA: lr = 1/(10L)
RAC-LoRA: lr = 1/(20L)

Figure 2: RAC-LoRA convergence with varying ranks and step sizes on a linear regression problem.

6.2 NON-CONVEX OPTIMIZATION PROBLEMS

Further experimental results are provided in Appendix B.

6.2.1 RESULTS OF ROBERTA ON NLP TASKS

As in prior work (Zhu et al., 2024; Xia et al., 2024), we evaluate low-rank adaptation methods for
LLMs using the GLUE dataset (Wang, 2018).

Methodology. We fine-tuned the roberta-basemodel (Liu, 2019) on four of the smallest GLUE
tasks to study the behavior of low-rank methods in practical scenarios. For the chained methods,
we use a range of values for the number of chains and epochs per chain hyperparameters. In each
experiment we used rank 2 for the adaptations and trained using the AdamW optimiser (Loshchilov,
2017) with β parameters 0.9 and 0.999, ϵ = 1 × 10−8, a learning rate of 4 × 10−4 with linear
schedule and a training batch size 8.

Discussion. The results are presented in Table 2. We find that RAC-LoRA performs competitively
with other low-rank adaptation methods, but does not outperform Asymmetric LoRA despite having
greater capacity. We expect RAC-LoRA to outperform Asymmetric LoRA in settings where there
is a benefit to the additional capacity, i.e., those where a full parameter fine tune (FPFT) is much
better than Asymmetric LoRA. The performance of the FPFT in Table 2 shows that the selected
GLUE tasks do not provide such a setting. Here, a single low-rank adaptation is already enough
to obtain performance close to that of FPFT. However, this intuition motivates the experiments
in Section 6.2.2 where we intentionally restrict capacity of the adaptations to isolate the effect of the
chaining procedure.

Method # Chains # Epochs MRPC CoLA RTE STS-B Avg
FPFT * 1 30, 80, 80, 40 90.2±0.0 63.6±0.0 78.7±0.0 91.2±0.0 80.9
LoRA * 89.7±0.7 63.4±1.2 86.6±0.7 91.5±0.2 82.8

LoRA 1 100 87.7±0.2 60.8±0.2 75.2±1.5 90.2±0.1 78.5
AsymmLoRA 86.9±0.3 58.7±1.0 71.0±3.3 90.4±0.0 76.8
COLA 10 10 88.0±0.8 59.5±1.0 72.1±0.9 90.7±0.2 77.6
RAC-LoRA 10 10 87.0±0.7 58.5±0.1 72.3±1.5 90.3±0.0 77.0

Table 2: Results with RoBERTa-base for rank 2 on tasks from the GLUE benchmark. *: results taken
from the work of Hu et al. (2021). We report Matthews correlation coefficient for COLA, Pearson
correlation coefficient for STS-B, and accuracy for the remaining tasks. Results are averaged over 3
seeds and standard deviations are given in the subscript.

6.2.2 RESULTS OF MLPS ON MNIST

In this section, we seek to isolate the effect of the chaining procedure on generalisation performance
by restricting the capacity of the low-rank adaptations. This ensures that a single adaptation is
not sufficient to reach performance comparable with FPFT, allowing us to explore how chaining
adaptations can bridge this gap.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: MLP results on MNIST with rank r and α set to 1.
In the case of AsymmLoRA and RAC-LoRA, only the zero-
initialized matrix is trained.

Method DA DB Acc Train Params
FPFT - - 98.0 54,700

LoRA Gaussian Zero 83.8 1K
COLA Gaussian Zero 92.6 1K

LoRA Zero Gaussian 87.0 1K
COLA Zero Gaussian 96.2 1K

AsymmLoRA Gaussian Zero 62.3 133
RAC-LoRA Gaussian Zero 92.0 133

AsymmLoRA Zero Gaussian 81.6 912
RAC-LoRA Zero Gaussian 96.1 912

Methodology. We first pre-train a 3-
layer MLP on the first five classes
(digits 0-4) and then adapt the net-
work using LoRA-based methods for
recognizing the remaining five un-
seen classes (digits 5-9). The model
is evaluated solely on these un-
seen classes2. we used rank 1 for
the adaptations and trained using
the AdamW optimiser (Loshchilov,
2017) with β parameters 0.9 and
0.999, ϵ = 1 × 10−8, a constant
learning rate of 2×10−4 and a train-
ing batch size 128.

Discussion. Table 3 shows results
for MNIST with different ranks and
initialization. LoRA reaches around
90% of the accuracy of FPFT leav-
ing some margin for improvement when using the chains. COLA constructs a sequence of LoRA
modules, delivering significant accuracy improvements over LoRA due to the chaining procedure.
The chaining allows COLA to capture richer features (at the cost of training more parameters). How-
ever, both LoRA and COLA lack rigorous convergence guarantees. AsymmLoRA has been shown em-
pirically to approximate the performance of LoRA in Sun et al. (2024) — but again no convergence
result is provided. Our proposed method (RAC-LoRA) enjoys significant accuracy improvements
over AsymmLoRA, again due to the chaining procedure. RAC-LoRA leverages a diverse learning
process across different LoRA blocks, which intuitively allows the model to capture a broader range
of features. Crucially, RAC-LoRA comes with convergence guarantees (Theorem 5.3 and Theorem
5.5). Finally, we note that each iteration of RAC-LoRA requires training only one matrix per LoRA
block, while COLA needs training two matrices. This reduction in trainable parameters may offer
advantages in resource-constrained settings, such as Federated Learning, where minimizing com-
munication costs is critical.

7 CONCLUSION

In this work, we introduced RAC-LoRA, a framework for parameter-efficient fine-tuning that enables
interpolation between low-rank adaptation and full parameter fine-tuning. Motivated by the conver-
gence challenges of LoRA, we propose the iterative algorithm RAC-LoRA and provide convergence
guarantees across various settings, including gradient descent, stochastic gradient descent, and ran-
dom reshuffling. We extended this framework to the federated learning setup, where RAC-LoRA has
advantages over competing algorithms in terms of communication efficiency. Finally, we validate
our theoretical results empirically in both convex problems, such as linear and logistic regression,
and non-convex problems, such as MLPs and LLMs, finding that its chaining procedure is advanta-
geous in settings where standard low-rank adaptation approaches (such as LoRA and AsymmLoRA)
fail to capture the richness of a full-parameter fine-tuning.

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. SGD with shuffling: Optimal rates without component
convexity and large epoch requirements. Advances in Neural Information Processing Systems, 33:
17526–17535, 2020.

Dimitri P Bertsekas. Incremental proximal methods for large scale convex optimization. Mathemat-
ical Programming, 129(2):163–195, 2011.

2The setup is inspired by https://github.com/sunildkumar/lora_from_scratch/.

10

https://github.com/sunildkumar/lora_from_scratch/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jen-
nings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. LoRA learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Jaeyoung Cha, Jaewook Lee, and Chulhee Yun. Tighter lower bounds for shuffling sgd: Random
permutations and beyond. In International Conference on Machine Learning, pp. 3855–3912.
PMLR, 2023.

Zachary Charles and Jakub Konečnỳ. On the outsized importance of learning rates in local update
methods. arXiv preprint arXiv:2007.00878, 2020.

Yae Jee Cho, Pranay Sharma, Gauri Joshi, Zheng Xu, Satyen Kale, and Tong Zhang. On the con-
vergence of federated averaging with cyclic client participation. In International Conference on
Machine Learning, pp. 5677–5721. PMLR, 2023.

Kenneth Ward Church, Zeyu Chen, and Yanjun Ma. Emerging trends: A gentle introduction to
fine-tuning. Natural Language Engineering, 27(6):763–778, 2021.

Laurent Condat and Peter Richtárik. Randprox: Primal-dual optimization algorithms with random-
ized proximal updates. arXiv preprint arXiv:2207.12891, 2022.

Laurent Condat, Ivan Agarskỳ, Grigory Malinovsky, and Peter Richtárik. Tamuna: Doubly acceler-
ated federated learning with local training, compression, and partial participation. arXiv preprint
arXiv:2302.09832, 2023.

Marina Danilova, Pavel Dvurechensky, Alexander Gasnikov, Eduard Gorbunov, Sergey Guminov,
Dmitry Kamzolov, and Innokentiy Shibaev. Recent theoretical advances in non-convex optimiza-
tion. In High-Dimensional Optimization and Probability: With a View Towards Data Science, pp.
79–163. Springer, 2022.

Yury Demidovich, Grigory Malinovsky, Igor Sokolov, and Peter Richtárik. A guide through the zoo
of biased SGD. Advances in Neural Information Processing Systems, 36:23158–23171, 2023.

Margalit R Glasgow, Honglin Yuan, and Tengyu Ma. Sharp bounds for federated averaging (lo-
cal sgd) and continuous perspective. In International Conference on Artificial Intelligence and
Statistics, pp. 9050–9090. PMLR, 2022.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient
methods. In International Conference on Artificial Intelligence and Statistics, pp. 3556–3564.
PMLR, 2021.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General analysis and improved rates. In International Conference on Machine
Learning, pp. 5200–5209. PMLR, 2019.

Michał Grudzień, Grigory Malinovsky, and Peter Richtárik. Can 5th generation local training meth-
ods support client sampling? yes! In International Conference on Artificial Intelligence and
Statistics, pp. 1055–1092. PMLR, 2023a.

Michał Grudzień, Grigory Malinovsky, and Peter Richtárik. Improving accelerated federated learn-
ing with compression and importance sampling. arXiv preprint arXiv:2306.03240, 2023b.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Samuel Horváth, Maziar Sanjabi, Lin Xiao, Peter Richtárik, and Michael Rabbat. FedShuffle:
Recipes for better use of local work in federated learning. arXiv preprint arXiv:2204.13169,
2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. SGD without replacement: Sharper rates
for general smooth convex functions. arXiv preprint arXiv:1903.01463, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local gd on hetero-
geneous data. arXiv preprint arXiv:1909.04715, 2019.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identi-
cal and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
pp. 4519–4529. PMLR, 2020.

Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M Gower, and Peter Richtárik. Unified
analysis of stochastic gradient methods for composite convex and smooth optimization. Journal
of Optimization Theory and Applications, 199(2):499–540, 2023.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet
Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to weight-
sharing. Advances in Neural Information Processing Systems, 34:19184–19197, 2021.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
theory of decentralized sgd with changing topology and local updates. In International Confer-
ence on Machine Learning, pp. 5381–5393. PMLR, 2020.

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
Yaliang Li, Bolin Ding, and Jingren Zhou. FederatedScope-LLM: A comprehensive package
for fine-tuning large language models in federated learning. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5260–5271, 2024.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Yinhan Liu. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Yucheng Lu, Si Yi Meng, and Christopher De Sa. A general analysis of example-selection for
stochastic gradient descent. In International Conference on Learning Representations (ICLR),
volume 10, 2022.

Grigory Malinovskiy, Dmitry Kovalev, Elnur Gasanov, Laurent Condat, and Peter Richtarik. From
local sgd to local fixed-point methods for federated learning. In International Conference on
Machine Learning, pp. 6692–6701. PMLR, 2020.

Grigory Malinovsky and Peter Richtárik. Federated random reshuffling with compression and vari-
ance reduction. arXiv preprint arXiv:2205.03914, 2022.

Grigory Malinovsky, Kai Yi, and Peter Richtárik. Variance reduced proxskip: Algorithm, theory
and application to federated learning. Advances in Neural Information Processing Systems, 35:
15176–15189, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Grigory Malinovsky, Samuel Horváth, Konstantin Burlachenko, and Peter Richtárik. Federated
learning with regularized client participation. arXiv preprint arXiv:2302.03662, 2023a.

Grigory Malinovsky, Konstantin Mishchenko, and Peter Richtárik. Server-side stepsizes and sam-
pling without replacement provably help in federated optimization. In Proceedings of the 4th
International Workshop on Distributed Machine Learning, pp. 85–104, 2023b.

Grigory Malinovsky, Alibek Sailanbayev, and Peter Richtárik. Random reshuffling with variance
reduction: New analysis and better rates. In Uncertainty in Artificial Intelligence, pp. 1347–1357.
PMLR, 2023c.

Artavazd Maranjyan, Mher Safaryan, and Peter Richtárik. Gradskip: Communication-accelerated
local gradient methods with better computational complexity. arXiv preprint arXiv:2210.16402,
2022.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
with vast improvements. Advances in Neural Information Processing Systems, 33:17309–17320,
2020.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Proximal and federated random
reshuffling. In International Conference on Machine Learning, pp. 15718–15749. PMLR, 2022a.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes!
local gradient steps provably lead to communication acceleration! finally! In International Con-
ference on Machine Learning, pp. 15750–15769. PMLR, 2022b.

Angelia Nedić and Dimitri Bertsekas. Convergence rate of incremental subgradient algorithms.
Stochastic optimization: algorithms and applications, pp. 223–264, 2001.

Yu E Nesterov. Introductory lectures on convex optimization. a basic course. 2004.

Lam M Nguyen, Quoc Tran-Dinh, Dzung T Phan, Phuong Ha Nguyen, and Marten Van Dijk. A
unified convergence analysis for shuffling-type gradient methods. Journal of Machine Learning
Research, 22(207):1–44, 2021.

Benjamin Recht and Christopher Ré. Toward a noncommutative arithmetic-geometric mean inequal-
ity: Conjectures, case-studies, and consequences. In Conference on Learning Theory, pp. 11–1.
JMLR Workshop and Conference Proceedings, 2012.

Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156(1-2):433–484, 2016.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Abdurakhmon Sadiev, Dmitry Kovalev, and Peter Richtárik. Communication acceleration of local
gradient methods via an accelerated primal-dual algorithm with an inexact prox. Advances in
Neural Information Processing Systems, 35:21777–21791, 2022a.

Abdurakhmon Sadiev, Grigory Malinovsky, Eduard Gorbunov, Igor Sokolov, Ahmed Khaled, Kon-
stantin Burlachenko, and Peter Richtárik. Federated optimization algorithms with random reshuf-
fling and gradient compression. arXiv preprint arXiv:2206.07021, 2022b.

Itay Safran and Ohad Shamir. Random shuffling beats SGD only after many epochs on ill-
conditioned problems. Advances in Neural Information Processing Systems, 34:15151–15161,
2021.

A Shapiro and Y Wardi. Convergence analysis of gradient descent stochastic algorithms. Journal of
Optimization Theory and Applications, 91:439–454, 1996.

Ruo-Yu Sun. Optimization for deep learning: An overview. Journal of the Operations Research
Society of China, 8(2):249–294, 2020.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving LoRA in privacy-preserving feder-
ated learning. arXiv preprint arXiv:2403.12313, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zehua Sun, Huanqi Yang, Kai Liu, Zhimeng Yin, Zhenjiang Li, and Weitao Xu. Recent advances in
LoRa: A comprehensive survey. ACM Transactions on Sensor Networks, 18(4):1–44, 2022.

Grega Vrbančič and Vili Podgorelec. Transfer learning with adaptive fine-tuning. IEEE Access, 8:
196197–196211, 2020.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020a.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020b.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of LoRA: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

Chulhee Yun, Shashank Rajput, and Suvrit Sra. Minibatch vs local sgd with shuffling: Tight con-
vergence bounds and beyond. arXiv preprint arXiv:2110.10342, 2021.

Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
arXiv preprint arXiv:1803.06573, 2018.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. arXiv preprint arXiv:2402.16842, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
A RESULTS ON CONVEX OPTIMIZATION PROBLEMS

A.1 LOGISTIC REGRESSION

We performed our analysis in a controlled environment using logistic regression with quadratic
regularization on synthetic data. In this configuration, we set d = 100, employed weight matrices
of size 10 × 10, and used 2,000 samples, with the regularization term fixed at 0.1. As shown in
Figure 3, the method demonstrates convergence across different ranks, and when the rank is set to
full rank, we observe convergence that mirrors that of FPFT.

0 200 400 600 800 1000
of gradients

10 14

10 11

10 8

10 5

10 2

101

f(W
t)

f*

Full fine-tuning (GD)
RAC-LoRA: rank = 10
RAC-LoRA: rank = 7
RAC-LoRA: rank = 5
RAC-LoRA: rank = 3
RAC-LoRA: rank = 1

Figure 3: RAC-LoRA convergence with varying ranks and step sizes on a logistic regression problem.

B RESULTS ON NON-CONVEX OPTIMIZATION PROBLEMS

B.1 ADDITIONAL RESULTS OF ROBERTA ON NLP TASKS

Table 4 reports additional configurations of the number of epochs per chain and the number of chains
on the GLUE benchmark. These results further corroborate the discussion in Section 6.2.

B.2 ABLATION ON NUMBER OF EPOCHS PER BLOCK IN THE CHAINS

Convergence proof for RAC-LoRA (Corollary D.2.1 and Corollary D.3.1) states that each LoRA
module shall be optimized for one epoch only. However, good approximations can also be obtained
using more epochs per block and hence fewer blocks (i.e., fewer parameters), as we show in Table 5
for the case of MLP on MNIST.

Similarly, we plot the training loss curves for RoBERTa-base on the RTE dataset in Figure 4. We
observe that all setups reach the same value at convergence with similar speed.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Method # Chains # Epochs MRPC CoLA RTE STS-B Avg

FPFT * 1 30, 80, 80, 40 90.2±0.0 63.6±0.0 78.7±0.0 91.2±0.0 80.9
LoRA * 89.7±0.7 63.4±1.2 86.6±0.7 91.5±0.2 82.8

LoRA 1 20 86.8±0.8 58.0±0.4 71.4±0.7 90.3±0.1 76.6
AsymmLoRA 85.5±0.5 56.5±1.5 69.2±0.2 89.6±0.1 75.2

COLA 2 10 87.1±0.2 58.4±1.5 69.9±0.9 90.3±0.2 76.4
10 2 84.2±1.1 54.2±0.4 64.6±1.3 89.1±0.1 73.0

RAC-LoRA 2 10 85.6±1.7 55.3±1.2 68.6±1.0 89.4±0.2 74.7
10 2 85.4±0.4 55.1±1.2 65.5±0.9 89.3±0.1 73.8

LoRA 1 50 88.2±0.3 60.1±0.4 74.4±0.9 90.6±0.1 78.3
AsymmLoRA 86.4±1.0 57.4±0.3 69.9±1.8 90.3±0.1 76.0

COLA 5 10 87.8±1.1 59.3±2.1 71.2±1.2 90.6±0.2 77.2
10 5 87.7±0.5 58.1±1.2 70.9±0.5 90.2±0.2 76.7

RAC-LoRA 5 10 87.2±0.6 57.6±0.5 70.6±0.7 90.2±0.1 76.4
10 5 87.5±0.4 57.8±1.0 70.3±1.2 90.2±0.2 76.5

LoRA 1 100 87.7±0.2 60.8±0.2 75.2±1.5 90.2±0.1 78.5
AsymmLoRA 86.9±0.3 58.7±1.0 71.0±3.3 90.4±0.0 76.8
COLA 10 10 88.0±0.8 59.5±1.0 72.1±0.9 90.7±0.2 77.6
RAC-LoRA 10 10 87.0±0.7 58.5±0.1 72.3±1.5 90.3±0.0 77.0

Table 4: Performance of the methods using RoBERTa-base for rank 2. The experiments are based
on 4 tasks from the GLUE benchmark. * denotes the results reported in Hu et al. (2021). We report
Matthews correlation coefficient for the CoLA dataset, Pearson correlation coefficient for STS-B,
and accuracy for the remaining tasks, with the standard deviations given in the subscript. The results
are obtained using 3 random seeds.

Number of epochs per block
1 2 3 4 5 10

COLA 96.2 95.8 95.9 95.1 95.4 94.5
RAC-LORA 96.1 95.6 95.6 94.9 94.7 93.9

Table 5: Accuracy at varying epochs for each block in the chained methods (COLA and RAC-LORA).
The setup is the same as in Table 3, with a zero-initialized A matrix and a Gaussian-initialized B
matrix. To ensure a fair comparison, the product of the number of epochs per block and the number
of blocks is kept constant at 50. The number of trainable parameters for COLA and RAC-LORA are
1K and 912, respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

1 Epoch, 300 Iterations
2 Epochs, 150 Iterations
5 Epochs, 60 Iterations
10 Epochs, 30 Iterations

Figure 4: RAC-LORA training loss curves at a fixed computational budget for varying epochs for
each block in the chain. RoBERTa-base with rank 2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C ANALYSIS OF RAC-LORA WITH GRADIENT DESCENT

C.1 PROOF OF THEOREM 5.3

Theorem. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that a stepsize γ > 0

is chosen such that γ ≤ 1
L . We choose the output of the method W̃T uniformly at random from

W 0,W 1, . . . ,WT−1 Then, the iterate W̃T of RAC-LoRA method (Algorithm 1) with GD updates
(Equation 3 or Equation 4) satisfy

E
[∥∥∥∇f(W̃T)

∥∥∥2] ≤ 2f(W 0)− f⋆

λH
minγT

.

The proof is provided for Left Sketch (Definition 4.1). The result for Right Sketch (Definition 4.2)
can be derived by following the same steps.

Proof. We begin by examining the implications of Assumption 3.1. The relationships between
various conditions associated with Assumption 3.1 are discussed in detail in Nesterov (2004).

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

Using the update rule W t+1 = W t − γHt
B∇f(W t) we get

f(W t+1) ≤f(W t) +
〈
∇f(W t),−γHt

B∇f(W t)
〉
+

L

2

∥∥−γHt
B∇f(W t)

∥∥2
≤f(W t)− γ

〈
∇f(W t), Ht

B∇f(W t)
〉
+

L

2
γ2
∥∥Ht

B∇f(W t)
∥∥2

≤f(W t)− γ
〈
∇f(W t), Ht

B∇f(W t)
〉
+

L

2
γ2
〈
Ht

B∇f(W t), Ht
B∇f(W t)

〉
≤f(W t)− γ

〈
∇f(W t), Ht

B∇f(W t)
〉
+

L

2
γ2
〈
∇f(W t), (Ht

B)
⊤Ht

B∇f(W t)
〉
.

Since matrix Ht
B is projection matrix, we have (Ht

B)
⊤Ht

B = (Ht
B)

2 = Ht
B :

f(W t+1) ≤f(W t)− γ
〈
∇f(W t), Ht

B∇f(W t)
〉
+

L

2
γ2
〈
∇f(W t), Ht

B∇f(W t)
〉
.

Using the fact that γ ≤ 1
L we have

f(W t+1) ≤f(W t)− γ

2

〈
∇f(W t), Ht

B∇f(W t)
〉
.

Taking expectation we get

E
[
f(W t+1) | W t

]
≤E

[
f(W t)− γ

2

〈
∇f(W t), Ht

B∇f(W t)
〉
| W t

]
≤f(W t)− γ

2

〈
∇f(W t),E

[
Ht

B

]
∇f(W t)

〉
Using an Assumption 5.1 we have

E
[
f(W t+1) | W t

]
≤E

[
f(W t)− γ

2

〈
∇f(W t), Ht

B∇f(W t)
〉
| W t

]
≤f(W t)− γ

2
λHB

min

∥∥∇f(W t)
∥∥2 .

Subtracting f⋆ from both sides we get

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γ

2
λHB

min

∥∥∇f(W t)
∥∥2 . (5)

Now we can rewrite as
γ

2
λHB

min

∥∥∇f(W t)
∥∥2 ≤

(
f(W t)− f⋆

)
−
(
E
[
f(W t+1) | W t

]
− f⋆

)
18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Taking expectation and using tower property we obtain
γ

2
λHB

minE
[∥∥∇f(W t)

∥∥2] ≤ et − et+1,

where et = E [f(W t)]− f⋆. Now we can sum these inequalities together and get
T−1∑
t=0

γ

2
λHB

minE
[∥∥∇f(W t)

∥∥2] ≤ T−1∑
t=0

(
et − et+1

)
,

Using telescoping property of et − et+1 we get
T−1∑
t=0

γ

2
λHB

minE
[∥∥∇f(W t)

∥∥2] ≤ e0 − eT .

Once we divide by T we obtain

1

T

T−1∑
t=0

γ

2
λHB

minE
[∥∥∇f(W t)

∥∥2] ≤ e0 − eT

T

≤ e0

T
.

Finally, we get

1

T

T−1∑
t=0

E
[∥∥∇f(W t)

∥∥2] ≤ 2(f(W 0)− f⋆)

λHB

minγT
.

Applying argument from Danilova et al. (2022) we obtain the result for uniformly chosen point.

C.2 PROOF OF THEOREM 5.5

Theorem. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Suppose that a
stepsize γ ≥ 0 is chosen such that γ ≤ 1

L . Then, the iterates of RAC-LoRA method (Algorithm 1)
with GD updates (Equation 3 or Equation 4) satisfy

E
[
f(WT)

]
− f⋆ ≤

(
1− γµλH

min

)T (
f(W 0)− f⋆

)
.

The proof is provided for Left Sketch (Definition 4.1). The result for Right Sketch (Definition 4.2)
can be derived by following the same steps.

Proof. We start from the inequality 5:

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γ

2
λHB

min

∥∥∇f(W t)
∥∥2 .

Using PL condition ∥∇f(W t)∥2 ≥ 2µ (f(W t)− f⋆) we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γµλHB

min

(
f(W t)− f⋆

)
≤
(
1− γµλHB

min

) (
f(W t)− f⋆

)
.

Once we unroll the recursion we get

E
[
f(WT)

]
− f⋆ ≤

(
1− γµλHB

min

)T (
f(W 0)− f⋆

)
.

In order to obtain ε solution we need to take

T ≥ O

(
L

µ

1

λHB

min

log
1

ε

)
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D ANALYSIS OF RAC-LORA WITH RANDOM RESHUFFLING

The previous results were obtained using full gradients. However, this approach is impractical in
deep learning settings, where calculating full gradients is often infeasible. To analyze stochastic
methods, we assume a finite sum structure for the loss function:

min
∆W∈Rm×n

[
f(W 0 +∆W) =

1

N

N∑
i=1

fi(W
0 +∆W)

]
, (6)

where each function fi represents the individual loss function for one sample and N is total number
of datapoints. Next, we analyze a practical variant of stochastic gradient descent (SGD) known
as Random Reshuffling (RR), which involves sampling without replacement. In this method, the
dataset is shuffled according to a permutation, ensuring that each training sample is used exactly
once during each epoch.

RR is a variant of SGD in which each data point is used exactly once per epoch, also known as SGD
with sampling without replacement. Many efforts have been made to explain why gradient methods
with reshuffling perform so well in practice, across different types of problems. The convergence
rates for incremental gradient methods with random reshuffling in convex optimization were first
explored by Nedić & Bertsekas (2001) and later by Bertsekas (2011). In recent years, a lot of focus
has shifted toward strongly convex problems, with studies showing that RR can outperform SGD.
For example, Recht & Ré (2012) were among the first to analyze this for quadratic least squares
problems.

Researchers have also managed to improve results and remove some of the earlier assumptions,
such as second-order smoothness, as seen in works by Jain et al. (2019), Safran & Shamir (2021)
and Mishchenko et al. (2020). These studies introduced a new way to account for the random
permutation’s variance, making it easier to analyze both convex and strongly convex cases. There
have even been extensions into non-convex settings, with results under the PL condition (Ahn et al.,
2020; Nguyen et al., 2021) and general non-convex smooth cases (Lu et al., 2022; Mishchenko et al.,
2020; Malinovsky et al., 2023c). More recently, tighter lower bounds for strongly convex and PL
functions have been developed (Cha et al., 2023).

In recent years, there’s also been growing interest in applying these reshuffling techniques to dis-
tributed and federated learning, which is crucial for training large-scale, decentralized models (Yun
et al., 2021; Malinovsky et al., 2023b; Sadiev et al., 2022b; Mishchenko et al., 2022a; Cho et al.,
2023; Malinovsky & Richtárik, 2022; Malinovsky et al., 2023a; Horváth et al., 2022)

To analyze stochastic methods, we need to make assumptions about the variance. The standard
assumption is that the variance is bounded:
Assumption D.1. There exist nonnegative constants σ ≥ 0 such that for any W t ∈ Rm×n we have,

1

N

n∑
i=1

∥∥∇fi
(
W t
)
−∇f

(
W t
)∥∥2 ≤ σ2.

The proof is provided for Left Sketch (Definition 4.1). The result for Right Sketch (Definition 4.2)
can be derived by following the same steps.

We consider a method belonging to the class of data permutation methods which is the RR al-
gorithm. In each epoch t of RR, we sample indices π0, π1, . . . , πN−1 without replacement from
{1, 2, . . . , N}, i.e., {π0, π1, . . . , πN−1} is a random permutation of the set {1, 2 . . . N} and proceed
with N iterates of the form:

W t
i+1 = W t

i − γHt
B∇f(W t

i).

We then set W t+1 = W t
N , and repeat the process for a total of T LoRA blocks. We can derive the

effective step:

W t+1 = W t − γHt
B

N−1∑
i=0

∇f(W t
i) = W t − γHt

BNĝt, (7)

where ĝt = 1
N

∑N−1
i=0 ∇f(W t

i).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.1 ANALYSIS OF GENERAL NON-CONVEX SETTING

Theorem D.2. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that a stepsize γ > 0

is chosen such that γ ≤ 1
2LN . We choose the output of the method W̃T uniformly at random from

W 0,W 1, . . . ,WT−1 Then, the iterate W̃T of RAC-LoRA method (Algorithm 1) with RR updates
(Equation 7) satisfy

E
[∥∥∥∇f(W̃T)

∥∥∥2] ≤ 2

γNT

f(W 0)− f⋆(
1− λmax [E [I −Ht]]− 1

4λ
H
max

)
+

L2γ2λH
maxNσ2(

1− λmax [E [I −Ht]]− 1
4λ

H
max

) .
Proof. In this context, and in subsequent discussions, the notation ∥ ·∥ refers to the Frobenius norm,
while ⟨·⟩ denotes the inner product associated with the Frobenius norm.

Now we can apply the L-smoothness:

f(W t+1) ≤ f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

= f(W t) +
〈
∇f(W t),−γHt

BNĝt
〉
+

L

2

∥∥γHt
BNĝt

∥∥2
= f(W t)− γN

〈
∇f(W t), Ht

B ĝ
t
〉
+

L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

(∥∥∇f(W t)
∥∥2 + ∥∥Ht

B ĝ
t
∥∥2 − ∥∥∇f(W t)−Ht

B ĝ
t
∥∥2)+ L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

(∥∥∇f(W t)
∥∥2 + ∥∥Ht

B ĝ
t
∥∥2 − ∥∥∇f(W t)−Ht

B ĝ
t
∥∥2)+ L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

∥∥∇f(W t)
∥∥2 − γN

2

∥∥Ht
B ĝ

t
∥∥2 (1− γLN) +

γN

2

∥∥∇f(W t)−Ht
B ĝ

t
∥∥2 .

Using γ ≤ 1
LN we get

f(W t+1) ≤ f(W t)− γN

2

∥∥∇f(W t)
∥∥2 + γN

2

∥∥∇f(W t)−Ht
B ĝ

t
∥∥2 .

Let us take expectation and subtract f⋆:

E
[
f(W t+1) | W t

]
− f⋆ ≤ f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2 + γN

2
E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
.

Let us consider the last term:

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
= E

∥∥∥∥∥ 1

N

N−1∑
i=0

∇fπi
(W t)−Ht

B

1

N

N−1∑
i=0

∇fπi
(W t

i)

∥∥∥∥∥
2

| W t


= E

∥∥∥∥∥ 1

N

N−1∑
i=0

∇fπi
(W t) +Ht

B

1

N

N−1∑
i=0

∇fπi
(W t)−Ht

B

1

N

N−1∑
i=0

∇fπi
(W t)−Ht

B

1

N

N−1∑
i=0

∇fπi
(W t

i)

∥∥∥∥∥
2

| W t


Since I −Ht

B and Ht
B are projection matrices generating perpendicular subspaces we have

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
= E

∥∥(I −Ht
B

)
∇f(W t)

∥∥2 + ∥∥∥∥∥Ht
B

1

n

n−1∑
i=0

(
∇fπi

(W t)− fπi
(W t

i)
)∥∥∥∥∥

2

| W t


= E

〈(I −Ht
B

)
∇f(W t),

(
I −Ht

B

)
∇f(W t)

〉
+

∥∥∥∥∥Ht
B

1

N

N−1∑
i=0

(
∇fπi

(W t)− fπi
(W t

i)
)∥∥∥∥∥

2

| W t

 .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Using the property that Ht
B and I −Ht

B are projection matrices we obtain

E
[∥∥∇f(W t)−Htĝt

∥∥2 | W t
]

≤ λmax

[
E
[
I −Ht

]] ∥∥∇f(W t)
∥∥2 + E

[
λmax[H

t]L2 1

N

N−1∑
i=0

∥∥W t −W t
i

∥∥2] .
Since λmax[H

t] = 1 for projections matrix we get

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
≤ λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2 1

N

N−1∑
i=0

E
[∥∥W t −W t

i

∥∥2 | W t
]
.

Now let us consider the last term:

E
[∥∥W t −W t

k

∥∥2] = γ2E

∥∥∥∥∥
k−1∑
i=0

Ht
B∇fπi(W

t
i)

∥∥∥∥∥
2

| W t


= γ2E

∥∥∥∥∥
k−1∑
i=0

Ht
B

(
∇fπi(W

t
i)−∇fπi(W

t)
)
+

k−1∑
i=0

Ht
B∇fπi(W

t)

∥∥∥∥∥
2

| W t


≤ 2γ2kE

[
k−1∑
i=0

(∥∥Ht
B

(
∇fπi(W

t
i)−∇fπi(W

t)
)∥∥2 + 2γ2k2

∥∥Ht
B∇fπi(W

t)
∥∥2) | W t

]

≤ 2γ2kE

[
k−1∑
i=0

(
λmax

[
Ht
] ∥∥W t

i −W t
∥∥2 + 2γ2k2

∥∥Ht
B∇fπi

(W t)
∥∥2) | W t

]

≤ 2γ2kE

[
k−1∑
i=0

(∥∥W t
i −W t

∥∥2 + 2γ2k2λmax

[
E
[
Ht

B

]] ∥∥∇fπi(W
t)
∥∥2) | W t

]
.

Now, we are ready to sum the inequalities. By using λmax [E [Ht]] = λHB
max and applying Lemma 1

from Mishchenko et al. (2020) with Assumption D.1, we obtain:

n−1∑
i=0

E
[∥∥W t −W t

i

∥∥2] ≤E

[
N−1∑
i=0

(
2γ2k

k−1∑
i=0

∥∥W t
i −W t

∥∥2 + 2γ2k2λHB
max

∥∥∇fπi
(W t)

∥∥2) | W t

]

≤γ2L2N(N − 1)

N−1∑
i=0

E
[∥∥W t −W t

k

∥∥2]
+

1

3
γ2(N − 1)N(2N − 1)λHB

max

∥∥∇f(W t)
∥∥2 + 1

3
λHB
maxγ

2N(N + 1)σ2.

Using γ ≤ 1
2LN we get

n−1∑
i=0

E
[∥∥W t −W t

i

∥∥2] ≤ 4

3

(
1− γ2L2N(N − 1)

)N−1∑
i=0

E
[∥∥W t −W t

i

∥∥2]
≤ 4

3

(
1

3
γ2(N − 1)N(2N − 1)λHB

max

∥∥∇f(W t)
∥∥2 + 1

3
λHB
maxγ

2N(N + 1)σ2

)
≤ γ2n3λHB

max

∥∥∇f(W t)
∥∥2 + γ2λHB

maxN
2σ2

Plugging to the previous bound we obtain:

E
[∥∥∇f(W t)−Htĝt

∥∥2 | W t
]
≤ λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2γ2N2λHB

max

∥∥∇f(W t)
∥∥2

+ L2γ2λHB
maxNσ2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Now we have the following

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2

+
γN

2

(
λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2γ2N2λHB

max

∥∥∇f(W t)
∥∥2)

+
γN

2
L2γ2λHB

maxNσ2.

Using γ ≤ 1
2LN we get

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
(8)

+
γN

2
L2γ2λHB

maxNσ2. (9)

After rearranging the terms, we have

γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
≤
(
f(W t)− f⋆

)
−
(
E
[
f(W t+1) | W t

]
− f⋆

)
+

γN

2
L2γ2λHB

maxNσ2.

Next, we have∥∥∇f(W t)
∥∥2 ≤ 2

γN

1(
1− λmax [E [I −Ht

B]]−
1
4λ

HB
max

) ((f(W t)− f⋆
)
−
(
E
[
f(W t+1) | W t

]
− f⋆

))
+

2

γN

1(
1− λmax [E [I −Ht

B]]−
1
4λ

HB
max

) γN

2
L2γ2λHB

maxNσ2.

Using telescoping property and taking expectation we get

1

T

T−1∑
t=0

∥∥∇f(W t)
∥∥2 ≤ 2

γNT

f(W 0)− f⋆(
1− λmax [E [I −Ht

B]]−
1
4λ

HB
max

)
+

L2γ2λHB
maxNσ2(

1− λmax [E [I −Ht
B]]−

1
4λ

HB
max

) .
Applying argument from Danilova et al. (2022) we obtain the result for uniformly chosen point.

Corollary D.2.1. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that a stepsize
γ > 0 is chosen such that γ ≤ 1

2LN . Let the updates have a form of several gradient steps (variance
σ2 = 0) We choose the output of the method W̃T uniformly at random from W 0,W 1, . . . ,WT−1

Then, the iterate W̃T of RAC-LoRA method (Algorithm 1) with several GD updates (Equation 3)
satisfy

E
[∥∥∥∇f(W̃T)

∥∥∥2] ≤ 2

γNT

f(W 0)− f⋆(
1− λmax [E [I −Ht]]− 1

4λ
H
max

) .
Given that the step size is divided by the number of gradient steps allocated for each LoRA block,
employing multiple gradient steps for a single LoRA block does not provide any significant bene-
fits. This observation suggests that a single gradient step is adequate for each LoRA block. There-
fore, in practical applications, it is more advantageous to utilize only one epoch per LoRA block
within the training chain. This approach not only streamlines the training process but also optimizes
computational efficiency, allowing for more effective resource allocation without compromising the
performance of the model.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.2 ANALYSIS OF POLYAK-ŁOJASIEWICZ SETTING

Next, we establish the convergence rate for the Polyak-Łojasiewicz setting (Assumption 5.4).
Theorem D.3. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Suppose
that a stepsize γ ≥ 0 is chosen such that γ ≤ 1

2NL . Then, the iterates of RAC-LoRA method
(Algorithm 1) with RR updates (Equation 7) satisfy

E
[
f(WT)− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
+

L2γ2λHB
maxNσ2

2
(
1− λmax [E [I −Ht

B]]−
1
4λ

HB
max

) .
Proof. We start from Equation 8:

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
+

γN

2
L2γ2λHB

maxNσ2.

Using PL condition ∥∇f(W t)∥2 ≥ 2µ (f(W t)− f⋆) we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γNµ

(
f(W t)− f⋆

)(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
+

γN

2
L2γ2λHB

maxNσ2.

Taking full expectation we obtain:

E
[
f(W t+1)− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))
E
[
f(W t)− f⋆

]
+

γN

2
L2γ2λHB

maxNσ2.

After unrolling the recursion we obtain

E
[
f(WT)− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
+

L2γ2λHB
maxNσ2

2
(
1− λmax [E [I −Ht

B]]−
1
4λ

HB
max

) .
This finishes the proof.

Corollary D.3.1. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Let the
updates have a form of several gradient steps (variance σ2 = 0) Suppose that a stepsize γ ≥ 0 is
chosen such that γ ≤ 1

2NL . Then, the iterates of RAC-LoRA method (Algorithm 1) with several GD
updates (Equation 3) satisfy

E
[
f(WT)− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
.

Since the step size is divided by the number of gradient steps for each LoRA block, using multiple
gradient steps does not offer significant advantages. Thus, a single gradient step per LoRA block is
sufficient. Practically, it is more efficient to use only one epoch per LoRA block in the training chain.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E ANALYSIS OF RAC-LORA WITH SGD UNDER THE ARBITRARY DATA
SAMPLING PARADIGM

In the previous section, we introduced the Random Reshuffling (RR) method, where each data point
is used exactly once during each epoch, also known as sampling without replacement. This method
has demonstrated strong empirical performance across various optimization tasks. However, in this
section, we shift our focus to the RAC-LoRA framework, where Stochastic Gradient Descent (SGD)
is applied with a more general, arbitrary data sampling procedure, allowing for broader flexibility in
how data is selected and used during training.

The analysis of general sampling schemes in SGD has garnered significant attention in the litera-
ture, particularly in understanding its impact on convergence rates and optimization performance
across different problem classes. For strongly convex functions, general sampling methods have
been rigorously studied in works such as Gower et al. (2019), which provide detailed convergence
guarantees and bounds. In the case of general convex optimization problems, Khaled et al. (2023)
offer a thorough analysis of the performance of SGD under various sampling strategies. Further-
more, for non-convex settings, both Khaled & Richtárik (2020) and Demidovich et al. (2023) have
explored how general sampling procedures influence the convergence behavior and optimization
efficiency of SGD, shedding light on its applicability to a wide range of machine learning tasks.

In the following sections, we build on these foundational studies to examine how the flexibility of
general sampling in the RAC-LoRA framework can lead to improved convergence in certain scenar-
ios, while also maintaining robust performance across different convexity settings.

To conduct this analysis, we introduce a general assumption that extends the standard assumptions
presented in Khaled & Richtárik (2020).

The proof is provided for Right Sketch (Definition 4.2). The result for Left Sketch (Definition 4.1)
can be derived by following the same steps.

Assumption E.1 (Expected smoothness). The second moment of the stochastic gradient satisfies

E
[
∥g(W)∥2

]
≤ 2A1

(
f(W)− f inf

)
+B1 · ∥∇f(W)∥2 + C1

for some A,B,C ≥ 0 and all W ∈ Rm×n.

Now we can also do stochastic analysis. Let us consider the SGD update for LoRA method:

∆W =
α

r
B̂AS ,

W t+1 = W t +
α

r
B̂tAt

S B̂t = −γg(W t)(At
S)

⊤ (At
S(A

t
S)

⊤)†
Now we have

W t+1 = W t − γg(W t)(At
S)

⊤ (At
S(A

t
S)

⊤)† At
S (10)

= W t − γg(W t)Ht
A. (11)

E.1 ANALYSIS OF GENERAL NON-CONVEX SETTING

Theorem E.2. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that a stepsize

γ > 0 is chosen such that γ ≤ min

[
1/
√
LA1λH

maxT , 1/

(
LB1

λ
HA
max

λ
HA
min

)]
. Then, the iterate WT of

RAC-LoRA method (Algorithm 1) with SGD updates (Equation 10) satisfy

min
0≤t≤T−1

E
[∥∥∇f(WT)

∥∥2] ≤ 6

λHA

minγT

(
f(W 0)− f⋆

)
+ LC1γ

λHA
max

λHA

min

.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof. We start from L-smoothness:

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

=f(W t) +
〈
∇f(W t),−γg(W t)Ht

A

〉
+

L

2

∥∥−γg(W t)Ht
A

∥∥2
=f(W t)− γ

〈
∇f(W t), g(W t)Ht

A

〉
+

L

2

∥∥−γg(W t)Ht
A

∥∥2 .
Let us take conditional expectation:

E
[
f(W t+1) | W t

]
≤f(W t)− γE

[〈
∇f(W t), g(W t)Ht

A

〉
| W t

]
+

L

2
E
[∥∥−γg(W t)Ht

A

∥∥2 | W t
]
.

Using that g(W t) and Ht
A are independent, so we have

E
[
f(W t+1) | W t

]
≤f(W t)− γ

〈
∇f(W t),E

[
g(W t)

]
E
[
Ht

A

]〉
+

L

2
E
[∥∥−γg(W t)Ht

A

∥∥2 | W t
]

≤f(W t)− γ
〈
∇f(W t),E

[
g(W t)

]
E
[
Ht

A

]〉
+ γ2L

2
E
[〈
g(W t)Ht

A, g(W
t)Ht

A

〉
| W t

]
≤f(W t)− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2 + γ2L

2
E
[〈
g(W t)Ht

A, g(W
t)Ht

A

〉
| W t

]
.

Using the property of projection matrix Ht
A, we have

E
[
f(W t+1) | W t

]
≤f(W t)− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2 + γ2L

2
λmax

[
E
[
Ht

A

]]
E
[∥∥g(W t)

∥∥2] .
Now we need to use assumption on stochastic gradients. We will use the most general assumption:
ABC – assumption:

E
[
∥g(W t)∥2

]
≤ 2A1(f(W

t)− f⋆) +B1

∥∥∇f(W t)
∥∥2 + C1.

Now we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2

+ γ2L

2
λmax

[
E
[
Ht

A

]] (
2A1(f(W

t)− f⋆) +B1

∥∥∇f(W t)
∥∥2 + C1.

)
.

Combining these terms together we get

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
(12)

− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2(1− γ

L

2

λmax [E [Ht
A]]

λmin [E [Ht
A]]

B1

)
(13)

+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1. (14)

Using condition on stepsize: 1− γ LB1

2

λmax[E[Ht
A]]

λmin[E[Ht
A]]

≥ 1
2 we get

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− 1

2
γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2

+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Using tower property of expectation we obtain

E
[
f(W t+1)− f⋆

]
≤E

[
f(W t)− f⋆

] (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− 1

2
γλmin

[
E
[
Ht

A

]]
E
[∥∥∇f(W t)

∥∥2]
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Let us define δt = E [f(W t)− f⋆] and rt = E
[
∥∇f(W t)∥2

]
, after reshuffling of terms we obtain

1

2
γλmin

[
E
[
Ht

A

]]
E
[∥∥∇f(W t)

∥∥2] ≤ (1 + γ2A1Lλmax

[
E
[
Ht

A

]])
δt − δt+1 + γ2LC1

2
λmax

[
E
[
Ht

A

]]
.

Let use fix w−1 > 0 and define wt = wt−1

1+Lγ2Aλmax[E[Ht
A]]

for all t ≥ 0. Multiplying by wt

γ ,

1

2
wtrtλmin

[
E
[
Ht

A

]]
≤wt

γ

(
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
δt − wt

γ
δt+1 + γ

LC1

2
λmax

[
E
[
Ht

A

]]
.

Now we obtain
1

2
wtrtλmin

[
E
[
Ht

A

]]
≤wt−1

γ
δt − wt

γ
δt+1 + γ

LC1

2
λmax

[
E
[
Ht

A

]]
wt.

Summing up both sides as t = 0, 1, . . . , T − 1 we have,

1

2

T−1∑
t=0

wtrtλmin

[
E
[
Ht

A

]]
≤w−1

γ
δ0 − wT−1

γ
δT + γ

LC1

2
λmax

[
E
[
Ht

A

]] T−1∑
t=0

wt

≤w−1

γ
δ0 + γ

LC1

2
λmax

[
E
[
Ht

A

]] T−1∑
t=0

wt.

Let us define WT =
∑T−1

t=0 wt. Dividing both sides by WT we have,

1

2
min

0≤t≤T−1
rt ≤ 1

WT

T−1∑
t=0

wtrt ≤ w−1

WT

δ0

γ

1

λmin [E [Ht
A]]

+
LC1γ

2

λmax [E [Ht
A]]

λmin [E [Ht
A]]

.

Note that,

WT =

T−1∑
t=0

wt ≥
T−1∑
t=0

min
0≤i≤T−1

wi = TwT−1 =
Tw−1

(1 + Lγ2Aλmax [E [Ht
A]])

T
.

Using this we get

1

2
min

0≤t≤T−1
rt ≤

(
1 + Lγ2A1λmax [E [Ht

A]]
)T

λmin [E [Ht
A]] γT

δ0 +
LC1γ

2

λmax [E [Ht
A]]

λmin [E [Ht
A]]

.

Using the fact that 1 + x ≤ exp(x), we have that

(
1 + Lγ2A1λmax

[
E
[
Ht

A

]])T ≤ exp
(
Lγ2A1λmax

[
E
[
Ht

A

]]
T
)
≤ exp(1) ≤ 3

where the second inequality holds because γ ≤ 1/
√
LA1λmax [E [Ht

A]]T by assumption. Substi-
tuting we get,

min
0≤t≤T−1

rt ≤ 6

λmin [E [Ht
A]] γT

(
f(W 0)− f⋆

)
+ LC1γ

λHA
max

λHA

min

.

E.2 ANALYSIS OF POLYAK-ŁOJASIEWICZ SETTING

In this section we provide analysis of RAC-LoRA method with general SGD update under Polyak-
Łojasiewicz condition (Assumption 5.4).
Theorem E.3. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Suppose that

a stepsize γ ≥ 0 is chosen such that γ ≤ min

 µ

2A1L
λ
HA
max

λ
HA
min

, 1/

(
LB1

λ
HA
max

λ
HA
min

). Then, the iterates of

RAC-LoRA method (Algorithm 1) with SGD updates (Equation 10) satisfy

E
[
f(WT)

]
− f⋆ ≤

(
1− γµλH

min

)T (
f(W 0)− f⋆

)
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. We start from 12:

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2(1− γ

L

2

λmax [E [Ht
A]]

λmin [E [Ht
A]]

B1

)
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Using
(
1− γ L

2

λmax[E[Ht
A]]

λmin[E[Ht
A]]

B1

)
≥ 3

4 and PL condition we have

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

)(
1− 3

2
γµλmin

[
E
[
Ht

A

]]
+ γ2A1Lλmax

[
E
[
Ht

A

]])
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Using that LA1γλmax [E [Ht
A]] ≤

µ
2λmin [E [Ht

A]] we obtain

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1− γµλmin

[
E
[
Ht

A

]])
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Taking full expectation and using tower property we obtain:

E
[
f(W t+1)− f⋆

]
≤E

[
f(W t)− f⋆

] (
1− γµλmin

[
E
[
Ht

A

]])
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Once we unroll the recursion we obtain

E
[
f(WT)− f⋆

]
≤E

[
f(W 0)− f⋆

] (
1− γµλHA

min

)T
+ γ

L

2µλHA

min

λHA
maxC1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Algorithm 2 Federated Randomized Asymmetric Chain of LoRA (Fed-RAC-LoRA)
1: Parameters: initial pre-trained model W 0, rank r, learning rate γ > 0, scaling factor α, server

stepsize β > 0 number of modules in chain T , sample distribution DB
S or DA

S .
2: for t = 0, 1, . . . , T − 1 do
3: Sample a subset (cohort) of clients St

4: (Option 1) Sample a matrix Bt
S (Option 2) Sample a matrix At

S
5: Send the model W t and fixed matrix (Option 1) Bt

S or (Option 2) At
S to clients

6: for m ∈ St do
7: Solve subproblem

(Option 1) Ât
m ≈ min

A
fm(W t +

α

r
Bt

SA) (Option 2) B̂t
m ≈ min

B
fm(W t +

α

r
BAt

S)

8: Send the updates to server (Option 1) Ât
m or (Option 2) B̂t

m
9: end for

10: Merge the updates
11:

(Option 1) W t+1 = W t + β
α

r
Bt

S

1

C

∑
m∈St

Ât
m

12:

(Option 2) W t+1 = W t + β
α

r

1

C

∑
m∈St

B̂t
mAt

S

13: end for

F FEDERATED LEARNING SETTING

We consider the following optimization problem with a double finite-sum structure:

min
∆W∈Rm×n

f(W 0 +∆W) =
1

M

M∑
m=1

1

N

N∑
i=1

fm,i(W
0 +∆W), (15)

where M is the total number of clients and N is the number of data points on each client. In
the context of Federated Learning, each client maintains its own local loss function fm, which
also follows a finite-sum structure, reflecting the client’s local data. This formulation captures the
decentralized nature of the learning process, where each client performs computations based on their
local dataset.

Federated Learning (FL) (Konečný et al., 2016; Kairouz et al., 2021) is a distributed machine learn-
ing framework that enables multiple devices or clients to collaboratively train a shared model without
sending their raw data to a central server. In contrast to traditional machine learning, where data is
centralized for model training, Federated Learning allows each client to train a local model using its
own data. The clients then share only the updated model parameters with a central server or aggre-
gator. The server aggregates these updates to form a new global model, which is then redistributed
to the clients for further iterations of the process (Konečný et al., 2016). Local Training (LT) is a
key component of Federated Learning (FL), in which each participating client conducts several local
optimization steps before synchronizing their model parameters with the central server.

The analysis of LT marked a significant advancement by eliminating the need for data homogeneity
assumptions, as demonstrated by Khaled et al. (2019; 2020). However, later studies by Woodworth
et al. (2020b) and Glasgow et al. (2022) revealed that LocalSGD (also known as FedAvg) has no
communication complexity advantage over minibatch SGD in heterogeneous data settings. Addi-
tionally, Malinovskiy et al. (2020) analyzed LT methods for general fixed-point problems, while
Koloskova et al. (2020) explored decentralized aspects of LT.

Although removing the data homogeneity requirement was a major breakthrough, the results were
somewhat discouraging, as they indicated that LT-enhanced GD, or LocalGD, exhibits a sublinear
convergence rate, which is worse than the linear convergence rate of vanilla GD (Woodworth et al.,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

2020a). The impact of server-side step sizes was further explored by Malinovsky et al. (2023b) and
Charles & Konečnỳ (2020).

Subsequent LT methods aimed to achieve linear convergence by addressing client drift, which had
hindered earlier approaches. Scaffold, introduced by Karimireddy et al. (2020), was the first to
successfully mitigate client drift and achieve a linear convergence rate. Similar methods were later
proposed by Gorbunov et al. (2021). Although this was a significant breakthrough, these methods
still have slightly higher or equal communication complexity compared to vanilla GD.

Mishchenko et al. (2022b) recently introduced the ProxSkip method, a simple yet effective approach
to Local Training that achieves provable communication acceleration in the smooth strongly convex
regime, even with heterogeneous data. In a follow-up article, Malinovsky et al. (2022) expanded
on ProxSkip, presenting a broad variance reduction framework. Condat & Richtárik (2022) further
applied ProxSkip to complex splitting schemes involving the sum of three operators in a forward-
backward setting. Additionally, Sadiev et al. (2022a) and Maranjyan et al. (2022) improved the
computational complexity of ProxSkip while preserving its communication efficiency. Condat et al.
(2023) introduced accelerated Local Training methods allowing client sampling based on ProxSkip,
while Grudzień et al. (2023a;b) proposed an accelerated method using the RandProx approach with
primal and dual updates.

In practice, Federated Learning faces a fundamental challenge: it is often infeasible for all clients to
communicate and aggregate updates with the central server simultaneously due to limitations such
as network bandwidth, client availability, or resource constraints. Therefore, rather than requiring
all clients to participate in every round of communication, we adopt a strategy in which only a
randomly selected subset of clients is involved in each aggregation step. This approach relies on
uniform sampling of the clients, ensuring that the selection process is unbiased over time.

The method operates as follows: in each communication round, the central server sends the current
global model, denoted by W t, along with the sampled matrix, to the clients chosen to participate in
the current cohort. Each client in this cohort trains a local learnable matrix using an optimization
algorithm (e.g., stochastic gradient descent) based on their local data. After completing the local
updates, the clients send their computed updates (i.e., changes in model parameters) back to the
central server.

Once the server receives these updates, it aggregates them (e.g., by averaging the updates) to produce
an updated global model. In addition to the aggregation, the server may perform an additional server-
side update step to further refine the model before broadcasting it in the next round. This iterative
process of local training, communication, and aggregation continues until convergence is achieved
or a predefined stopping criterion is met.

The proof is provided for Left Sketch (Definition 4.1). The result for Right Sketch (Definition 4.2)
can be derived by following the same steps.

For local optimzier we use Random Reshuffling, where the effective step has a form:

W t
m,i+1 = W t

m,i − γHt
B∇fm,i(W

t
m,i) (16)

The server-side step looks like W t+1 = W t − η̃Ht
B

1
C

∑
m∈St Ât

m.

Let us formulate nesesary assumptions

Assumption F.1 (Functional dissimilarity). The variance at the optimum in the non-convex regime
is defined as

∆⋆ def
= f⋆ − 1

M

M∑
m=1

f⋆
m

where f⋆
m = infW fm(W) and f⋆ = infW f(W). For each device m, the variance at the optimum

is defined as

∆⋆
m

def
= f⋆ − 1

n

n∑
i=1

f⋆
m,i

where f⋆
m,i = infW fm,i(W)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

F.1 ANALYSIS OF GENERAL NON-CONVEX SETTING

Theorem F.2. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that stepsizes

γ, η̃ > 0 is chosen such that γn ≤ η̃ ≤ 1−λ
HB
min

4L . Then, the iterate WT of Fed-RAC-LoRA method
(Algorithm 2) with RR updates (Equation 16) satisfy

min
t=0,...,T−1

E
[∥∥∇f

(
W t
)∥∥2] ≤4

(
1 + 4η̃L3γ2N2 + 2L2η̃2 M−C

C max{M−1,1}

)T
λmax [E [I −Ht

B]] η̃T

(
f(W 0)− f⋆

)
+

8γ2NL3

λmax [E [I −Ht
B]]

(
1

M

M∑
m=1

∆∗
m +N∆∗

)

+
8L2η̃

λmax [E [I −Ht
B]]

M − C

Cmax{M − 1, 1}
∆∗.

Proof. We start from L-smoothness:

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

≤f(W t)−

〈
∇f(W t), η̃

1

CN

∑
m∈St

N−1∑
i=0

Ht∇f
πt
m,i

m

(
W t

m,i

)〉

+
L

2

∥∥∥∥∥η̃ 1

CN

∑
m∈St

N−1∑
i=0

Ht∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

.

Now we take expectation with respect to sampling:

ESt

[
f(W t+1)

]
≤f(W t)− η̃ESt

[〈
∇f(W t),

1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m

(
W t

m,i

)〉]

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

〈
∇f(W t),

1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m

(
W t

m,i

)〉

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Using 2 ⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2, we have

ESt

[
f(W t+1)

]
≤f(W t)− η̃

2
∥∇f(W t)∥2 − η̃

2

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
η̃

2

∥∥∥∥∥∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2 + η̃

2

∥∥∥∥∥∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .

Now we need to add and subtract Ht
B∇f(W t):

ESt

[
f(W t+1)

]
≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)−Ht
B∇f(W t) +Ht

B∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)
(
I −Ht

B

)
+

1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)
(
I −Ht

B

)
+

1

MN

M∑
m=1

N−1∑
i=0

Ht
B

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .

Since Ht
B(I −Ht

B) = 0 we obtain

ESt

[
f(W t+1)

]
≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∇f(W t)
(
I −Ht

B

)∥∥2 + η̃

2

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

Ht
B

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Now we take conditional expectation and use tower property:

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
E
[
∥∇f(W t)

(
I −Ht

B

)
∥2 | W t

]
+

η̃

2
E

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

Ht
B

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

| W t


+

L

2
η̃2E

ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 | W t

 .

Next, we use eigenvalues to obtain bounds:

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
λmax

[
E
[
I −Ht

B

]]
∥∇f(W t)∥2

+
η̃

2
E

λmax

[
Ht

B

]∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

|W t


+

L

2
η̃2E

ESt

λmax

[
Ht

B

] ∥∥∥∥∥ 1

Cn

∑
m∈St

N−1∑
i=0

∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 | W t

 .

Since λmax [H
t
B] = 1 we have

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
λmax

[
E
[
I −Ht

B

]]
∥∇f(W t)∥2

+
η̃

2
E

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

| W t


+

L

2
η̃2E

ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 | W t

 .

Using Lemma 5 from Malinovsky et al. (2023b) we have

L

2
η̃2E

ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 | W t


≤ L3η̃2E

[
1

Mn

M∑
m=1

N−1∑
i=0

∥∥W t
m,i −W t

∥∥2 | W t

]
+ Lη̃2

∥∥∇f
(
W t
)∥∥2

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗)

Using this bound and L-smoothness for the term in second line we obtain:

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
λmax

[
E
[
I −Ht

B

]]
∥∇f(W t)∥2

+
η̃

2
L2E

[
1

Mn

M∑
m=1

n−1∑
i=0

∥∥W t −W t
m,i

∥∥2 | W t

]

+ L3η̃2E

[
1

Mn

M∑
m=1

n−1∑
i=0

∥∥W t −W t
m,i

∥∥2 | W t

]
+ Lη̃2

∥∥∇f
(
W t
)∥∥2

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Since η̃ ≤ 1
2L we get

E
[
f(W t+1) | W t

]
≤ f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
λmax

[
E
[
I −Ht

B

]]
∥∇f(W t)∥2

+ η̃L2E

[
1

MN

M∑
m=1

N−1∑
i=0

∥∥W t −W t
m,i

∥∥2 | W t

]
+ Lη̃2

∥∥∇f
(
W t
)∥∥2

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

Using lemma 6 from (cite) we obtain

1

MN

M∑
m=1

N−1∑
i=0

E
[∥∥W t −W t

m,i

∥∥2 | W t
]
≤ 4γ2N2L

(
f
(
W t
)
− f∗)

+2γ2N2L∆∗ + 2γ2NL
1

M

M∑
m=1

∆∗
m.

Plugging this bound we obtain

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
λmax

[
E
[
I −Ht

B

]]
∥∇f(W t)∥2

+ η̃L2

(
4γ2N2L

(
f
(
W t
)
− f∗)+ 2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)
+ Lη̃2

∥∥∇f
(
W t
)∥∥2

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

Next, we have

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 (1− λmax

[
E
[
I −Ht

B

]]
− 2Lη̃

)
+ η̃L2

(
4γ2N2L

(
f
(
W t
)
− f∗)+ 2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

Using η̃ ≤ 1−λmax[E[Ht
B]]

4L we get

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

4

∥∥∇f(W t)
∥∥2 (1− λmax

[
E
[
I −Ht

B

]])
+ η̃L2

(
4γ2N2L

(
f
(
W t
)
− f∗)+ 2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

Next, we subtract f⋆ from both sides:

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − η̃

4

∥∥∇f(W t)
∥∥2 (1− λmax

[
E
[
I −Ht

B

]])
+ η̃L2

(
4γ2N2L

(
f
(
W t
)
− f∗)+ 2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Taking full expectation we obtain

E
[
f(W t+1)− f⋆

]
≤ E

[
f(W t)− f⋆

](
1 + 4η̃L3γ2N2 + 2L2η̃2

M − C

Cmax{M − 1, 1}

)
− η̃

4

∥∥∇f(W t)
∥∥2 (1− λmax

[
E
[
I −Ht

B

]])
+ η̃L2

(
2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)
+ 2L2η̃2

M − C

Cmax{M − 1, 1}
∆∗.

Next, we apply lemma from Khaled & Richtárik (2020) and obtain

min
t=0,...,T−1

E
[∥∥∇f

(
W t
)∥∥2] ≤4

(
1 + 4η̃L3γ2N2 + 2L2η̃2 M−C

C max{M−1,1}

)T
λmax [E [I −Ht

B]] η̃T

(
f(W 0)− f⋆

)
+

8γ2NL3

λmax [E [I −Ht
B]]

(
1

M

M∑
m=1

∆∗
m +N∆∗

)

+
8L2η̃

λmax [E [I −Ht
B]]

M − C

Cmax{M − 1, 1}
∆∗.

F.2 ANALYSIS OF POLYAK-ŁOJASIEWICZ SETTING

Theorem F.3. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Suppose that

stepsizes γ, η̃ > 0 is chosen such that γn ≤ η̃ ≤ 1−λ
HB
min

4L . Then, the iterate WT of Fed-RAC-LoRA
method (Algorithm 2) with RR updates (Equation 16) satisfy

E
[
f(W t+1)− f⋆

]
≤ (f(W 0)− f⋆)

(
1− η̃µ

(
1− λmax

[
E
[
I −Ht

]]
− 3Lη̃

))T
+

η̃L2

η̃µ (1− λmax [E [I −Ht]]− 3Lη̃)

(
2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)

+
Lη̃2

η̃µ (1− λmax [E [I −Ht]]− 3Lη̃)

M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

Proof. We start from

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 (1− λmax

[
E
[
I −Ht

]]
− 2Lη̃

)
+ η̃L2

(
4γ2N2L

(
f
(
W t
)
− f∗)+ 2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

Using Assumption5.4 we have

E
[
f(W t+1) | W t

]
≤f(W t)− η̃µ

∥∥∇f(W t)
∥∥2 (1− λmax

[
E
[
I −Ht

]]
− 2Lη̃

) (
f(W t)− f⋆

)
+ η̃L2

(
4γ2n2L

(
f
(
W t
)
− f∗)+ 2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

Using the stepsize γ ≤ 1
4nL we have

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E
[
f(W t+1) | W t

]
≤f(W t)− η̃µ

(
1− λmax

[
E
[
I −Ht

]]
− 3Lη̃

) (
f(W t)− f⋆

)
+ η̃L2

(
2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

After unrolling the recursion we obtain

E
[
f(W t+1)− f⋆

]
≤ (f(W 0)− f⋆)

(
1− η̃µ

(
1− λmax

[
E
[
I −Ht

]]
− 3Lη̃

))T
+

η̃L2

η̃µ (1− λmax [E [I −Ht]]− 3Lη̃)

(
2γ2N2L∆∗ + 2γ2NL

1

M

M∑
m=1

∆∗
m

)

+
Lη̃2

η̃µ (1− λmax [E [I −Ht]]− 3Lη̃)

M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗) .

36

	Introduction
	Low-Rank Adaptation (LoRA)
	Chain of LoRA (COLA)

	Problem Formulation and Summary of Contributions
	Problem Formulation
	No Reasonable Theory for Low-Rank Adaptation
	Contributions

	Shining Some Light on LoRA's Convergence Issues
	Randomized Asymmetric Chain of LoRA (RAC-LoRA)
	Theory
	Derivation of the update step
	Convergence results

	Experiments
	Convex Optimization Problems
	Non-Convex Optimization Problems
	Results of RoBERTa on NLP Tasks
	Results of MLPs on MNIST

	Conclusion
	Results on Convex Optimization Problems
	Logistic Regression

	Results on Non-Convex Optimization Problems
	Additional Results of RoBERTa on NLP Tasks
	Ablation on number of epochs per block in the chains

	Analysis of RAC-LoRA with Gradient Descent
	Proof of Theorem 5.3
	Proof of Theorem 5.5

	Analysis of RAC-LoRA with Random Reshuffling
	Analysis of general non-convex setting
	Analysis of Polyak-Łojasiewicz setting

	Analysis of RAC-LoRA with SGD under the arbitrary data sampling paradigm
	Analysis of general non-convex setting
	Analysis of Polyak-Łojasiewicz setting

	Federated Learning setting
	Analysis of general non-convex setting
	Analysis of Polyak-Łojasiewicz setting

