
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFUSION MINIMIZATION AND SHEAF NEURAL NET-
WORKS FOR RECOMMENDER SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNN) are well-known for successful applications in rec-
ommender systems. Despite recent advances in GNN development, various au-
thors report that in certain cases GNN suffer from so-called oversmoothing prob-
lems. Sheaf Neural Networks (SNN) is one of the ways to address the issue of
oversmoothing. In the present work we propose a novel approach for training
SNN together with user and item embeddings. In that approach parameters of the
sheaf are inferred via minimization of the classical BPR loss and sheaf diffusion
on graphs subjected to orthogonality and consistency constraints. Performance of
the novel technique is evaluated on synthetic test cases and standard benchmarks
for recommendations.

1 INTRODUCTION

Graph Neural Networks (GNN) Gao et al. (2022) is a rapidly developing research area in Machine-
Learning. GNN has been already successfully applied to solve problems in different areas includ-
ing Recommender Systems He et al. (2020), drug discovery Duvenaud et al. (2015); Han et al.
(2021) search for new materials Park & Wolverton (2020), materials properties prediction Louis
et al. (2020) and Natural Language Processing Gui et al. (2019). One of the possible reasons for
such success is utilization of information about pairwise interactions due to processing of graph
connections data.

Despite numerous successful applications, there is a space for further improvements. One of the is-
sues that reduces GNN performance is so-called oversmoothing effect Rusch et al. (2023). There is a
variety of quantitative definitions of oversmoothing Chen et al. (2020a), but all of them are related to
the variability of vertices feature vectors over the graph. In the extreme case of high oversmoothing
feature vectors associated with each vertex of graph are almost constant. The latter means that such
features are not informative and can not be utilized to solve machine-learning problems.

The oversmoothing occurs because of a message-passing procedure that allows one to aggregate
information from neighbours. It has been reported Rusch et al. (2023) that smoothing of feature
vectors can increase the quality of machine-learning model trained on the graph, because it performs
denoising of vertices feature vectors. Therefore, addressing the issues of oversmoothing is not so
straightforward.

Different techniques emerged to tackle the oversmooting in GNN. One of the options of oversmooth-
ing reduction is regularization of GNN training. In Zhou et al. (2021) regularization technique that
promotes variability of graph vertices features was proposed. Various stochastic methods for graph
edges dropout can reduce the oversmoothing effect ?Hasanzadeh et al. (2020). In other works au-
thors consider modifications of message-passing procedure to produce informative features. Such
methods can be inspired by physical systems on graphs Rusch et al. (2022a); Eliasof et al. (2021);
Wang et al. (2023); Giovanni et al. (2022). Alternative methods for modification of message-passing
procedure include Gradient Gating Rusch et al. (2022b). It has been demonstrated that addition of
residual connections to Graph Neural Networks can He et al. (2016); Li et al. (2019); Chen et al.
(2020b).

In recent years a novel technique for oversmoothing tackling emerged. The novel approach is based
on Graph Sheaf Theory Curry (2014) and is referred to as Sheaf Neural Networks (SNN) . In SNN
each graph vertice and edge is equipped with a linear space and linear maps between vector spaces

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of edges and vertices connected by those edges. Such construction provides more accurate descrip-
tion of data and relations between graph vertices Hansen & Gebhart (2020). The latter results in
improvement of recommender systems Barbero et al. (2022).

SNNs can be considered as a modification of the message-passing algorithm in classical GNNs,
where feature vectors from neighbours are passed directly. In SNN parameters feature vectors of
neighbouring vertices are multiplied by matrices that are computed for each pair of vertices. For
instance, if one wants to pass vector x from vertex u to verix v, then x should be mapped first to the
linear space of edge uv: y = Aux and mapped to the space of features at v: x∗ = A⊤

v Aux. The
procedure description has certain important benefits. First of all, it provides means for oversmooth-
ing reduction by aligning vectors from different vertices in modified message-passing algorithm,
Secondly, it provides a consistent way for comparison between vectors associated with different
vertices by mapping such vectors to the space of the edge that connects these vertices Purificato
et al. (2024). This is beneficial for classical recommender methods based on dot-product of user and
item embeddings.

In the current work we present a novel approach on learning SNN parameters. Basically, we intro-
duce orthogonality constraint on sheaf linear maps similar to Barbero et al. (2022) and the novel
consistency constraint explained in the Section 2. Sheaf linear maps are parameterized as functions
of feature vectors and are tuned to minimize the vertex feature vector diffusion. Finally, Bayesian
Personalized Ranking loss-function is added to train the recommender. Cases of known and learn-
able vertices feature vectors are considered. Our work adopts the approach similar to Bamberger
et al. (2024). However, we utilize a different regularisation approach to learn the sheaf structure.

2 METHODOLOGY

In the present section we provide Mathematical formulation of the approach for SNN training. First
we give a brief introduction to message passing on graphs equipped with a sheaf structure in the sub-
section 2.1. Secondly, we describe the constraints on sheaf linear transformations in the subsection
2.2. Finally, the loss function for recommender training is provided in subsections 2.3. We conclude
the section by providing formulations of some Theorems that are discussed in the Appendix.

2.1 SHEAF THEORY AND MESSAGE PASSING

Sheaf theory for graphs is a huge subject in Modern Mathematics with a variety of concepts of
different complexity. However, in our work we utilized only one of them to develop the novel
approach for SNN training. The most essential concept for our work is related to linear spaces over
each vertice and edge of the graph.

If V is the set of vertices and E is the set of edges of the graph G, then the sheaf structure implies
that there is a vector space L(v), associated with each v ∈ V and a vector space L(e), associated
with each e ∈ E. Moreover, for any edge e that connects vertices u and v there is a linear map:

A(v) : L(v) → L(e) (1)
Therefore, one can pass the feature vector x(v) from vertex v to vertex u by combining the linear
maps in the equation 1:

A⊤(u)A(v) : L(v) → L(u) (2)
These maps can be utilized for message-passing procedures. If D(v) - is the degree of the vertex v,
then the message passing can be defined as follows:

Mu(x) =
∑

v:(vu)∈E

1

D(u)
A⊤(u)A(v)x(v) (3)

Here Mu(x) is the result of the message-passing of feature vectors x for the vertex u. In other
words, the input for M is the vector field one the graph and a result is the vector field on the graph,
which can be evaluated at each graph vertex. The summation in the equation 3 is performed over all
vertices v such that u and v are connected by the edge: (uv) ∈ E. Therefore, message-passing can
be defined for weighted graphs naturally:

Mu(x) =
∑
v

w(u, v)∑
v∗ w(u, v∗)

A⊤(u)A(v)x(v) (4)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Where w(v, u) is a weight of the edge that connects u and v. Accordingly, the case of the weighted
fully-connected graph can be considered without loss of generality. In the case of weighted graph,
we denote as D(u) the normalization coefficient:

D(u) =
∑
v

w(v, u) (5)

Operations in equation 4 can be rearranged as following:

Mu(x) =
1

D(u)
A⊤(u)

∑
v

w(u, v)A(v)x(v) = A⊤(u)

(∑
v

w(u, v)

D(u)
y(v)

)
(6)

Here the following vector is defined: y(v) = A(v)x(v). In other words, y(v) is simply the result
of mapping a feature vector x(v) related to the vertex v to the particular vertex u. As a result, in the
case of SNN the message-passing and feature aggregation happens in the edge spaces. The result of
aggregation is then mapped back to the linear spaces, associated with each vertex.

2.2 CONSTRAINTS

In the present work we utilize several constraints on sheaf linear maps. The first one is the orthog-
onality constraint similar to Barbero et al. (2022). We assume that the dimension of the edge space
is (significantly) lower than the dimension of the linear space associated with the vertex. Therefore,
orthogonality constraint takes the following form:

A(u)A⊤(u)− I = 0 (7)

Here I is the identity matrix. In other words, A(u) projects vector x(u) and performs some rotations
in the projected space to compute the edge feature vector.

There is a geometric interpretation of the orthogonality constraint Barbero et al. (2022). Graph Sheaf
can be considered as a discretisation of a vector bundle over the manifold. In the case of the tangent
bundle over the Riemannian Manifold so-called parallel transport can be introduced. In other words,
it is possible to take a tangent vector at one point on the manifold and bring it along a curve to the
other point. In such a procedure the length of the vector does not change and the smooth curve
that connects two points on the manifold determines the linear map between tangent spaces at these
points that preserves the vector length. Therefore, such a linear map is a rotation, which is expressed
in the equation 7.

The second constraint we impose is consistency requirement. We suppose that linear mappings
depend only on the feature vector:

A(u) = A
(
x(u)

)
(8)

It follows immediately from equation 7 that A⊤(u)A(u) is a projection operator. One can think
about this linear map A⊤(u)A(u) : L(u) → L(u) as a feature denoising. Therefore, it is reasonable
to suppose that sheaf linear map A

(
x(u)

)
should not depend on the noisy component of feature

vector x(u). The latter can be formulated as a constraint:

A
(
x(u)

)
= A

(
A⊤(x(u))A(

x(u)
)
x(u)

)
(9)

For the purpose of simplicity, we introduce the notation for the linear operator:

P (u) = A⊤(u)A(u) = A⊤(x(u))A(
x(u)

)
(10)

2.3 SHEAF LEARNING

In principle, a single sheaf on the graph can be trained independently on the ultimate goals of the
recommender system. We doing that by minimizing sheaf diffusion under orthogonality and consis-
tency constraints. The latter is performed via appropriate weighting of loss functions for constraints
and for the target metric.

The loss for orthogonality constraint can derived simply from the equation 7:

Lorth =

N∑
i=1

1

N
trace

((
A(ui)A

⊤(ui)− I
)⊤(

A(ui)A
⊤(ui)− I

))
(11)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Here N is the batch size.

The loss function for the consistency constraint can be computed in a similar fashion:

Lcons =

N∑
i=1

1

N
x⊤(ui)

(
A(ui)−A(ui)P (ui)

)⊤(
A(ui)−A(ui)P (ui)

)
x(ui) (12)

We minimizing sheaf diffusion by forcing feature vectors not to change in the message-passing
procedure:

Ldiff =

N∑
i=1

1

N

(
Mui

(x)− x(ui)
)⊤(

Mui
(x)− x(ui)

)
(13)

Loss functions introduced in equation 11, equation 12 and equation 13 are combined into a single
loss-function:

Lcomb = sg(worth)Lorth + sg(wcons)Lcons + sg(wdiff)Ldiff (14)

Here sg - stop gradient operation. In other words, derivatives of loss-function weights are not com-
puted in the back-propagation step.

Me adopt the approach similar to bareer-function method that is well-known in optimization. In
other words, weights worth, wcons, wdiff, wbprl are proportional to:

worth ∝ 1,

wcons ∝ exp

(
− κcons

√
NLorth

)
,

wdiff ∝ exp

(
− κdiff

√
Nmax

(
Lorth,Lcons

)) (15)

Here κcons, κdiff are tunable hyperparameters.

The following normalization approach is utilized:

worth + wcons + wdiff = 1 (16)

In the case of the weighting procedure as in equation 15 and equation 21 loss-functions are mini-
mized sequentially. It is simple to see that if the orthogonality constraint is not satisfied, all other
weights are close to zero. Since orthogonality error follows below a certain level, consistency error
starts to reduce and so on. Finally, diffusion and BPR loss are minimized under orthogonality and
consistency constraints. The factor

√
N is introduced to reduce the hyper-parameters dependency

on a batch-size.

2.4 SHEAVES FOR REGRESSION AND LINK PREDICTION

Sheaves on graphs can be tuned to solve various machine-learning problems on graphs. However,
two important steps are required.

The first one is related to message passing. It is common to utilize information from vertices that are
within the distance of a given number of hops from a given vertex. We have described only one-hop
approach in the equation 3. It is simple to see that the combination of several convolutions like in
equation 3 is equivalent to exploration of graph in depth. In our numerical experiments we usually
use three convolutions.

The second one addresses the issue of learning objectives. If we consider graph regression problems
or link prediction, then we normally have a loss-function Ltarget such as a Mean-Squared Error (MSE)
or BPR-loss. This target loss function is introduced similarly to the equation 14

L∗
comb = sg(worth)Lorth + sg(wcons)Lcons + sg(wdiff)Ldiff + sg(wtarget)Ltarget (17)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The weight for the learning-objective or target is wtarget. We utlize the same technique as in the
equation 15 to compute weights:

worth ∝ 1,

wcons ∝ exp

(
− κcons

√
NLorth

)
,

wdiff ∝ exp

(
− κdiff

√
Nmax

(
Lorth,Lcons

))
wtarget ∝ exp

(
− κdiff

√
Nmax

(
Lorth,Lcons,Ldiff

))
(18)

With the normalization constraint:

worth + wcons + wdiff + wtarget = 1 (19)

Sometime it is more efficient to utilize alternative hierarchy:

worth ∝ 1,

wcons ∝ exp

(
− κcons

√
NLorth

)
,

wtarget ∝ exp

(
− κtarget

√
Nmax

(
Lorth,Lcons

))
wdiff ∝ exp

(
− κdiff

√
Nmax

(
Lorth,Lcons,Ltarget

))
(20)

With the normalization constraint:

worth + wcons + wdiff + wtarget = 1 (21)

Finally, it is worth noting that in the case of classical regression or link-prediction problems we do
not have feature vectors associated with vertices or edges. In our work we learn those features to
minimize the loss function in the equation 17.

Eventually, it is worth noting that we assume that sheaf linear maps A(u) and projection operators
P (u) depend only on the vertex feature vector. Therefore, feature vectors provide accurate users
and item descriptions. As a result, there is a potential to utilize the presented approach to address
the cold-start issue.

2.5 CONNECTION WITH THE GRAPH LAPLACIAN

In our approach for GNN linear operations are utilised in the message passing as in the equation 3
or equation 4. Due to the linearity of the operations in the message passing, this procedure can be
decomposed into three steps: mapping of vertices feature vectors to a certain ambient space x→ y,
simple message passing, where features vectors are simply averaged over the neighbors, pseudo-
inverse linear map y → x. Therefore, the theoretical analysis is simple to conduct in the space of y
vectors. In this case the message passing can be performed as follows:

ŷ(u) =
∑
v∈V

w(u, v)

D(u)
y(v) (22)

Here ŷ(u) is the feature vector at the vertex u. This equation can be written in the matrix form:

ŷα = D−1W yα (23)

Here α is the coordinate index of the feature vector y, W is the matrix of weights: Wuv = w(u, v)
and D is the diagonal matrix with elements Du =

∑
vWuv . The difference between y and ŷ is

simply:
ŷα − yα = (I −D−1W)yα (24)

Here I is the identity matrix. The matrix Lrw = I −D−1W is a normalized matrix of the Graph-
Laplacian operator. It is simple to show that the matrix Lrw has a basis of eigen-vectors and all

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

eigen-values are in the interval [0; 1]. Given that fact, vector y(u) can be decomposed as a linear
combination of eigen-functions ϕ1(u), ..., ϕN (u) on graph with N vertices:

yα(u) =

N∑
a=1

ηαaϕa(u) (25)

Here ηαa is a matrix of coefficients. The decomposition in the equation 25 provides bounds on the
diffusion process that are formulated in the Theorem 2.1:
Theorem 2.1. Suppose that vector-valued function y(u) on a (weighted) graph with the set of ver-
tices V with cardinality N is decomposed as:

yα(u) =

N∑
a=1

ηαaϕa(u)

and that eigen-values of eigen-functions in the decomposition above are in the interval [λmin, λmax] ⊂
[0; 1], then the there exist such norm || · || in the space of vector-valued functions on V such that the
norm of (I −D−1)W)y is bounded as follows:

λmin||y|| ≤ ||I −D−1W)y|| ≤ λmax||y||

The immediate consequence of the Theorem 2.1 is that there is no diffusion, if only eigen-functions
with zero eigen-values have non-zeros coefficients in the equation ??. Such eigen-functions are
constant on each connected component of the graph G. Therefore, nontrivial representative features
y(u) lead to non-zero diffusion in the message-passing. Moreover, it is simple to show that if there
is no learning objective, then there exist a sheaf with zero diffusion. More precisely, the following
statement holds:
Theorem 2.2. Suppose that the vector-valued function x(u) is defined on a graph G = (V,E). If
for any vertex u ∈ V the Euclidean norm ||x(u)||2 = 1, then there exist linear transformations
A(u) that satisfy orthogonality and consistency constraints and have zero diffusion.

The immediate consequence of the Theorem 2.2 is that it is quite simple to construct a sheaf with
zero diffusion. The feature vector y(u) is constant in this case. Therefore, such features are note in
a good fit to machine-learning tasks.

Apart from providing the example of sheaves with zero diffusion, the Theorem 2.2 explains the
importance of the hierarchy in the loss function. For example, if the target loss-function (aka cross-
entropy) is the latest in the hierarchy, then for certain values of hyperparameters the constant sheaf
with zero diffusion is be learnt. Therefore, the target loss-function can be hardly minimised because
of the constant input.

In order to address the issues of trivial input features for machine-learning problem, one can assign
the lowest priority to the diffusion minimisation. In this case target loss is minimised and sheaf
diffusion minimisation provides Tikhonov’s regularisation:
Theorem 2.3. Suppose that for a given (weighted) graph G = (V,E), coordinates of a vector-
valued function x(u) span the space that contains ϕ1, ..., ϕm. Then for a given scalar function
f : V → R the RMSE error of the solution for hierarchical loss minimization is bounded by the ℓ2
norm of the projection of f on the space spanned by ϕm+1, ..., ϕN .

The Theorem 2.3 states that the error of the solution for the regression problem can be made arbi-
trarily small if the dimension of vertex and edge feature vectors is high enough.

It is important to notice that in our numerical experiments we utilise the hierarchy of loss-functions
that should provide trivial feature vector y(u) according to the Theorem ??. In the numerical ex-
periments graph embedding is learnable and it is initialized randomly. Therefore, assumptions of
the theorem do not hold, because feature vectors change through the training process. In the case of
learnable features, minimisation of the diffusion provides regularisation of noisy feature vectors.

3 NUMERICAL EXAMPLES

We validate the novel approach for SNN training on two groups of test-cases. The first group con-
sists of synthetic examples with simple fully connected weighted graph and simple vertex features.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In the second group we compare our approach with other GNN methods on benchmarks in recom-
mendations.

3.1 SYNTHETIC DATA

In this example we consider two options for graph generation: uniform sampling of vertices from
the unit cube in R3. Edges weights are assigned via Radial Basis Functions (RBF) as follows:

w(v, u) = exp

(
− γ|ξ(v)− ξ(u)|2

)
(26)

Here ξ(u) and ξ(v) are coordinate vectors of vertices u and v respectively, and γ is a parameter.

First m functions ϕ1, ..., ϕm of Laplacian operator Belkin & Niyogi (2008) and n-dimesnional fea-
ture vectors are generated via random n×m matrix χ:

xi(u) =

m∑
j=1

χijϕj(u) (27)

Here x(u) is a feature vector associated with the vertex u and i = 1, ..., n is a coordinate index. In
addition to that we generate random function f in the form:

f =

m∑
i=1

qiϕi (28)

The objective is to learn the sheaf and approximate f . In other words, we use sheaves to solve for
the regression problem:

f(u) ≈
m∑
i=1

yi(u) (29)

We consider two cases of hierarchical loss: orthogonality, consistency, diffusion and MSE vs or-
thogonality, consistency, MSE and diffusion.

In the present test case we demonstrate that the sheaf can be trained on the data to achieve almost
zero diffusion:

0 2 4 6 8 10 12
log2 (iteration)

25

20

15

10

5

0

5

10

lo
g 2

(lo
ss

)

orth
cons
diff
mse
comb

(a)

0 2 4 6 8 10 12
log2 (iteration)

25

20

15

10

5

0

5

10

lo
g 2

(lo
ss

)

orth
cons
diff
mse
comb

(b)

Figure 1: Plot of loss functions for different cases of loss-functions hierarchy: orthogonality, con-
sistency, diffusion and MSE (left) vs orthogonality, consistency, MSE and diffusion (right).

This experiment shows that hierarchy of loss functions is important for convergence. In this partic-
ular example both training strategies are fine. However, convergence is faster in the case, when the
MSE is not the last in the hierarchy. This is typical for clean features. It has been found empirically
that in the case of noisy data it is better to minimize the target loss-function (aka MSE or BPR) in
the last place.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.2 RECOMMENDER SYSTEMS

In order to evaluate the benefits of SNN in recommender systems we compare it against LightGCN
He et al. (2020) and UltraGCN Mao et al. (2021) on benchmark datasets: MovieLens Xiong (2021),
Facebook Shapira et al. (2013) and Yahoo Yahoo!.

We consider SNN with three sheaf layers. The first layer is trained to with all three loss functions:
Lorth, Lcons, Ldiff. All other sheaf layers consider only the value of BPR in training process. Results
of numerical experiments are summarized in the Tab. 1.

Table 1: Comparision with Benchmarks

Method P@10 R@10 NDCG@10 P@20 R@20 NDCG@20
MovieLens

SheafGCN 0.139 0.139 0.305 0.110 0.220 0.450
UltraGCN 0.170 0.072 0.240 0.140 0.120 0.260
LightGCN 0.002 0.001 0.004 0.004 0.003 0.005

Facebook
SheafGCN 0.009 0.050 0.071 0.007 0.090 0.120
UltraGCN 0.020 0.060 0.066 0.011 0.090 0.060
LightGCN 0.001 0.002 0.003 0.001 0.004 0.003

Yahoo
SheafGCN 0.028 0.012 0.138 0.041 0.021 0.162
UltraGCN 0.045 0.143 0.101 0.019 0.079 0.117
LightGCN 0.001 0.003 0.120 0.001 0.014 0.070

We utilize three metrics: precision@k (P@k), recall@k (R@k), and NDCG@k. Where:

1. Precision@K (P@K): measures the proportion of the recommended items that are relevant
to the user among the top K items.

2. Recall@K (R@K): measures the proportion of relevant items that the system successfully
recommended among the top K items.

3. NDCG@K, or Normalized Discounted Cumulative Gain at rank K: used to assess the use-
fulness of a ranking system. It does this by considering the relevance of the items in the
ranked list and their positions in the list

Comparison of SNN with classical GCN demonstrates that conventional methods provide a more
relevant list of candidates for recommendation. However, the ranking within the list of candidates
performed by SNN is more accurate in comparison with GCN.

It is important to note the significant role of orthogonality and consistency constraints in the learn-
ing process. The latter is illustrated by the ablation study performed on the Facebook dataset and
summarized in the table below:

Table 2: Ablation Study

Regularisation worth = wcons = 0 worth ̸= 0 wcons ̸= 0 worth, wcons ̸= 0
NDCG@50 0.0998 0.3490 0.0299 0.3504

4 CONCLUSION

The SNN is an attractive method for recommender systems from both theoretical and practical points
of view. In SNNs, feature vectors of users and items are mapped to a single vector space by sheaf
linear maps. The latter enables consistent comparison of user and item vectors, thereby simplifying
the theoretical analysis of recommendations through SNNs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The practical benefits of SNNs include feature denoising and reduction of the oversmoothing as il-
lustrated by numerical experiments with synthetic and real data. Moreover, SNN achieves similar
recommendation quality in comparison with classical GCN methods. Therefore, further develop-
ment of SNNs is a promising area of research.

In summary, one of the main contributions of the present work is the novel approach for SNN
training via loss-function minimization under constraints. Constraints introduced provide sheaf lin-
ear maps regularization and simplify the inference procedure: SNN requires only feature vectors
to compute sheaf linear maps. In addition to that, we demonstrate that sequential application of
sheaf layers can provide relevant recommendations for users. One of the limitations of the work is
increased computational cost in comparison with GCN of similar architecture due to the need for
sheaf linear maps calculation. Despite that fact, presented results demonstrate that SNN has high
potential for applications in recommender systems.

REFERENCES

Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael Bronstein. Bundle neural net-
works for message diffusion on graphs, 2024. URL https://arxiv.org/abs/2405.
15540.

Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar
Veličković, and Pietro Liò. Sheaf neural networks with connection laplacians, 2022.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based manifold
methods. Journal of Computer and System Sciences, 74(8):1289–1308, 2008. ISSN 0022-0000.
doi: https://doi.org/10.1016/j.jcss.2007.08.006. URL https://www.sciencedirect.
com/science/article/pii/S0022000007001274. Learning Theory 2005.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):3438–3445, Apr. 2020a. doi: 10.1609/aaai.v34i04.
5747. URL https://ojs.aaai.org/index.php/AAAI/article/view/5747.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 1725–1735. PMLR, 13–18 Jul 2020b. URL https://proceedings.mlr.
press/v119/chen20v.html.

Justin Curry. Sheaves, cosheaves and applications, 2014.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints, 2015.

Moshe Eliasof, Eldad Haber, and Eran Treister. Pde-gcn: Novel architectures for graph
neural networks motivated by partial differential equations. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 3836–3849. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/1f9f9d8ff75205aa73ec83e543d8b571-Paper.pdf.

Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. Graph neural networks for recommender
system. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data
Mining, WSDM ’22, pp. 1623–1625, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450391320. doi: 10.1145/3488560.3501396. URL https://doi.
org/10.1145/3488560.3501396.

Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain, Thomas Markovich,
and Michael M. Bronstein. Graph neural networks as gradient flows, 2022. URL https:
//openreview.net/forum?id=0IywQ8uxJx.

9

https://arxiv.org/abs/2405.15540
https://arxiv.org/abs/2405.15540
https://www.sciencedirect.com/science/article/pii/S0022000007001274
https://www.sciencedirect.com/science/article/pii/S0022000007001274
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://proceedings.mlr.press/v119/chen20v.html
https://proceedings.mlr.press/v119/chen20v.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/1f9f9d8ff75205aa73ec83e543d8b571-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1f9f9d8ff75205aa73ec83e543d8b571-Paper.pdf
https://doi.org/10.1145/3488560.3501396
https://doi.org/10.1145/3488560.3501396
https://openreview.net/forum?id=0IywQ8uxJx
https://openreview.net/forum?id=0IywQ8uxJx

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Tao Gui, Yicheng Zou, Qi Zhang, Minlong Peng, Jinlan Fu, Zhongyu Wei, and Xuanjing Huang. A
lexicon-based graph neural network for Chinese NER. In Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pp. 1040–1050, Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1096. URL https://aclanthology.
org/D19-1096.

Kehang Han, Balaji Lakshminarayanan, and Jeremiah Liu. Reliable graph neural networks for drug
discovery under distributional shift, 2021.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks, 2020.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Kr-
ishna Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection
sampling. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. Light-
gcn: Simplifying and powering graph convolution network for recommendation. In Proceed-
ings of the 43rd International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’20, pp. 639–648, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450380164. doi: 10.1145/3397271.3401063. URL https:
//doi.org/10.1145/3397271.3401063.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

Steph-Yves Louis, Yong Zhao, Alireza Nasiri, Xiran Wang, Yuqi Song, Fei Liu, and Jianjun Hu.
Graph convolutional neural networks with global attention for improved materials property pre-
diction. Phys. Chem. Chem. Phys., 22:18141–18148, 2020. doi: 10.1039/D0CP01474E. URL
http://dx.doi.org/10.1039/D0CP01474E.

Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He. Ultragcn: Ultra sim-
plification of graph convolutional networks for recommendation. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, CIKM ’21, pp. 1253–1262,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384469. doi:
10.1145/3459637.3482291. URL https://doi.org/10.1145/3459637.3482291.

Cheol Woo Park and Chris Wolverton. Developing an improved crystal graph convolutional neu-
ral network framework for accelerated materials discovery. Phys. Rev. Mater., 4:063801, Jun
2020. doi: 10.1103/PhysRevMaterials.4.063801. URL https://link.aps.org/doi/10.
1103/PhysRevMaterials.4.063801.

Antonio Purificato, Giulia Cassarà, Federico Siciliano, Pietro Liò, and Fabrizio Silvestri. Sheaf4rec:
Sheaf neural networks for graph-based recommender systems, 2024.

T. Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bron-
stein. Graph-coupled oscillator networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 18888–18909. PMLR, 17–23 Jul 2022a. URL https://proceedings.mlr.press/
v162/rusch22a.html.

T. Konstantin Rusch, Benjamin Paul Chamberlain, Michael W. Mahoney, Michael M. Bron-
stein, and Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. ArXiv,
abs/2210.00513, 2022b. URL https://api.semanticscholar.org/CorpusID:
252683227.

10

https://aclanthology.org/D19-1096
https://aclanthology.org/D19-1096
https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1145/3397271.3401063
http://dx.doi.org/10.1039/D0CP01474E
https://doi.org/10.1145/3459637.3482291
https://link.aps.org/doi/10.1103/PhysRevMaterials.4.063801
https://link.aps.org/doi/10.1103/PhysRevMaterials.4.063801
https://proceedings.mlr.press/v162/rusch22a.html
https://proceedings.mlr.press/v162/rusch22a.html
https://api.semanticscholar.org/CorpusID:252683227
https://api.semanticscholar.org/CorpusID:252683227

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks, 2023.

Bracha Shapira, Lior Rokach, and Sh. Freilikhman. Facebook single and cross domain data for rec-
ommendation systems. User Modeling and User-Adapted Interaction, 23:211–247, 2013. URL
https://api.semanticscholar.org/CorpusID:12907336.

Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. ACMP: Allen-cahn message
passing with attractive and repulsive forces for graph neural networks. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=4fZc_79Lrqs.

Yu Xiong. Movielens 1m, 2021. URL https://dx.doi.org/10.21227/2kwp-cb23.

R4 Yahoo! R4 - yahoo! movies user ratings and descriptive content information, v.1.0. URL
https://dx.doi.org/10.21227/2kwp-cb23.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet
energy constrained learning for deep graph neural networks. In Neural Information Processing
Systems, 2021. URL https://api.semanticscholar.org/CorpusID:235742666.

A APPENDIX

In the present section we provide proofs of the theorem from the subsection 2.5.

A.1 PROOF OF THE THEOREM 2.1

In this subsection we introduce the norm in the space of vector-valued functions on graph so that
lower and upper bounds for diffusion on the graph can be derived.

If W is the matrix of edge weights for the graph with set of vertices V , then diagonal matrix D can
be introduced:

D(u, u) =
∑
v∈V

W (u, v)

We assume that the matrix of weights is symmetric providing the symmetry of D−1/2WD−1/2.
Matrix D−1/2WD−1/2 has non-negative eigen-values and basis of orthogonal eigen vectors
ψ1, ..., ψN , where N is the number of vertices in V .

It is simple to check that eigen-vectors of D−1/2WD−1/2 are related to the eigen-vectors of
D−1W by simple linear transformation:

ϕa = D−1/2ψa

Vector function y : V 7→ Rm is represented as a linear combination:

yα =

N∑
a=1

ηαaϕa =

N∑
a=1

ηαaD
−1/2ψa

Therefore, the following norm can be introduced:

||y||2D =

m∑
α=1

y⊤αDyα

It is simple to show that the square of the norm introduced is simply the square of the Frobenius
norm of the matrix η

||y||2D =

m∑
α=1

y⊤αDyα =

m∑
α=1

N∑
a1,a2=1

ηαa1ηαa2ψ
⊤
a2
D−1/2DD−1/2ψa1 =

m∑
α=1

N∑
a=1

η2αa

11

https://api.semanticscholar.org/CorpusID:12907336
https://openreview.net/forum?id=4fZc_79Lrqs
https://openreview.net/forum?id=4fZc_79Lrqs
https://dx.doi.org/10.21227/2kwp-cb23
https://dx.doi.org/10.21227/2kwp-cb23
https://api.semanticscholar.org/CorpusID:235742666

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Therefore, operator I −D−1W acts on the vector field as following:

ŷα − yα = (I −D−1W)yα =

N∑
a=1

ηαa(I −D−1W)ϕa =

N∑
a=1

ηαaλaϕa

If λa are in the interval [λmin, λmax], then the following estimate on the norm of ||ŷ − y||2D can be
derived:

||ŷ − y||2D =

m∑
α=1

N∑
a=1

η2αaλ
2
a ≤

m∑
α=1

N∑
a=1

η2αaλ
2
max = ||y||2Dλ2max

Finally,
||ŷ − y||D ≤ λmax||y||D

The lower bound on ||ŷ − y|| can be derived similarly:

||ŷ − y||2D =

m∑
α=1

N∑
a=1

η2αaλ
2
a ≥

m∑
α=1

N∑
a=1

η2αaλ
2
min = ||y||2Dλ2min

Providing
||ŷ − y||D ≥ λmin||y||D

A.2 PROOF OF THE THEOREM 2.2

In this subsection we provide the example sheaf matrices such that vertex feature vectors are mapped
to a constant vector.

If V is the set of vertices of the graph G and there is a vector-valued functino x(v) that assigns
n-dimensional vector of the unit length to each vertex then it simple to show, that there is a vector ξ
with a unit length that is not parallel to any of x(v).

The angle between ξ and x(v) is a well-defined continuous function of x:

θ(x) = arccos(⟨ξ, x⟩)
Similarly, the unit vector ν(x) that lies in the plane spanned by ξ and x(v) and is orthogonal to ξ
can be introduced:

ν(x) =
x− ⟨ξ,x⟩ξ

⟨x,x⟩ − ⟨ξ,x⟩2

Again, because of the assumptions about ξ and x(v), ν(x) is continuous function of x.

Therefore, matrix A(v) can be constructed as a composition of the rotation Rx and projection Pξ.
The rotation can be wriiten precisely:

Rx(f) =

(
f − ⟨ξ, f⟩ξ − ⟨ν(x), f⟩ν(x)

)
+

+

(
cos(θ(x))ξξ⊤ + sin(θ(x))ξν(x)⊤ − sin(θ(x))ν(x)ξ⊤ + cos(θ(x))ν(x)ν(x)⊤

)
f

The first term is the projection of the vector f to the space of vectors orthogonal to both ξ and x, the
second term is the rotation in the two-dimensional plane spanned by ξ and x. That rotation maps x
to ξ.

The rotation Rx can be combined with the projection Pξ. The projection Pξ. can be arbitrary: one
has to select m− 1 orthogonal unit vectors that are orthogonal to each other. Therefore, Pξ(ξ) = ξ.
Finally, the matrix A is simply:

A
(
x(u)

)
= PξRx(u)

It is simple to check that the matrix A satisfies orthogonality constraint as in the equation 7. More-
over, vector x(u) is mapped to ξ for any vertex u:

A(x) = Pξ

(
Ax(x)

)
= Pξ(ξ) = ξ

In other words, vertex vector x is lifted to the edge vector ξ for each vertex. Therefore, there is no
diffusion in the space of the edge vectors in this case.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.3 PROOF OF THE THEOREM 2.3

In the present subsetion we consider the regression problem on a graph G with vertices V , We
consider the functiob f : V → R and feature vectors x(u) that are specified for each vertex u ∈ V .
The objective is to learn matrices of sheaf linear transformations A

(
x(u(

)
and approximate f as a

linear combination of edge feature vectors:

f(u) ≈ ζ⊤A
(
x(u)

)
x(u) = ζ⊤y(u)

Here ζ = [ζ1, ..., ζm] is the vector of coefficients.

In the present section we provide the upper bound for the solution of the regression problem. The
ideas is quite simple. If we suppose that first m eigen-functions ϕ1(u), ..., ϕm(u) of the Hraph-
Laplacian operator are in the span of coordinate functions x1(u), ...xn(u), then coordinate functions
can be projected in the space spanned by ϕ1(u), ..., ϕm(u). Therefore, there exists such matrix H
that for β = 1, ...m the following holds:

ϕβ(u) =

n∑
α=1

Hβαxα(u)

Matrix H can be represented as a product of two rotations and diagonal matrix:

H = RΛU

Here R,U are rotation matrices and Λ is a diagonal matrix. We can take first m rows of matrix U
as a matrix A. It is simple to check that constraints provided by the equation 7 and the equation ??
are satisfied. Moreover, coordinates of the vector y = Ax span the linear space ϕ1, ..., ϕm.

Eigen functions of the Graph-Laplacian operator form orthogonal basis. Therefore, the function f
that we would like to approximate can be decomposed as a linear combination of eigen-functions:

f(u) =

N∑
a=1

ξaϕa(u)

Therefore, coefficient ζ can be adjusted in such a way that

ζmα yα = pm(f)

Here pm is the projection on the space spanned by the functions ϕ1, ..., ϕm. Therefore, the mean-
squared error is simply the ℓ2 norm:

MSE = ||f − pm(f)||2

Therefore, this is the upper bound of the error that can be achieved during training.

13

	Introduction
	Methodology
	Sheaf Theory and Message Passing
	Constraints
	Sheaf Learning
	Sheaves for Regression and Link Prediction
	Connection with the Graph Laplacian

	Numerical Examples
	Synthetic Data
	Recommender Systems

	Conclusion
	Appendix
	Proof of the Theorem 2.1
	Proof of the Theorem 2.2
	Proof of the Theorem 2.3

