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ABSTRACT

Fine-tuning has become a popular approach to adapting large foundational mod-
els to specific tasks. As the size of models and datasets grows, parameter-efficient
fine-tuning techniques are increasingly important. One of the most widely used
methods is Low-Rank Adaptation (LoRA), with adaptation update expressed as the
product of two low-rank matrices. While LoRA was shown to possess strong per-
formance in fine-tuning, it often underperforms when compared to full-parameter
fine-tuning (FPFT). Although many variants of LoRA have been extensively stud-
ied empirically, their theoretical optimization analysis is heavily under-explored.
The starting point of our work is a demonstration that LoRA and its two extensions,
Asymmetric LoRA and Chain of LoRA, indeed encounter convergence issues. To
address these issues, we propose a general optimization framework that rigorously
analyzes the convergence rates of LoRA-based methods. Our approach inherits the
empirical benefits of LoRA-style heuristics, but introduces several small but impor-
tant algorithmic modifications which turn it into a provably convergent method.
Our framework serves as a bridge between FPFT and low-rank adaptation. We
provide provable guarantees of convergence to the same solution as FPFT, along
with the rate of convergence. Additionally, we present a convergence analysis for
smooth, non-convex loss functions, covering gradient descent, stochastic gradient
descent, and federated learning settings. Our theoretical findings are supported by
experimental results.

1 INTRODUCTION

Many real-world Deep Learning (DL) applications require adapting a large pre-trained model to
specific tasks in order to improve its performance (Church et al., 2021). This process, known as
fine-tuning, involves adjusting the model from its pre-trained state to better handle the nuances of
particular tasks or domains. Fine-tuning is a specialized form of transfer learning, where knowledge
gained during pre-training is adapted for new, specific applications (Vrbančič & Podgorelec, 2020).

Parameter-Efficient Fine-Tuning. While fine-tuning all model parameters has been effective, mod-
ern models with billions of parameters pose significant challenges due to their scale. Full-parameter
fine-tuning is often computationally impractical with standard resources. To address this challenge,
Parameter-Efficient Fine-Tuning (PEFT) (He et al., 2021) has emerged as a solution, focusing on up-
dating a subset of parameters only (Richtárik & Takáč, 2016), or adding task-specific modules (Xu
et al., 2023). PEFT reduces computational costs by modifying fewer parameters or adding external
modules, enabling more efficient resource use and lowering storage requirements. This approach
significantly reduces both training time and computational demands, making it a practical solution
for adapting large models to new tasks (Han et al., 2024).

1.1 LOW-RANK ADAPTATION (LORA)

One of the most popular PEFT methods is Low-Rank Adaptation (LoRA) (Hu et al., 2021). The core
idea behind LoRA is that fine-tuning large pre-trained models can be effectively achieved by utilizing
lower-dimensional parameter spaces (Li et al., 2018; Aghajanyan et al., 2020). Instead of updating
all parameters of a large and potentially dense matrix associated with the weights of a linear layer,
LoRA works with the product of two trainable low-rank matrices, which significantly reduces the
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number of parameters updated during fine-tuning. These matrices are trained such that their product
is added to the pre-trained model weights.

In LoRA (Hu et al., 2021), the weight adaptation is represented as the product of two low-rank
matrices (and a scalar multiplier), resulting in the final model

W = W 0 +
α

r
BA,

where W 0 ∈ Rm×n, B ∈ Rm×r, and A ∈ Rr×n. Here, r and α respectively denote the LoRA
rank and its scaling factor. Typically, since the dimensions of (particularly deep learning) models
are enormous, we have rank r ≪ min{m,n}. This approach saves computational resources and
minimizes the risk of overfitting or catastrophic forgetting (Biderman et al., 2024). Hence, LoRA has
become a lightweight and efficient technique for adapting large models to various tasks, particularly
in resource-constrained environments (Sun et al., 2022). It is important to note that W 0 remains
fixed and does not receive updates, while A and B are optimized during the training process. The
scaling factor α serves as a “step size” for the adaptation, and it is normalized by rank r. The matrix
A is typically initialized with random Gaussian values, while the matrix B is set to zero, ensuring
∆W = 0 at the start of training. Alternative initialization strategies were explored by Zhu et al.
(2024).

1.2 CHAIN OF LORA (COLA)

While LoRA offers significant computational advantages in practice, it remains less effective than
full-parameter fine-tuning (FPFT) if efficiency is not a major concern (Biderman et al., 2024). To
balance efficiency and performance, Xia et al. (2024) proposed an iterative method called Chain of
LoRA (COLA). Essentially, COLA simply means the successive application of several LoRA updates.

Chain of LoRA (COLA) constructs a sequence of LoRA modules through an iterative process of
parameter fine-tuning, merging, and extending. The chain length is defined by the number of op-
timized LoRA modules. COLA’s central concept involves applying LoRA adaptations iteratively T
times. COLA can be summarized as training a LoRA module, merging the updates with the fixed pa-
rameters, reinitializing the LoRA matrices, and repeating the process (Xia et al., 2024). The resulting
model can be represented by:

W = W 0 +
α

r

T−1∑
t=0

BtAt,

where At and Bt indicate the low-rank matrices in the t-th block in the chain, which are typically
initialized in the same manner as in standard LoRA. The motivation behind COLA is that standard
LoRA may clearly fail to find the optimal adaptation since such an adaptation may not in general
be of a low rank. To address this, COLA proposes using a sequence of low-rank matrix decomposi-
tions to approximate a middle-to-high-rank update. The hypothesis is that this sequence of updates
can provide a better approximation than a single LoRA adaptation and may be easier to optimize
compared to learning the optimal adaptation from scratch.

2 PROBLEM FORMULATION AND SUMMARY OF CONTRIBUTIONS

2.1 PROBLEM FORMULATION

The primary approach for training supervised machine learning models is to formulate the task as an
optimization problem where the goal is to minimize a loss function, which measures the discrepancy
between the model’s predictions and the actual outcomes. In this work, we explore this optimization
problem in the specific context of fine-tuning, where a pre-trained model is adapted to a new task or
dataset, requiring efficient adjustments to its parameters to achieve better performance on the target
task. In particular, we consider the model-agnostic problem formulation

min
∆W∈Rm×n

f(W 0 +∆W ), (1)

where W 0 ∈ Rm×n represents the parameters of a pre-trained model (or of a single linear layer,
with the others being fixed), and ∆W ∈ Rm×n denotes the adaptation term. The function f :
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Table 1: Sections where we conduct a theoretical convergence analysis of RAC-LoRA for solving
Problem (1) when using a specific optimizer for approximately solving the subproblem in Step 4.
The results for the RAC-LoRA + GD combination are described in Section 5, while the proofs can
be founded in Appendix C. The results and proofs for all other combinations can be found in the
indicated appendices.

Problem Fine-tuner Subproblem Optimizer Non-convex PL
(1) RAC-LoRA Gradient Descent (GD) C.1 C.2
(1) RAC-LoRA Random Reshuffling (RR) D.1 D.2
(1) RAC-LoRA Stochastic Gradient Descent (SGD) E.1 E.2
(15) Fed-RAC-LoRA Random Reshuffling (RR) F.1 F.2

Rm×n → R corresponds to the empirical loss over the adaptation dataset, or any other loss function
of interest. As the total dimensionality m × n is typically very large for deep learning models, the
adaptation term ∆W needs to have a specific structure to be feasible in real-world applications.

2.2 NO REASONABLE THEORY FOR LOW-RANK ADAPTATION

We claim that a satisfying theoretical understanding of prevalent fine-tuning methods based on low-
rank updates, such as LoRA and COLA, is lacking.

• First, as already noted by Sun et al. (2024), the LoRA re-parameterization of the domain
effectively transforms a smooth Lipschitz loss into a non-smooth Lipschitz loss, which
poses additional theoretical challenges to those related to proper handling of the low-rank
structure of the updates. While this hints at a possible source of issues with providing a
good theory for methods based on low-rank adaptation, this observation does not on its
own mean that a good theory is impossible to obtain.

• More importantly, the existing theoretical analysis of COLA (Xia et al., 2024) replaces low-
rank optimization over matrices A and B with full-rank matrix optimization (∆W ). This
makes the theoretical analysis irrelevant at worst and unsatisfactory at best as it completely
ignores to model and to explain the key component of LoRA: low-rank updates.

• Third, it is known that LoRA can be highly sensitive to the choice of the hyper-parameters
(Khodak et al., 2021; Kuang et al., 2024). A good theory should be able to explain or
remove this issue. No such theory exists, to the best of our knowledge.

• Finally, and this is the true starting point of our exploration in this work, we observe that
COLA may simply fail to converge to the optimal solution. We give a simple example (with
3×3 matrices) of this divergence behavior in Section 3. Hence, COLA is merely a heuristic.
Providing a fix is an open problem – the problem we address in this work.

While clearly LoRA and COLA are enormously useful in practice, these methods remain mere heuris-
tics since they do not come with solid theoretical backing. This is problematic and raises valid
concerns about the robustness and reliability of LoRA-type methods in scenarios beyond current
datasets, models and practice.

2.3 CONTRIBUTIONS

To address the aforementioned fundamental issues of LoRA-type heuristics, and to firmly ground the
fine-tuning-via-low-rank adaptation line of work in a theoretically sound algorithmic framework,
we propose a new generic low-rank adaptation framework for which we coin the name Randomized
Asymmetric Chain of LoRA (RAC-LoRA); see Algorithm 1.

• Similarly to COLA (Xia et al., 2024), our method is iterative: we perform a chain of low-
rank updates (see Step 2 in Algorithm 1). In each step of the chain, one matrix (e.g., A)
is chosen randomly from a pre-defined distribution, and the other (e.g., B) is trainable (see
Step 3 in Algorithm 1). Which of these two update matrices is chosen randomly and which
one is trainable is decided a-priori, and hence our method is asymmetric in nature, similarly
to AsymmLoRA (Zhu et al., 2024). We propose two options, depending on which matrix is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

trainable and which one is chosen randomly: in Option 1, A is trainable, and in Option 2,
B is trainable.

• In order to make our framework flexible, we offer a variety of strategies for updating the
trainable matrix in each step of the chain. This is possible since in each such step we
formulate an auxiliary optimization subproblem in the trainable matrix, and once can thus
chose essentially any optimizer for approximately solving it (see Step 4 in Algorithm 1).
We theoretically analyze several such optimizers within our RAC-LoRA framework, includ-
ing Gradient Descent (GD) in Appendix C (however, we include and describe the theorems
in Section 5.2), Random Reshuffling RR in Appendix D, and Stochastic Gradient Descent
(SGD) in Appendix E. See Table 1 for a quick overview. Our analysis applies to the smooth
nonconvex regime, in which we prove fast sublinear (i.e., O(1/T )) convergence rates to a
stationary point, and fast linear (i.e., O(e−T )) rates to the globally optimal solution under
the Polyak-Łojasiewicz (PL) condition.

• The update is applied (see Step 5 in Algorithm 1), and the method moves on to the next
step of the chain.

Experiments. We apply our method to several machine learning tasks. We start from convex
problems with traditional models, such as logistic and linear regression, to provide clear illustrations
of our theoretical findings. In addition, we present empirical analyses for multilayer perception
(MLP) on MNIST and RoBERTa on the GLUE benchmark tasks (Wang, 2018). See Appendix 6.

Federated Learning. Furthermore, we extend our findings from the simple problem (1) to the more
challenging distributed/federated problem (15), where we consider solving a distributed optimiza-
tion problem via our new Fed-RAC-LoRA method (Algorithm 2). These additional results can be
found in Section F. For illustrative purposes, we provide an analysis for RR as the optimizer for the
subproblem; see also Table 1. Previous research (Sun et al., 2024) has shown that using a single
learnable matrix in this context provides several key advantages, particularly in terms of preserving
privacy, ensuring the correctness of model aggregation, and maintaining stability when adjusting the
scaling factor (Sun et al., 2024). These benefits are crucial in Federated Learning (Konečný et al.,
2016), where data is distributed across multiple clients, and privacy constraints must be upheld
while performing model updates. Building on this asymmetric approach, we integrate the concept
of chained updates to develop Fed-RAC-LoRA, a more robust and scalable distributed method. Our
approach maintains the computational efficiency of the original RAC-LoRA while ensuring rigorous
convergence properties in the distributed setting, offering a theoretically sound method for large-
scale Federated Learning scenarios.

3 SHINING SOME LIGHT ON LORA’S CONVERGENCE ISSUES

In contemporary machine learning, loss function minimization is primarily accomplished using
gradient-based (first-order) optimization techniques (Ruder, 2016). Most advanced methods build
on the vanilla Gradient Descent (GD) in various ways, e.g., by adding support for stochastic approx-
imation, momentum, adaptive stepsizes and more (Shapiro & Wardi, 1996; Gower et al., 2019).

It is therefore meaningful to start our exploration of LoRA-style methods in connection with GD
steps. In particular, we analyze the update process of LoRA matrices through a GD step, focusing
on the application of the chain rule of differentiation. The gradient with respect to the low-rank
matrices B and A consists of two components,

∇B,Af(W +
α

r
BA) =

(
∇Af(W + α

rBA)
∇Bf(W + α

rBA)

)
=

α

r

(
∇B⊤f(W + α

rBA)
∇f(W + α

rBA)A⊤

)
.

and hence the update rules for the matrices A and B are given by

A+ = A− η
α

r
B⊤∇f(W +

α

r
BA), B+ = B − η

α

r
∇f(W +

α

r
BA)A⊤,

where η > 0 is a step size, and A+ and B+ are the updated matrices. Since both A and B are train-
able, the gradients are multiplied by B⊤ and A⊤, which adds complexity to the optimization process
and complicates the interpretation of its evolution. This interaction between low-rank matrices and
gradients creates a non-trivial structure that challenges rigorous analysis and may disrupt Lipschitz
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Figure 1: Convergence of LoRA, Asymmetric LoRA (AsymmLoRA), Chain of LoRA (COLA), and
our proposed Randomized Asymmetric Chain of LoRA (RAC-LoRA) on the problem in Equation 2.

continuity, raising concerns about convergence guarantees. While LoRA is effective for deep learn-
ing adaptation, a deeper understanding of this process is needed to ensure that the optimization
scheme is theoretically sound.

Loss of Lipschitz smoothness. Lipschitz continuity of the gradient is a commonly invoked as-
sumption in the theoretical analysis of gradient-based optimization methods (Zhou, 2018; Khaled &
Richtárik, 2020; Demidovich et al., 2023). This property ensures that the gradient does not change
too rapidly, which in turn guarantees a controlled behavior of the optimization process, and plays
a key role in establishing convergence rates and in providing stability guarantees for various opti-
mization algorithms (Nesterov, 2004; Sun, 2020). A formal definition follows.
Assumption 3.1 (Lipschitz Gradient). Function f is differentiable, and there exists L > 0 such that

∥∇f(W )−∇f(V )∥ ≤ L∥W − V ∥, ∀W,V ∈ Rm×n,

where ∥·∥ denotes the Frobenius matrix norm, the gradient is computed w.r.t. the trace inner product.

However, the property of Lipschitz smoothness does not necessarily hold when applying LoRA adap-
tation. Specifically, even if the original function f(W ) is Lipschitz smooth, meaning that the gradi-
ent of f(W ) satisfies the Lipschitz continuity condition (as stated in Assumption 3.1), this smooth-
ness property is generally lost when the function is expressed in the adapted form f(W 0 + BA).
In particular, the function f(W 0 + BA) is not Lipschitz smooth with respect to the set of variables
{B,A} for any constant. This breakdown of smoothness is a significant limitation, as it complicates
the theoretical analysis of optimization algorithms when using LoRA. The formal proof of this result
is provided in Theorem 2 of the work by Sun et al. (2024), highlighting the challenges in extending
standard gradient-based methods to such adaptations.

Numerical counterexample. We present a clear and illustrative example demonstrating that the
LoRA and COLA methods may not converge to the solution of the optimization problem. To illustrate
this, let us consider a quadratic function of the following form:

f(x) = x⊤Mx+ b⊤x, (2)

where x ∈ Rd is a vector of parameters, M ∈ Rd×d is a positive definite matrix, and b ∈ Rd

is a vector corresponding to the linear term. In our numerical example, we consider d = 9,
M = Diag(10, 1, 1, 1, 1, 1, 1, 1, 1), and b = (1, 1, 1, 1, 1, 1, 1, 1, 1)⊤. This function has a Lipschitz
gradient (Assumption 3.1) with L = 10. We represent the vector x ∈ R9 as a matrix W ∈ R3×3. In
the LoRA adaptation, we use a rank r = 1 and set α = r.

Figure 1 shows experiments on LoRA, AsymmLoRA, our RAC-LoRA, and COLA. In the case of
COLA, we varied the step sizes and the number of gradients per block. Our results indicate that, when
using the theoretical step size 1

L , both LoRA and COLA may diverge, while AsymmLoRA converges
to a different stationary point. When smaller step sizes are applied to LoRA and COLA, these methods
do converge, but to a stationary point that is significantly distant from the optimal solution. In
contrast, our RAC-LoRA converges linearly to the optimal solution without such issues. These results
provide clear evidence that the choice of LoRA-type updates has a significant impact on both the
convergence and the quality of the final solution. The divergence, convergence to suboptimal points,
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Algorithm 1 Randomized Asymmetric Chain of LoRA (RAC-LoRA)
1: Parameters: pre-trained model W 0 ∈ Rm×n, rank r ≪ min{m,n}, learning rate γ > 0,

scaling factor α > 0, chain length T , sketch distribution DB
S (Option 1) or DA

S (Option 2).
2: for t = 0, 1, . . . , T − 1 do
3: Sample a sketch matrix

(Option 1) Bt
S ∼ DB

S (Option 2) At
S ∼ DA

S

4: Using some iterative solver, approximately solve the subproblem

(Option 1) Ât ≈ min
A

f(W t +
α

r
Bt

SA) (Option 2) B̂t ≈ min
B

f(W t +
α

r
BAt

S)

5: Apply the update

(Option 1) W t+1 = W t +
α

r
Bt

SÂ
t (Option 2) W t+1 = W t +

α

r
B̂tAt

S

6: end for

and sensitivity to step sizes in traditional methods underscore the need for careful selection and
design of update mechanisms. Our findings suggest that RAC-LoRA offers a more reliable approach
for achieving optimal solutions in the context of LoRA-based adaptations.

4 RANDOMIZED ASYMMETRIC CHAIN OF LORA (RAC-LORA)

To address the convergence issues in LoRA updates, we propose Randomized Asymmetric Chain of
LoRA (RAC-LoRA). This method introduces an asymmetric LoRA mechanism with a chain-based
structure to enhance convergence while preserving model flexibility and efficiency. The method is
summarized in Algorithm 1.

Description of the algorithm. At the start of each iteration (or block), one matrix is randomly ini-
tialized and fixed throughout training, while the other remains fully trainable. This strategy prevents
optimization within a restricted subspace, reducing the risk of convergence to suboptimal points.
There are two configurations: freeze matrix B and train A, or freeze A and train B. We now for-
mally define the sampling/sketch schemes.
Definition 4.1 (Left Sketch). By a “left sketch” (of rank r) we refer to the update rule

∆W =
α

r
BSÂ,

where BS ∼ DB is sampled from some fixed distribution over matrices of dimensions n × r, and
only the matrix Â is adjustable.
Definition 4.2 (Right Sketch). By a “right sketch” (of rank r) we refer to the update rule

∆W =
α

r
B̂AS ,

where AS ∼ DA is sampled from some fixed distribution over matrices of dimensions r × m, and
only the matrix B̂ is adjustable.

In both sampling schemes, we update the trainable matrix over several epochs. This step effec-
tively corresponds to training a LoRA block within the chain, following the standard LoRA approach.
While this procedure mirrors the conventional LoRA method, we can formally characterize it as an
approximate optimization problem, allowing for a structured analysis of the training process. These
procedures for both matrices can be formally expressed via

(Option 1) Ât ≈ min
A

f(W t +
α

r
Bt

SA) (Option 2) B̂t ≈ min
B

f(W t +
α

r
BAt

S).

Similarly to COLA, t identifies the block in the chain. Next, we incorporate the product of the
trained matrix and the sampled matrix into the current model. The merging process involves adding
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the product of the two matrices—one sampled and the other trained. This addition is scaled by a
factor of α

r , ensuring the appropriate weighting of the update within the model:

(Option 1) W t+1 = W t +
α

r
Bt

SÂ
t (Option 2) W t+1 = W t +

α

r
B̂tAt

S .

5 THEORY

5.1 DERIVATION OF THE UPDATE STEP

Without loss of generality, let us focus on the Left Sketch scheme (Definition 4.1). Specifically, for
each model in the chain, the update rule is given as follows:

W t+1 = W t +
α

r
Bt

SÂ
t.

Next, we apply the Lipschitz gradient condition (Assumption 3.1) to the loss function f :

f(U) ≤ f(V ) + ⟨∇f(V ), U − V ⟩+ L

2
∥U − V ∥2F , ∀U, V ∈ Rm×n

Applying this with U = W t, V = Bt
SÂ

t and η ≤ 1
L leads to

f(W t+1) ≤ f(W t) + ⟨∇f(W t), Bt
SÂ

t⟩+ L

2
∥Bt

SÂ
t∥2F

≤ f(W t) + ⟨(Bt
S)

⊤∇f(W t), Ât⟩+ 1

2η
⟨(Bt

S)
⊤Bt

SÂ
t, Ât⟩.

Let us minimize the left hand side term in Ât, when the gradient vanishes: (Bt
S)

⊤∇f(W t) +
1
η (B

t
S)

⊤(Bt
S)Â

t = 0. One such solution is given by1

Ât = −η
(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤∇f(W t),

and his leads to the following gradient update:

W t+1 = W t +
α

r
Bt

SÂ
t = W t − α

r
ηBt

S

(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤∇f(W t)

= W t − γHt
B∇f(W t), (3)

where Ht
B = Bt

S

(
(Bt

S)
⊤(Bt

S)
)†

(Bt
S)

⊤ is projection matrix and α
r η = γ. Similarly, we can obtain

the update for Right Sketch scheme (Definition 4.2):

W t+1 = W t − γ∇f(W t)(At
S)

⊤ (At
S(A

t
S)

⊤)† At
S = W t − γ∇f(W t)Ht

A, (4)

where Ht
A = (At

S)
⊤ (At

S(A
t
S)

⊤)† At
S is also projection matrix. Notably, the scaling factor α

r is
combined with the parameter η, allowing us to work with the effective step size γ. This simplifies
the learning process by unifying the scaling and learning rate. Using this type of update, we provide
convergence results for both standard and stochastic gradient descent methods.

5.2 CONVERGENCE RESULTS

To derive the convergence results, a key factor in our analysis is the smallest eigenvalue of the ex-
pected value of the projection matrix introduced in Section 5.1. This eigenvalue plays a critical role
in shaping the optimization process. As we will show, a well-conditioned projection matrix—with a
sufficiently large smallest eigenvalue—ensures more efficient and reliable convergence. Therefore,
we make an important assumption that this smallest eigenvalue must remain strictly positive.
Assumption 5.1. Consider a projection matrix H generated by Left Sketch 4.1 or Right Sketch 4.2.
Assume that the sampling distributions DB

S and DA
S are such that the smallest eigenvalue of the

expected projection matrix H generated by sampled matrix is positive:

λH
min = λmin [E [H]] > 0.

1The dagger notation refers to the Moore-Penrose pseudoinverse.
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In particular, it is important to observe that the eigenvalues of the projection matrix are either zero or
one, with the smallest eigenvalue being zero. However, the smallest eigenvalue of the expected value
of the projection matrix can be strictly greater than zero. Additionally, it is essential to establish a
lower bound for the loss function.
Remark. Assumption 5.1 is easily satisfied. Let H be the projection matrix as defined below Equa-
tion (4) and assume that the A matrices are drawn from an isotropic distribution (the rows of A are
isotropic). Then H is the projection onto the rank of A, which is a subspace of dimension r dis-
tributed isotropically in Rn. The matrix E[H] is then invariant under rotations, so must be a scalar
multiple of the identity. By taking traces, one finds that E[H] = r

nI so λH
min = r

n .
Assumption 5.2. Function f is bounded from below by an infimum f⋆ ∈ R.

We now present the convergence result for RAC-LoRA with Gradient Descent (GD) updates.
Theorem 5.3. Let Assumptions 3.1 and 5.1 hold, and let the stepsize satisfy 0 < γ ≤ 1

L . Then, the
iterates of RAC-LoRA (Algorithm 1) with GD updates (Equation 3 or 4) satisfy

E
[∥∥∥∇f(W̃T )

∥∥∥2] ≤ 2(f(W 0)− f⋆)

λH
minγT

,

where the output W̃T is chosen uniformly at random from W 0,W 1, . . . ,WT−1.

We obtain a sub-linear convergence rate, as is expected in general non-convex settings. To achieve
a stronger convergence result, we employ an additional assumption: the Polyak-Lojasiewicz (PL)
condition. This assumption generalizes strong convexity but applies to certain non-convex functions.
Assumption 5.4 (PL-condition). Function f satisfies the Polyak-Łojasiewicz (PL) condition with
parameter µ > 0 if

1

2
∥∇f(W )∥2 ≥ µ (f(W )− f⋆)

for all W ∈ Rm×n, where f⋆ = inf f , assumed to be finite.

Next, we establish a convergence rate for RAC-LoRA in the Polyak-Łojasiewicz setting.
Theorem 5.5. Let Assumptions 3.1, 5.1 and 5.4 hold, and let the stepsize satisfy 0 < γ ≤ 1

L . Then,
for each T ≥ 0, the iterates of RAC-LoRA (Algorithm 1) with GD updates (Equation 3 or 4) satisfy

E
[
f(WT )

]
− f⋆ ≤

(
1− γµλH

min

)T (
f(W 0)− f⋆

)
.

We achieved a linear convergence rate, which is significantly better than previous results; however,
this improvement applies to a more limited class of functions. Importantly, we can recover the
classical results of GD by setting λH

min = 1, which corresponds to the full-rank scenario.

The comprehensive analysis of different optimizers and their performance across various settings is
provided in the appendix, as summarized in Table 1.

6 EXPERIMENTS

In this section, we explore the performance of RAC-LoRA as an optimization algorithm in machine
learning applications. In Section 6.1 we validate the theoretical results in convex problems, while
in Section 6.2 we evaluate the method applied to neural networks.

6.1 CONVEX OPTIMIZATION PROBLEMS

Linear Regression. We conducted our analysis in a controlled setting involving linear regression
with quadratic regularization applied to synthetic data. Specifically, we utilized 3,000 samples for
pre-training the model and 1,000 samples for fine-tuning. In this setup, we have d = 100 with weight
matrices of size 10× 10, and the regularization term is set to 0.0001. As illustrated in Figure 2, the
method converges for various ranks and the convergence speed is proportional to n

r , and when the
rank is set to the full rank, we observe convergence identical to that of FPFT. We remark that COLA
would suffer from the same divergence behavior as in Figure 1 on this quadratic problem.

Logistic Regression. Analogous results for logistic regression are shown in Appendix A.
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Figure 2: RAC-LoRA convergence with varying ranks and step sizes on a linear regression problem.

6.2 NON-CONVEX OPTIMIZATION PROBLEMS

Further experimental results are provided in Appendix B.

6.2.1 RESULTS OF ROBERTA ON NLP TASKS

As in prior work (Zhu et al., 2024; Xia et al., 2024), we evaluate low-rank adaptation methods for
LLMs using the GLUE dataset (Wang, 2018).

Methodology. We fine-tuned the roberta-basemodel (Liu, 2019) on four of the smallest GLUE
tasks to study the behavior of low-rank methods in practical scenarios. For the chained methods,
we use a range of values for the number of chains and epochs per chain hyperparameters. In each
experiment we used rank 2 for the adaptations and trained using the AdamW optimiser (Loshchilov,
2017) with β parameters 0.9 and 0.999, ϵ = 1 × 10−8, a learning rate of 4 × 10−4 with linear
schedule and a training batch size 8.

Discussion. The results are presented in Table 2. We find that RAC-LoRA performs competitively
with other low-rank adaptation methods, but does not outperform Asymmetric LoRA despite having
greater capacity. We expect RAC-LoRA to outperform Asymmetric LoRA in settings where there
is a benefit to the additional capacity, i.e., those where a full parameter fine tune (FPFT) is much
better than Asymmetric LoRA. The performance of the FPFT in Table 2 shows that the selected
GLUE tasks do not provide such a setting. Here, a single low-rank adaptation is already enough
to obtain performance close to that of FPFT. However, this intuition motivates the experiments
in Section 6.2.2 where we intentionally restrict capacity of the adaptations to isolate the effect of the
chaining procedure.

Method # Chains # Epochs MRPC CoLA RTE STS-B Avg
FPFT * 1 30, 80, 80, 40 90.2±0.0 63.6±0.0 78.7±0.0 91.2±0.0 80.9
LoRA * 89.7±0.7 63.4±1.2 86.6±0.7 91.5±0.2 82.8

LoRA 1 100 87.7±0.2 60.8±0.2 75.2±1.5 90.2±0.1 78.5
AsymmLoRA 86.9±0.3 58.7±1.0 71.0±3.3 90.4±0.0 76.8
COLA 10 10 88.0±0.8 59.5±1.0 72.1±0.9 90.7±0.2 77.6
RAC-LoRA 10 10 87.0±0.7 58.5±0.1 72.3±1.5 90.3±0.0 77.0

Table 2: Results with RoBERTa-base for rank 2 on tasks from the GLUE benchmark. *: results taken
from the work of Hu et al. (2021). We report Matthews correlation coefficient for COLA, Pearson
correlation coefficient for STS-B, and accuracy for the remaining tasks. Results are averaged over 3
seeds and standard deviations are given in the subscript.

6.2.2 RESULTS OF MLPS ON MNIST

In this section, we seek to isolate the effect of the chaining procedure on generalisation performance
by restricting the capacity of the low-rank adaptations. This ensures that a single adaptation is
not sufficient to reach performance comparable with FPFT, allowing us to explore how chaining
adaptations can bridge this gap.
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Table 3: MLP results on MNIST with rank r and α set to 1.
In the case of AsymmLoRA and RAC-LoRA, only the zero-
initialized matrix is trained.

Method DA DB Acc Train Params
FPFT - - 98.0 54,700

LoRA Gaussian Zero 83.8 1K
COLA Gaussian Zero 92.6 1K

LoRA Zero Gaussian 87.0 1K
COLA Zero Gaussian 96.2 1K

AsymmLoRA Gaussian Zero 62.3 133
RAC-LoRA Gaussian Zero 92.0 133

AsymmLoRA Zero Gaussian 81.6 912
RAC-LoRA Zero Gaussian 96.1 912

Methodology. We first pre-train a 3-
layer MLP on the first five classes
(digits 0-4) and then adapt the net-
work using LoRA-based methods for
recognizing the remaining five un-
seen classes (digits 5-9). The model
is evaluated solely on these un-
seen classes2. we used rank 1 for
the adaptations and trained using
the AdamW optimiser (Loshchilov,
2017) with β parameters 0.9 and
0.999, ϵ = 1 × 10−8, a constant
learning rate of 2×10−4 and a train-
ing batch size 128.

Discussion. Table 3 shows results
for MNIST with different ranks and
initialization. LoRA reaches around
90% of the accuracy of FPFT leav-
ing some margin for improvement when using the chains. COLA constructs a sequence of LoRA
modules, delivering significant accuracy improvements over LoRA due to the chaining procedure.
The chaining allows COLA to capture richer features (at the cost of training more parameters). How-
ever, both LoRA and COLA lack rigorous convergence guarantees. AsymmLoRA has been shown em-
pirically to approximate the performance of LoRA in Sun et al. (2024) — but again no convergence
result is provided. Our proposed method (RAC-LoRA) enjoys significant accuracy improvements
over AsymmLoRA, again due to the chaining procedure. RAC-LoRA leverages a diverse learning
process across different LoRA blocks, which intuitively allows the model to capture a broader range
of features. Crucially, RAC-LoRA comes with convergence guarantees (Theorem 5.3 and Theorem
5.5). Finally, we note that each iteration of RAC-LoRA requires training only one matrix per LoRA
block, while COLA needs training two matrices. This reduction in trainable parameters may offer
advantages in resource-constrained settings, such as Federated Learning, where minimizing com-
munication costs is critical.

7 CONCLUSION

In this work, we introduced RAC-LoRA, a framework for parameter-efficient fine-tuning that enables
interpolation between low-rank adaptation and full parameter fine-tuning. Motivated by the conver-
gence challenges of LoRA, we propose the iterative algorithm RAC-LoRA and provide convergence
guarantees across various settings, including gradient descent, stochastic gradient descent, and ran-
dom reshuffling. We extended this framework to the federated learning setup, where RAC-LoRA has
advantages over competing algorithms in terms of communication efficiency. Finally, we validate
our theoretical results empirically in both convex problems, such as linear and logistic regression,
and non-convex problems, such as MLPs and LLMs, finding that its chaining procedure is advanta-
geous in settings where standard low-rank adaptation approaches (such as LoRA and AsymmLoRA)
fail to capture the richness of a full-parameter fine-tuning.
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Appendix
A RESULTS ON CONVEX OPTIMIZATION PROBLEMS

A.1 LOGISTIC REGRESSION

We performed our analysis in a controlled environment using logistic regression with quadratic
regularization on synthetic data. In this configuration, we set d = 100, employed weight matrices
of size 10 × 10, and used 2,000 samples, with the regularization term fixed at 0.1. As shown in
Figure 3, the method demonstrates convergence across different ranks, and when the rank is set to
full rank, we observe convergence that mirrors that of FPFT.

0 200 400 600 800 1000
# of gradients

10 14

10 11

10 8

10 5

10 2

101

f(W
t )

f*

Full fine-tuning (GD)
RAC-LoRA: rank = 10
RAC-LoRA: rank = 7
RAC-LoRA: rank = 5
RAC-LoRA: rank = 3
RAC-LoRA: rank = 1

Figure 3: RAC-LoRA convergence with varying ranks and step sizes on a logistic regression problem.

B RESULTS ON NON-CONVEX OPTIMIZATION PROBLEMS

B.1 ADDITIONAL RESULTS OF ROBERTA ON NLP TASKS

Table 4 reports additional configurations of the number of epochs per chain and the number of chains
on the GLUE benchmark. These results further corroborate the discussion in Section 6.2.

B.2 ABLATION ON NUMBER OF EPOCHS PER BLOCK IN THE CHAINS

Convergence proof for RAC-LoRA (Corollary D.2.1 and Corollary D.3.1) states that each LoRA
module shall be optimized for one epoch only. However, good approximations can also be obtained
using more epochs per block and hence fewer blocks (i.e., fewer parameters), as we show in Table 5
for the case of MLP on MNIST.

Similarly, we plot the training loss curves for RoBERTa-base on the RTE dataset in Figure 4. We
observe that all setups reach the same value at convergence with similar speed.
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Method # Chains # Epochs MRPC CoLA RTE STS-B Avg

FPFT * 1 30, 80, 80, 40 90.2±0.0 63.6±0.0 78.7±0.0 91.2±0.0 80.9
LoRA * 89.7±0.7 63.4±1.2 86.6±0.7 91.5±0.2 82.8

LoRA 1 20 86.8±0.8 58.0±0.4 71.4±0.7 90.3±0.1 76.6
AsymmLoRA 85.5±0.5 56.5±1.5 69.2±0.2 89.6±0.1 75.2

COLA 2 10 87.1±0.2 58.4±1.5 69.9±0.9 90.3±0.2 76.4
10 2 84.2±1.1 54.2±0.4 64.6±1.3 89.1±0.1 73.0

RAC-LoRA 2 10 85.6±1.7 55.3±1.2 68.6±1.0 89.4±0.2 74.7
10 2 85.4±0.4 55.1±1.2 65.5±0.9 89.3±0.1 73.8

LoRA 1 50 88.2±0.3 60.1±0.4 74.4±0.9 90.6±0.1 78.3
AsymmLoRA 86.4±1.0 57.4±0.3 69.9±1.8 90.3±0.1 76.0

COLA 5 10 87.8±1.1 59.3±2.1 71.2±1.2 90.6±0.2 77.2
10 5 87.7±0.5 58.1±1.2 70.9±0.5 90.2±0.2 76.7

RAC-LoRA 5 10 87.2±0.6 57.6±0.5 70.6±0.7 90.2±0.1 76.4
10 5 87.5±0.4 57.8±1.0 70.3±1.2 90.2±0.2 76.5

LoRA 1 100 87.7±0.2 60.8±0.2 75.2±1.5 90.2±0.1 78.5
AsymmLoRA 86.9±0.3 58.7±1.0 71.0±3.3 90.4±0.0 76.8
COLA 10 10 88.0±0.8 59.5±1.0 72.1±0.9 90.7±0.2 77.6
RAC-LoRA 10 10 87.0±0.7 58.5±0.1 72.3±1.5 90.3±0.0 77.0

Table 4: Performance of the methods using RoBERTa-base for rank 2. The experiments are based
on 4 tasks from the GLUE benchmark. * denotes the results reported in Hu et al. (2021). We report
Matthews correlation coefficient for the CoLA dataset, Pearson correlation coefficient for STS-B,
and accuracy for the remaining tasks, with the standard deviations given in the subscript. The results
are obtained using 3 random seeds.

Number of epochs per block
1 2 3 4 5 10

COLA 96.2 95.8 95.9 95.1 95.4 94.5
RAC-LORA 96.1 95.6 95.6 94.9 94.7 93.9

Table 5: Accuracy at varying epochs for each block in the chained methods (COLA and RAC-LORA).
The setup is the same as in Table 3, with a zero-initialized A matrix and a Gaussian-initialized B
matrix. To ensure a fair comparison, the product of the number of epochs per block and the number
of blocks is kept constant at 50. The number of trainable parameters for COLA and RAC-LORA are
1K and 912, respectively.
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Figure 4: RAC-LORA training loss curves at a fixed computational budget for varying epochs for
each block in the chain. RoBERTa-base with rank 2.
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C ANALYSIS OF RAC-LORA WITH GRADIENT DESCENT

C.1 PROOF OF THEOREM 5.3

Theorem. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that a stepsize γ > 0

is chosen such that γ ≤ 1
L . We choose the output of the method W̃T uniformly at random from

W 0,W 1, . . . ,WT−1 Then, the iterate W̃T of RAC-LoRA method (Algorithm 1) with GD updates
(Equation 3 or Equation 4) satisfy

E
[∥∥∥∇f(W̃T )

∥∥∥2] ≤ 2f(W 0)− f⋆

λH
minγT

.

The proof is provided for Left Sketch (Definition 4.1). The result for Right Sketch (Definition 4.2)
can be derived by following the same steps.

Proof. We begin by examining the implications of Assumption 3.1. The relationships between
various conditions associated with Assumption 3.1 are discussed in detail in Nesterov (2004).

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

Using the update rule W t+1 = W t − γHt
B∇f(W t) we get

f(W t+1) ≤f(W t) +
〈
∇f(W t),−γHt

B∇f(W t)
〉
+

L

2

∥∥−γHt
B∇f(W t)

∥∥2
≤f(W t)− γ

〈
∇f(W t), Ht

B∇f(W t)
〉
+

L

2
γ2
∥∥Ht

B∇f(W t)
∥∥2

≤f(W t)− γ
〈
∇f(W t), Ht

B∇f(W t)
〉
+

L

2
γ2
〈
Ht

B∇f(W t), Ht
B∇f(W t)

〉
≤f(W t)− γ

〈
∇f(W t), Ht

B∇f(W t)
〉
+

L

2
γ2
〈
∇f(W t), (Ht

B)
⊤Ht

B∇f(W t)
〉
.

Since matrix Ht
B is projection matrix, we have (Ht

B)
⊤Ht

B = (Ht
B)

2 = Ht
B :

f(W t+1) ≤f(W t)− γ
〈
∇f(W t), Ht

B∇f(W t)
〉
+

L

2
γ2
〈
∇f(W t), Ht

B∇f(W t)
〉
.

Using the fact that γ ≤ 1
L we have

f(W t+1) ≤f(W t)− γ

2

〈
∇f(W t), Ht

B∇f(W t)
〉
.

Taking expectation we get

E
[
f(W t+1) | W t

]
≤E

[
f(W t)− γ

2

〈
∇f(W t), Ht

B∇f(W t)
〉
| W t

]
≤f(W t)− γ

2

〈
∇f(W t),E

[
Ht

B

]
∇f(W t)

〉
Using an Assumption 5.1 we have

E
[
f(W t+1) | W t

]
≤E

[
f(W t)− γ

2

〈
∇f(W t), Ht

B∇f(W t)
〉
| W t

]
≤f(W t)− γ

2
λHB

min

∥∥∇f(W t)
∥∥2 .

Subtracting f⋆ from both sides we get

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γ

2
λHB

min

∥∥∇f(W t)
∥∥2 . (5)

Now we can rewrite as
γ

2
λHB

min

∥∥∇f(W t)
∥∥2 ≤

(
f(W t)− f⋆

)
−
(
E
[
f(W t+1) | W t

]
− f⋆

)
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Taking expectation and using tower property we obtain
γ

2
λHB

minE
[∥∥∇f(W t)

∥∥2] ≤ et − et+1,

where et = E [f(W t)]− f⋆. Now we can sum these inequalities together and get
T−1∑
t=0

γ

2
λHB

minE
[∥∥∇f(W t)

∥∥2] ≤ T−1∑
t=0

(
et − et+1

)
,

Using telescoping property of et − et+1 we get
T−1∑
t=0

γ

2
λHB

minE
[∥∥∇f(W t)

∥∥2] ≤ e0 − eT .

Once we divide by T we obtain

1

T

T−1∑
t=0

γ

2
λHB

minE
[∥∥∇f(W t)

∥∥2] ≤ e0 − eT

T

≤ e0

T
.

Finally, we get

1

T

T−1∑
t=0

E
[∥∥∇f(W t)

∥∥2] ≤ 2(f(W 0)− f⋆)

λHB

minγT
.

Applying argument from Danilova et al. (2022) we obtain the result for uniformly chosen point.

C.2 PROOF OF THEOREM 5.5

Theorem. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Suppose that a
stepsize γ ≥ 0 is chosen such that γ ≤ 1

L . Then, the iterates of RAC-LoRA method (Algorithm 1)
with GD updates (Equation 3 or Equation 4) satisfy

E
[
f(WT )

]
− f⋆ ≤

(
1− γµλH

min

)T (
f(W 0)− f⋆

)
.

The proof is provided for Left Sketch (Definition 4.1). The result for Right Sketch (Definition 4.2)
can be derived by following the same steps.

Proof. We start from the inequality 5:

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γ

2
λHB

min

∥∥∇f(W t)
∥∥2 .

Using PL condition ∥∇f(W t)∥2 ≥ 2µ (f(W t)− f⋆) we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γµλHB

min

(
f(W t)− f⋆

)
≤
(
1− γµλHB

min

) (
f(W t)− f⋆

)
.

Once we unroll the recursion we get

E
[
f(WT )

]
− f⋆ ≤

(
1− γµλHB

min

)T (
f(W 0)− f⋆

)
.

In order to obtain ε solution we need to take

T ≥ O

(
L

µ

1

λHB

min

log
1

ε

)
.
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D ANALYSIS OF RAC-LORA WITH RANDOM RESHUFFLING

The previous results were obtained using full gradients. However, this approach is impractical in
deep learning settings, where calculating full gradients is often infeasible. To analyze stochastic
methods, we assume a finite sum structure for the loss function:

min
∆W∈Rm×n

[
f(W 0 +∆W ) =

1

N

N∑
i=1

fi(W
0 +∆W )

]
, (6)

where each function fi represents the individual loss function for one sample and N is total number
of datapoints. Next, we analyze a practical variant of stochastic gradient descent (SGD) known
as Random Reshuffling (RR), which involves sampling without replacement. In this method, the
dataset is shuffled according to a permutation, ensuring that each training sample is used exactly
once during each epoch.

RR is a variant of SGD in which each data point is used exactly once per epoch, also known as SGD
with sampling without replacement. Many efforts have been made to explain why gradient methods
with reshuffling perform so well in practice, across different types of problems. The convergence
rates for incremental gradient methods with random reshuffling in convex optimization were first
explored by Nedić & Bertsekas (2001) and later by Bertsekas (2011). In recent years, a lot of focus
has shifted toward strongly convex problems, with studies showing that RR can outperform SGD.
For example, Recht & Ré (2012) were among the first to analyze this for quadratic least squares
problems.

Researchers have also managed to improve results and remove some of the earlier assumptions,
such as second-order smoothness, as seen in works by Jain et al. (2019), Safran & Shamir (2021)
and Mishchenko et al. (2020). These studies introduced a new way to account for the random
permutation’s variance, making it easier to analyze both convex and strongly convex cases. There
have even been extensions into non-convex settings, with results under the PL condition (Ahn et al.,
2020; Nguyen et al., 2021) and general non-convex smooth cases (Lu et al., 2022; Mishchenko et al.,
2020; Malinovsky et al., 2023c). More recently, tighter lower bounds for strongly convex and PL
functions have been developed (Cha et al., 2023).

In recent years, there’s also been growing interest in applying these reshuffling techniques to dis-
tributed and federated learning, which is crucial for training large-scale, decentralized models (Yun
et al., 2021; Malinovsky et al., 2023b; Sadiev et al., 2022b; Mishchenko et al., 2022a; Cho et al.,
2023; Malinovsky & Richtárik, 2022; Malinovsky et al., 2023a; Horváth et al., 2022)

To analyze stochastic methods, we need to make assumptions about the variance. The standard
assumption is that the variance is bounded:
Assumption D.1. There exist nonnegative constants σ ≥ 0 such that for any W t ∈ Rm×n we have,

1

N

n∑
i=1

∥∥∇fi
(
W t
)
−∇f

(
W t
)∥∥2 ≤ σ2.

The proof is provided for Left Sketch (Definition 4.1). The result for Right Sketch (Definition 4.2)
can be derived by following the same steps.

We consider a method belonging to the class of data permutation methods which is the RR al-
gorithm. In each epoch t of RR, we sample indices π0, π1, . . . , πN−1 without replacement from
{1, 2, . . . , N}, i.e., {π0, π1, . . . , πN−1} is a random permutation of the set {1, 2 . . . N} and proceed
with N iterates of the form:

W t
i+1 = W t

i − γHt
B∇f(W t

i ).

We then set W t+1 = W t
N , and repeat the process for a total of T LoRA blocks. We can derive the

effective step:

W t+1 = W t − γHt
B

N−1∑
i=0

∇f(W t
i ) = W t − γHt

BNĝt, (7)

where ĝt = 1
N

∑N−1
i=0 ∇f(W t

i ).
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D.1 ANALYSIS OF GENERAL NON-CONVEX SETTING

Theorem D.2. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that a stepsize γ > 0

is chosen such that γ ≤ 1
2LN . We choose the output of the method W̃T uniformly at random from

W 0,W 1, . . . ,WT−1 Then, the iterate W̃T of RAC-LoRA method (Algorithm 1) with RR updates
(Equation 7) satisfy

E
[∥∥∥∇f(W̃T )

∥∥∥2] ≤ 2

γNT

f(W 0)− f⋆(
1− λmax [E [I −Ht]]− 1

4λ
H
max

)
+

L2γ2λH
maxNσ2(

1− λmax [E [I −Ht]]− 1
4λ

H
max

) .
Proof. In this context, and in subsequent discussions, the notation ∥ ·∥ refers to the Frobenius norm,
while ⟨·⟩ denotes the inner product associated with the Frobenius norm.

Now we can apply the L-smoothness:

f(W t+1) ≤ f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

= f(W t) +
〈
∇f(W t),−γHt

BNĝt
〉
+

L

2

∥∥γHt
BNĝt

∥∥2
= f(W t)− γN

〈
∇f(W t), Ht

B ĝ
t
〉
+

L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

(∥∥∇f(W t)
∥∥2 + ∥∥Ht

B ĝ
t
∥∥2 − ∥∥∇f(W t)−Ht

B ĝ
t
∥∥2)+ L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

(∥∥∇f(W t)
∥∥2 + ∥∥Ht

B ĝ
t
∥∥2 − ∥∥∇f(W t)−Ht

B ĝ
t
∥∥2)+ L

2
γ2N2

∥∥Ht
B ĝ

t
∥∥2

= f(W t)− γN

2

∥∥∇f(W t)
∥∥2 − γN

2

∥∥Ht
B ĝ

t
∥∥2 (1− γLN) +

γN

2

∥∥∇f(W t)−Ht
B ĝ

t
∥∥2 .

Using γ ≤ 1
LN we get

f(W t+1) ≤ f(W t)− γN

2

∥∥∇f(W t)
∥∥2 + γN

2

∥∥∇f(W t)−Ht
B ĝ

t
∥∥2 .

Let us take expectation and subtract f⋆:

E
[
f(W t+1) | W t

]
− f⋆ ≤ f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2 + γN

2
E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
.

Let us consider the last term:

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
= E

∥∥∥∥∥ 1

N

N−1∑
i=0

∇fπi
(W t)−Ht

B

1

N

N−1∑
i=0

∇fπi
(W t

i )

∥∥∥∥∥
2

| W t


= E

∥∥∥∥∥ 1

N

N−1∑
i=0

∇fπi
(W t) +Ht

B

1

N

N−1∑
i=0

∇fπi
(W t)−Ht

B

1

N

N−1∑
i=0

∇fπi
(W t)−Ht

B

1

N

N−1∑
i=0

∇fπi
(W t

i )

∥∥∥∥∥
2

| W t


Since I −Ht

B and Ht
B are projection matrices generating perpendicular subspaces we have

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
= E

∥∥(I −Ht
B

)
∇f(W t)

∥∥2 + ∥∥∥∥∥Ht
B

1

n

n−1∑
i=0

(
∇fπi

(W t)− fπi
(W t

i )
)∥∥∥∥∥

2

| W t


= E

〈(I −Ht
B

)
∇f(W t),

(
I −Ht

B

)
∇f(W t)

〉
+

∥∥∥∥∥Ht
B

1

N

N−1∑
i=0

(
∇fπi

(W t)− fπi
(W t

i )
)∥∥∥∥∥

2

| W t

 .
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Using the property that Ht
B and I −Ht

B are projection matrices we obtain

E
[∥∥∇f(W t)−Htĝt

∥∥2 | W t
]

≤ λmax

[
E
[
I −Ht

]] ∥∥∇f(W t)
∥∥2 + E

[
λmax[H

t]L2 1

N

N−1∑
i=0

∥∥W t −W t
i

∥∥2] .
Since λmax[H

t] = 1 for projections matrix we get

E
[∥∥∇f(W t)−Ht

B ĝ
t
∥∥2 | W t

]
≤ λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2 1

N

N−1∑
i=0

E
[∥∥W t −W t

i

∥∥2 | W t
]
.

Now let us consider the last term:

E
[∥∥W t −W t

k

∥∥2] = γ2E

∥∥∥∥∥
k−1∑
i=0

Ht
B∇fπi(W

t
i )

∥∥∥∥∥
2

| W t


= γ2E

∥∥∥∥∥
k−1∑
i=0

Ht
B

(
∇fπi(W

t
i )−∇fπi(W

t)
)
+

k−1∑
i=0

Ht
B∇fπi(W

t)

∥∥∥∥∥
2

| W t


≤ 2γ2kE

[
k−1∑
i=0

(∥∥Ht
B

(
∇fπi(W

t
i )−∇fπi(W

t)
)∥∥2 + 2γ2k2

∥∥Ht
B∇fπi(W

t)
∥∥2) | W t

]

≤ 2γ2kE

[
k−1∑
i=0

(
λmax

[
Ht
] ∥∥W t

i −W t
∥∥2 + 2γ2k2

∥∥Ht
B∇fπi

(W t)
∥∥2) | W t

]

≤ 2γ2kE

[
k−1∑
i=0

(∥∥W t
i −W t

∥∥2 + 2γ2k2λmax

[
E
[
Ht

B

]] ∥∥∇fπi(W
t)
∥∥2) | W t

]
.

Now, we are ready to sum the inequalities. By using λmax [E [Ht]] = λHB
max and applying Lemma 1

from Mishchenko et al. (2020) with Assumption D.1, we obtain:

n−1∑
i=0

E
[∥∥W t −W t

i

∥∥2] ≤E

[
N−1∑
i=0

(
2γ2k

k−1∑
i=0

∥∥W t
i −W t

∥∥2 + 2γ2k2λHB
max

∥∥∇fπi
(W t)

∥∥2) | W t

]

≤γ2L2N(N − 1)

N−1∑
i=0

E
[∥∥W t −W t

k

∥∥2]
+

1

3
γ2(N − 1)N(2N − 1)λHB

max

∥∥∇f(W t)
∥∥2 + 1

3
λHB
maxγ

2N(N + 1)σ2.

Using γ ≤ 1
2LN we get

n−1∑
i=0

E
[∥∥W t −W t

i

∥∥2] ≤ 4

3

(
1− γ2L2N(N − 1)

)N−1∑
i=0

E
[∥∥W t −W t

i

∥∥2]
≤ 4

3

(
1

3
γ2(N − 1)N(2N − 1)λHB

max

∥∥∇f(W t)
∥∥2 + 1

3
λHB
maxγ

2N(N + 1)σ2

)
≤ γ2n3λHB

max

∥∥∇f(W t)
∥∥2 + γ2λHB

maxN
2σ2

Plugging to the previous bound we obtain:

E
[∥∥∇f(W t)−Htĝt

∥∥2 | W t
]
≤ λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2γ2N2λHB

max

∥∥∇f(W t)
∥∥2

+ L2γ2λHB
maxNσ2.
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Now we have the following

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2

+
γN

2

(
λmax

[
E
[
I −Ht

B

]] ∥∥∇f(W t)
∥∥2 + L2γ2N2λHB

max

∥∥∇f(W t)
∥∥2)

+
γN

2
L2γ2λHB

maxNσ2.

Using γ ≤ 1
2LN we get

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
(8)

+
γN

2
L2γ2λHB

maxNσ2. (9)

After rearranging the terms, we have

γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
≤
(
f(W t)− f⋆

)
−
(
E
[
f(W t+1) | W t

]
− f⋆

)
+

γN

2
L2γ2λHB

maxNσ2.

Next, we have∥∥∇f(W t)
∥∥2 ≤ 2

γN

1(
1− λmax [E [I −Ht

B ]]−
1
4λ

HB
max

) ((f(W t)− f⋆
)
−
(
E
[
f(W t+1) | W t

]
− f⋆

))
+

2

γN

1(
1− λmax [E [I −Ht

B ]]−
1
4λ

HB
max

) γN

2
L2γ2λHB

maxNσ2.

Using telescoping property and taking expectation we get

1

T

T−1∑
t=0

∥∥∇f(W t)
∥∥2 ≤ 2

γNT

f(W 0)− f⋆(
1− λmax [E [I −Ht

B ]]−
1
4λ

HB
max

)
+

L2γ2λHB
maxNσ2(

1− λmax [E [I −Ht
B ]]−

1
4λ

HB
max

) .
Applying argument from Danilova et al. (2022) we obtain the result for uniformly chosen point.

Corollary D.2.1. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that a stepsize
γ > 0 is chosen such that γ ≤ 1

2LN . Let the updates have a form of several gradient steps (variance
σ2 = 0) We choose the output of the method W̃T uniformly at random from W 0,W 1, . . . ,WT−1

Then, the iterate W̃T of RAC-LoRA method (Algorithm 1) with several GD updates (Equation 3)
satisfy

E
[∥∥∥∇f(W̃T )

∥∥∥2] ≤ 2

γNT

f(W 0)− f⋆(
1− λmax [E [I −Ht]]− 1

4λ
H
max

) .
Given that the step size is divided by the number of gradient steps allocated for each LoRA block,
employing multiple gradient steps for a single LoRA block does not provide any significant bene-
fits. This observation suggests that a single gradient step is adequate for each LoRA block. There-
fore, in practical applications, it is more advantageous to utilize only one epoch per LoRA block
within the training chain. This approach not only streamlines the training process but also optimizes
computational efficiency, allowing for more effective resource allocation without compromising the
performance of the model.
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D.2 ANALYSIS OF POLYAK-ŁOJASIEWICZ SETTING

Next, we establish the convergence rate for the Polyak-Łojasiewicz setting (Assumption 5.4).
Theorem D.3. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Suppose
that a stepsize γ ≥ 0 is chosen such that γ ≤ 1

2NL . Then, the iterates of RAC-LoRA method
(Algorithm 1) with RR updates (Equation 7) satisfy

E
[
f(WT )− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
+

L2γ2λHB
maxNσ2

2
(
1− λmax [E [I −Ht

B ]]−
1
4λ

HB
max

) .
Proof. We start from Equation 8:

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γN

2

∥∥∇f(W t)
∥∥2(1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
+

γN

2
L2γ2λHB

maxNσ2.

Using PL condition ∥∇f(W t)∥2 ≥ 2µ (f(W t)− f⋆) we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γNµ

(
f(W t)− f⋆

)(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

)
+

γN

2
L2γ2λHB

maxNσ2.

Taking full expectation we obtain:

E
[
f(W t+1)− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))
E
[
f(W t)− f⋆

]
+

γN

2
L2γ2λHB

maxNσ2.

After unrolling the recursion we obtain

E
[
f(WT )− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
+

L2γ2λHB
maxNσ2

2
(
1− λmax [E [I −Ht

B ]]−
1
4λ

HB
max

) .
This finishes the proof.

Corollary D.3.1. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Let the
updates have a form of several gradient steps (variance σ2 = 0) Suppose that a stepsize γ ≥ 0 is
chosen such that γ ≤ 1

2NL . Then, the iterates of RAC-LoRA method (Algorithm 1) with several GD
updates (Equation 3) satisfy

E
[
f(WT )− f⋆

]
≤
(
1− γNµ

(
1− λmax

[
E
[
I −Ht

B

]]
− 1

4
λHB
max

))T

E
[
f(W 0)− f⋆

]
.

Since the step size is divided by the number of gradient steps for each LoRA block, using multiple
gradient steps does not offer significant advantages. Thus, a single gradient step per LoRA block is
sufficient. Practically, it is more efficient to use only one epoch per LoRA block in the training chain.
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E ANALYSIS OF RAC-LORA WITH SGD UNDER THE ARBITRARY DATA
SAMPLING PARADIGM

In the previous section, we introduced the Random Reshuffling (RR) method, where each data point
is used exactly once during each epoch, also known as sampling without replacement. This method
has demonstrated strong empirical performance across various optimization tasks. However, in this
section, we shift our focus to the RAC-LoRA framework, where Stochastic Gradient Descent (SGD)
is applied with a more general, arbitrary data sampling procedure, allowing for broader flexibility in
how data is selected and used during training.

The analysis of general sampling schemes in SGD has garnered significant attention in the litera-
ture, particularly in understanding its impact on convergence rates and optimization performance
across different problem classes. For strongly convex functions, general sampling methods have
been rigorously studied in works such as Gower et al. (2019), which provide detailed convergence
guarantees and bounds. In the case of general convex optimization problems, Khaled et al. (2023)
offer a thorough analysis of the performance of SGD under various sampling strategies. Further-
more, for non-convex settings, both Khaled & Richtárik (2020) and Demidovich et al. (2023) have
explored how general sampling procedures influence the convergence behavior and optimization
efficiency of SGD, shedding light on its applicability to a wide range of machine learning tasks.

In the following sections, we build on these foundational studies to examine how the flexibility of
general sampling in the RAC-LoRA framework can lead to improved convergence in certain scenar-
ios, while also maintaining robust performance across different convexity settings.

To conduct this analysis, we introduce a general assumption that extends the standard assumptions
presented in Khaled & Richtárik (2020).

The proof is provided for Right Sketch (Definition 4.2). The result for Left Sketch (Definition 4.1)
can be derived by following the same steps.

Assumption E.1 ( Expected smoothness). The second moment of the stochastic gradient satisfies

E
[
∥g(W )∥2

]
≤ 2A1

(
f(W )− f inf

)
+B1 · ∥∇f(W )∥2 + C1

for some A,B,C ≥ 0 and all W ∈ Rm×n.

Now we can also do stochastic analysis. Let us consider the SGD update for LoRA method:

∆W =
α

r
B̂AS ,

W t+1 = W t +
α

r
B̂tAt

S B̂t = −γg(W t)(At
S)

⊤ (At
S(A

t
S)

⊤)†
Now we have

W t+1 = W t − γg(W t)(At
S)

⊤ (At
S(A

t
S)

⊤)† At
S (10)

= W t − γg(W t)Ht
A. (11)

E.1 ANALYSIS OF GENERAL NON-CONVEX SETTING

Theorem E.2. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that a stepsize

γ > 0 is chosen such that γ ≤ min

[
1/
√
LA1λH

maxT , 1/

(
LB1

λ
HA
max

λ
HA
min

)]
. Then, the iterate WT of

RAC-LoRA method (Algorithm 1) with SGD updates (Equation 10) satisfy

min
0≤t≤T−1

E
[∥∥∇f(WT )

∥∥2] ≤ 6

λHA

minγT

(
f(W 0)− f⋆

)
+ LC1γ

λHA
max

λHA

min

.
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Proof. We start from L-smoothness:

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

=f(W t) +
〈
∇f(W t),−γg(W t)Ht

A

〉
+

L

2

∥∥−γg(W t)Ht
A

∥∥2
=f(W t)− γ

〈
∇f(W t), g(W t)Ht

A

〉
+

L

2

∥∥−γg(W t)Ht
A

∥∥2 .
Let us take conditional expectation:

E
[
f(W t+1) | W t

]
≤f(W t)− γE

[〈
∇f(W t), g(W t)Ht

A

〉
| W t

]
+

L

2
E
[∥∥−γg(W t)Ht

A

∥∥2 | W t
]
.

Using that g(W t) and Ht
A are independent, so we have

E
[
f(W t+1) | W t

]
≤f(W t)− γ

〈
∇f(W t),E

[
g(W t)

]
E
[
Ht

A

]〉
+

L

2
E
[∥∥−γg(W t)Ht

A

∥∥2 | W t
]

≤f(W t)− γ
〈
∇f(W t),E

[
g(W t)

]
E
[
Ht

A

]〉
+ γ2L

2
E
[〈
g(W t)Ht

A, g(W
t)Ht

A

〉
| W t

]
≤f(W t)− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2 + γ2L

2
E
[〈
g(W t)Ht

A, g(W
t)Ht

A

〉
| W t

]
.

Using the property of projection matrix Ht
A, we have

E
[
f(W t+1) | W t

]
≤f(W t)− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2 + γ2L

2
λmax

[
E
[
Ht

A

]]
E
[∥∥g(W t)

∥∥2] .
Now we need to use assumption on stochastic gradients. We will use the most general assumption:
ABC – assumption:

E
[
∥g(W t)∥2

]
≤ 2A1(f(W

t)− f⋆) +B1

∥∥∇f(W t)
∥∥2 + C1.

Now we have

E
[
f(W t+1) | W t

]
− f⋆ ≤f(W t)− f⋆ − γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2

+ γ2L

2
λmax

[
E
[
Ht

A

]] (
2A1(f(W

t)− f⋆) +B1

∥∥∇f(W t)
∥∥2 + C1.

)
.

Combining these terms together we get

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
(12)

− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2(1− γ

L

2

λmax [E [Ht
A]]

λmin [E [Ht
A]]

B1

)
(13)

+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1. (14)

Using condition on stepsize: 1− γ LB1

2

λmax[E[Ht
A]]

λmin[E[Ht
A]]

≥ 1
2 we get

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− 1

2
γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2

+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Using tower property of expectation we obtain

E
[
f(W t+1)− f⋆

]
≤E

[
f(W t)− f⋆

] (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− 1

2
γλmin

[
E
[
Ht

A

]]
E
[∥∥∇f(W t)

∥∥2]
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.
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Let us define δt = E [f(W t)− f⋆] and rt = E
[
∥∇f(W t)∥2

]
, after reshuffling of terms we obtain

1

2
γλmin

[
E
[
Ht

A

]]
E
[∥∥∇f(W t)

∥∥2] ≤ (1 + γ2A1Lλmax

[
E
[
Ht

A

]])
δt − δt+1 + γ2LC1

2
λmax

[
E
[
Ht

A

]]
.

Let use fix w−1 > 0 and define wt = wt−1

1+Lγ2Aλmax[E[Ht
A]]

for all t ≥ 0. Multiplying by wt

γ ,

1

2
wtrtλmin

[
E
[
Ht

A

]]
≤wt

γ

(
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
δt − wt

γ
δt+1 + γ

LC1

2
λmax

[
E
[
Ht

A

]]
.

Now we obtain
1

2
wtrtλmin

[
E
[
Ht

A

]]
≤wt−1

γ
δt − wt

γ
δt+1 + γ

LC1

2
λmax

[
E
[
Ht

A

]]
wt.

Summing up both sides as t = 0, 1, . . . , T − 1 we have,

1

2

T−1∑
t=0

wtrtλmin

[
E
[
Ht

A

]]
≤w−1

γ
δ0 − wT−1

γ
δT + γ

LC1

2
λmax

[
E
[
Ht

A

]] T−1∑
t=0

wt

≤w−1

γ
δ0 + γ

LC1

2
λmax

[
E
[
Ht

A

]] T−1∑
t=0

wt.

Let us define WT =
∑T−1

t=0 wt. Dividing both sides by WT we have,

1

2
min

0≤t≤T−1
rt ≤ 1

WT

T−1∑
t=0

wtrt ≤ w−1

WT

δ0

γ

1

λmin [E [Ht
A]]

+
LC1γ

2

λmax [E [Ht
A]]

λmin [E [Ht
A]]

.

Note that,

WT =

T−1∑
t=0

wt ≥
T−1∑
t=0

min
0≤i≤T−1

wi = TwT−1 =
Tw−1

(1 + Lγ2Aλmax [E [Ht
A]])

T
.

Using this we get

1

2
min

0≤t≤T−1
rt ≤

(
1 + Lγ2A1λmax [E [Ht

A]]
)T

λmin [E [Ht
A]] γT

δ0 +
LC1γ

2

λmax [E [Ht
A]]

λmin [E [Ht
A]]

.

Using the fact that 1 + x ≤ exp(x), we have that

(
1 + Lγ2A1λmax

[
E
[
Ht

A

]])T ≤ exp
(
Lγ2A1λmax

[
E
[
Ht

A

]]
T
)
≤ exp(1) ≤ 3

where the second inequality holds because γ ≤ 1/
√
LA1λmax [E [Ht

A]]T by assumption. Substi-
tuting we get,

min
0≤t≤T−1

rt ≤ 6

λmin [E [Ht
A]] γT

(
f(W 0)− f⋆

)
+ LC1γ

λHA
max

λHA

min

.

E.2 ANALYSIS OF POLYAK-ŁOJASIEWICZ SETTING

In this section we provide analysis of RAC-LoRA method with general SGD update under Polyak-
Łojasiewicz condition (Assumption 5.4).
Theorem E.3. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Suppose that

a stepsize γ ≥ 0 is chosen such that γ ≤ min

 µ

2A1L
λ
HA
max

λ
HA
min

, 1/

(
LB1

λ
HA
max

λ
HA
min

). Then, the iterates of

RAC-LoRA method (Algorithm 1) with SGD updates (Equation 10) satisfy

E
[
f(WT )

]
− f⋆ ≤

(
1− γµλH

min

)T (
f(W 0)− f⋆

)
.
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Proof. We start from 12:

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1 + γ2A1Lλmax

[
E
[
Ht

A

]])
− γλmin

[
E
[
Ht

A

]] ∥∥∇f(W t)
∥∥2(1− γ

L

2

λmax [E [Ht
A]]

λmin [E [Ht
A]]

B1

)
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Using
(
1− γ L

2

λmax[E[Ht
A]]

λmin[E[Ht
A]]

B1

)
≥ 3

4 and PL condition we have

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

)(
1− 3

2
γµλmin

[
E
[
Ht

A

]]
+ γ2A1Lλmax

[
E
[
Ht

A

]])
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Using that LA1γλmax [E [Ht
A]] ≤

µ
2λmin [E [Ht

A]] we obtain

E
[
f(W t+1) | W t

]
− f⋆ ≤

(
f(W t)− f⋆

) (
1− γµλmin

[
E
[
Ht

A

]])
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Taking full expectation and using tower property we obtain:

E
[
f(W t+1)− f⋆

]
≤E

[
f(W t)− f⋆

] (
1− γµλmin

[
E
[
Ht

A

]])
+ γ2L

2
λmax

[
E
[
Ht

A

]]
C1.

Once we unroll the recursion we obtain

E
[
f(WT )− f⋆

]
≤E

[
f(W 0)− f⋆

] (
1− γµλHA

min

)T
+ γ

L

2µλHA

min

λHA
maxC1.
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Algorithm 2 Federated Randomized Asymmetric Chain of LoRA (Fed-RAC-LoRA)
1: Parameters: initial pre-trained model W 0, rank r, learning rate γ > 0, scaling factor α, server

stepsize β > 0 number of modules in chain T , sample distribution DB
S or DA

S .
2: for t = 0, 1, . . . , T − 1 do
3: Sample a subset (cohort) of clients St

4: (Option 1) Sample a matrix Bt
S (Option 2) Sample a matrix At

S
5: Send the model W t and fixed matrix (Option 1) Bt

S or (Option 2) At
S to clients

6: for m ∈ St do
7: Solve subproblem

(Option 1) Ât
m ≈ min

A
fm(W t +

α

r
Bt

SA) (Option 2) B̂t
m ≈ min

B
fm(W t +

α

r
BAt

S)

8: Send the updates to server (Option 1) Ât
m or (Option 2) B̂t

m
9: end for

10: Merge the updates
11:

(Option 1) W t+1 = W t + β
α

r
Bt

S

1

C

∑
m∈St

Ât
m

12:

(Option 2) W t+1 = W t + β
α

r

1

C

∑
m∈St

B̂t
mAt

S

13: end for

F FEDERATED LEARNING SETTING

We consider the following optimization problem with a double finite-sum structure:

min
∆W∈Rm×n

f(W 0 +∆W ) =
1

M

M∑
m=1

1

N

N∑
i=1

fm,i(W
0 +∆W ), (15)

where M is the total number of clients and N is the number of data points on each client. In
the context of Federated Learning, each client maintains its own local loss function fm, which
also follows a finite-sum structure, reflecting the client’s local data. This formulation captures the
decentralized nature of the learning process, where each client performs computations based on their
local dataset.

Federated Learning (FL) (Konečný et al., 2016; Kairouz et al., 2021) is a distributed machine learn-
ing framework that enables multiple devices or clients to collaboratively train a shared model without
sending their raw data to a central server. In contrast to traditional machine learning, where data is
centralized for model training, Federated Learning allows each client to train a local model using its
own data. The clients then share only the updated model parameters with a central server or aggre-
gator. The server aggregates these updates to form a new global model, which is then redistributed
to the clients for further iterations of the process (Konečný et al., 2016). Local Training (LT) is a
key component of Federated Learning (FL), in which each participating client conducts several local
optimization steps before synchronizing their model parameters with the central server.

The analysis of LT marked a significant advancement by eliminating the need for data homogeneity
assumptions, as demonstrated by Khaled et al. (2019; 2020). However, later studies by Woodworth
et al. (2020b) and Glasgow et al. (2022) revealed that LocalSGD (also known as FedAvg) has no
communication complexity advantage over minibatch SGD in heterogeneous data settings. Addi-
tionally, Malinovskiy et al. (2020) analyzed LT methods for general fixed-point problems, while
Koloskova et al. (2020) explored decentralized aspects of LT.

Although removing the data homogeneity requirement was a major breakthrough, the results were
somewhat discouraging, as they indicated that LT-enhanced GD, or LocalGD, exhibits a sublinear
convergence rate, which is worse than the linear convergence rate of vanilla GD (Woodworth et al.,
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2020a). The impact of server-side step sizes was further explored by Malinovsky et al. (2023b) and
Charles & Konečnỳ (2020).

Subsequent LT methods aimed to achieve linear convergence by addressing client drift, which had
hindered earlier approaches. Scaffold, introduced by Karimireddy et al. (2020), was the first to
successfully mitigate client drift and achieve a linear convergence rate. Similar methods were later
proposed by Gorbunov et al. (2021). Although this was a significant breakthrough, these methods
still have slightly higher or equal communication complexity compared to vanilla GD.

Mishchenko et al. (2022b) recently introduced the ProxSkip method, a simple yet effective approach
to Local Training that achieves provable communication acceleration in the smooth strongly convex
regime, even with heterogeneous data. In a follow-up article, Malinovsky et al. (2022) expanded
on ProxSkip, presenting a broad variance reduction framework. Condat & Richtárik (2022) further
applied ProxSkip to complex splitting schemes involving the sum of three operators in a forward-
backward setting. Additionally, Sadiev et al. (2022a) and Maranjyan et al. (2022) improved the
computational complexity of ProxSkip while preserving its communication efficiency. Condat et al.
(2023) introduced accelerated Local Training methods allowing client sampling based on ProxSkip,
while Grudzień et al. (2023a;b) proposed an accelerated method using the RandProx approach with
primal and dual updates.

In practice, Federated Learning faces a fundamental challenge: it is often infeasible for all clients to
communicate and aggregate updates with the central server simultaneously due to limitations such
as network bandwidth, client availability, or resource constraints. Therefore, rather than requiring
all clients to participate in every round of communication, we adopt a strategy in which only a
randomly selected subset of clients is involved in each aggregation step. This approach relies on
uniform sampling of the clients, ensuring that the selection process is unbiased over time.

The method operates as follows: in each communication round, the central server sends the current
global model, denoted by W t, along with the sampled matrix, to the clients chosen to participate in
the current cohort. Each client in this cohort trains a local learnable matrix using an optimization
algorithm (e.g., stochastic gradient descent) based on their local data. After completing the local
updates, the clients send their computed updates (i.e., changes in model parameters) back to the
central server.

Once the server receives these updates, it aggregates them (e.g., by averaging the updates) to produce
an updated global model. In addition to the aggregation, the server may perform an additional server-
side update step to further refine the model before broadcasting it in the next round. This iterative
process of local training, communication, and aggregation continues until convergence is achieved
or a predefined stopping criterion is met.

The proof is provided for Left Sketch (Definition 4.1). The result for Right Sketch (Definition 4.2)
can be derived by following the same steps.

For local optimzier we use Random Reshuffling, where the effective step has a form:

W t
m,i+1 = W t

m,i − γHt
B∇fm,i(W

t
m,i) (16)

The server-side step looks like W t+1 = W t − η̃Ht
B

1
C

∑
m∈St Ât

m.

Let us formulate nesesary assumptions

Assumption F.1 (Functional dissimilarity). The variance at the optimum in the non-convex regime
is defined as

∆⋆ def
= f⋆ − 1

M

M∑
m=1

f⋆
m

where f⋆
m = infW fm(W ) and f⋆ = infW f(W ). For each device m, the variance at the optimum

is defined as

∆⋆
m

def
= f⋆ − 1

n

n∑
i=1

f⋆
m,i

where f⋆
m,i = infW fm,i(W )
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F.1 ANALYSIS OF GENERAL NON-CONVEX SETTING

Theorem F.2. Suppose that Assumption 3.1 and Assumption 5.1 hold. Suppose that stepsizes

γ, η̃ > 0 is chosen such that γn ≤ η̃ ≤ 1−λ
HB
min

4L . Then, the iterate WT of Fed-RAC-LoRA method
(Algorithm 2) with RR updates (Equation 16) satisfy

min
t=0,...,T−1

E
[∥∥∇f

(
W t
)∥∥2] ≤4

(
1 + 4η̃L3γ2N2 + 2L2η̃2 M−C

C max{M−1,1}

)T
λmax [E [I −Ht

B ]] η̃T

(
f(W 0)− f⋆

)
+

8γ2NL3

λmax [E [I −Ht
B ]]

(
1

M

M∑
m=1

∆∗
m +N∆∗

)

+
8L2η̃

λmax [E [I −Ht
B ]]

M − C

Cmax{M − 1, 1}
∆∗.

Proof. We start from L-smoothness:

f(W t+1) ≤f(W t) +
〈
∇f(W t),W t+1 −W t

〉
+

L

2

∥∥W t+1 −W t
∥∥2

≤f(W t)−

〈
∇f(W t), η̃

1

CN

∑
m∈St

N−1∑
i=0

Ht∇f
πt
m,i

m

(
W t

m,i

)〉

+
L

2

∥∥∥∥∥η̃ 1

CN

∑
m∈St

N−1∑
i=0

Ht∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

.

Now we take expectation with respect to sampling:

ESt

[
f(W t+1)

]
≤f(W t)− η̃ESt

[〈
∇f(W t),

1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m

(
W t

m,i

)〉]

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

〈
∇f(W t),

1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m

(
W t

m,i

)〉

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .
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Using 2 ⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2, we have

ESt

[
f(W t+1)

]
≤f(W t)− η̃

2
∥∇f(W t)∥2 − η̃

2

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
η̃

2

∥∥∥∥∥∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2 + η̃

2

∥∥∥∥∥∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .

Now we need to add and subtract Ht
B∇f(W t):

ESt

[
f(W t+1)

]
≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)−Ht
B∇f(W t) +Ht

B∇f(W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)
(
I −Ht

B

)
+

1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t)− 1

MN

M∑
m=1

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2


≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∥∥∥∇f(W t)
(
I −Ht

B

)
+

1

MN

M∑
m=1

N−1∑
i=0

Ht
B

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .

Since Ht
B(I −Ht

B) = 0 we obtain

ESt

[
f(W t+1)

]
≤f(W t)− η̃

2
∥∇f(W t)∥2

+
η̃

2

∥∥∇f(W t)
(
I −Ht

B

)∥∥2 + η̃

2

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

Ht
B

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

+
L

2
η̃2ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 .
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Now we take conditional expectation and use tower property:

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
E
[
∥∇f(W t)

(
I −Ht

B

)
∥2 | W t

]
+

η̃

2
E

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

Ht
B

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

| W t


+

L

2
η̃2E

ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

Ht
B∇f

πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 | W t

 .

Next, we use eigenvalues to obtain bounds:

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
λmax

[
E
[
I −Ht

B

]]
∥∇f(W t)∥2

+
η̃

2
E

λmax

[
Ht

B

]∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

|W t


+

L

2
η̃2E

ESt

λmax

[
Ht

B

] ∥∥∥∥∥ 1

Cn

∑
m∈St

N−1∑
i=0

∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 | W t

 .

Since λmax [H
t
B ] = 1 we have

E
[
f(W t+1) | W t

]
≤f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
λmax

[
E
[
I −Ht

B

]]
∥∇f(W t)∥2

+
η̃

2
E

∥∥∥∥∥ 1

MN

M∑
m=1

N−1∑
i=0

(
∇f

πt
m,i

m (W t)−∇f
πt
m,i

m (W t
m,i)

)∥∥∥∥∥
2

| W t


+

L

2
η̃2E

ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 | W t

 .

Using Lemma 5 from Malinovsky et al. (2023b) we have

L

2
η̃2E

ESt

∥∥∥∥∥ 1

CN

∑
m∈St

N−1∑
i=0

∇f
πt
m,i

m (W t
m,i)

∥∥∥∥∥
2
 | W t


≤ L3η̃2E

[
1

Mn

M∑
m=1

N−1∑
i=0

∥∥W t
m,i −W t

∥∥2 | W t

]
+ Lη̃2

∥∥∇f
(
W t
)∥∥2

+ Lη̃2
M − C

Cmax{M − 1, 1}
(
2L
(
f
(
W t
)
− f⋆

)
+ 2L∆∗)

Using this bound and L-smoothness for the term in second line we obtain:

E
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Since η̃ ≤ 1
2L we get

E
[
f(W t+1) | W t

]
≤ f(W t)− η̃

2

∥∥∇f(W t)
∥∥2 + η̃

2
λmax

[
E
[
I −Ht

B

]]
∥∇f(W t)∥2

+ η̃L2E

[
1

MN

M∑
m=1

N−1∑
i=0

∥∥W t −W t
m,i

∥∥2 | W t

]
+ Lη̃2

∥∥∇f
(
W t
)∥∥2
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Using lemma 6 from (cite) we obtain
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(
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1

M
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Plugging this bound we obtain
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Next, we have
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Using η̃ ≤ 1−λmax[E[Ht
B]]

4L we get
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Next, we subtract f⋆ from both sides:
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Taking full expectation we obtain
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Next, we apply lemma from Khaled & Richtárik (2020) and obtain
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F.2 ANALYSIS OF POLYAK-ŁOJASIEWICZ SETTING

Theorem F.3. Suppose that Assumption 3.1, Assumption 5.4 and Assumption 5.1 hold. Suppose that

stepsizes γ, η̃ > 0 is chosen such that γn ≤ η̃ ≤ 1−λ
HB
min

4L . Then, the iterate WT of Fed-RAC-LoRA
method (Algorithm 2) with RR updates (Equation 16) satisfy
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Proof. We start from
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Using Assumption5.4 we have
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Using the stepsize γ ≤ 1
4nL we have
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After unrolling the recursion we obtain
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