
Supplementary File:
Transformers from an Optimization Perspective

Yongyi Yang∗

University of Michigan
yongyi@umich.edu

Zengfeng Huang
Fudan University

huangzf@fudan.edu.cn

David Wipf
Amazon Web Services
davidwipf@gmail.com

A Theory Background

This section provides background and references regarding some of the concepts and techniques used
for proving our main results.

A.1 Lipschitz Conditions and Strong Convexity

For a function f : Rd → R, if
∃L > 0,∀x,y ∈ Rd, ∥f(x)− f(y)∥ ≤ L∥x− y∥, (21)

we say f satisfies the Lipschitz condition with Lipschitz constant L or is simply L-Lipschitz. If
the gradient of a function is L-Lipschitz, we say it is Lipschitz smooth with Lipschitz constant L.
Moreover, if f satisfies

∃c > 0,∀x,y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≥ c∥x− y∥, (22)
we say it is (strongly) convex with convexity c, or simply c-strongly convex.

There are two important inequalities for Lipschitz smooth and strongly convex functions:
Proposition A.1. If f : Rd → R is L-Lipschitz smooth, then

∀x,y ∈ Rd, f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥x− y∥2. (23)

If f is c-strongly convex, then

∀x,y ∈ Rd, f(y) ≥ f(x) +∇f(x)⊤(y − x) +
c

2
∥x− y∥2. (24)

The proof of Proposition A.1, and more details of these two properties can be found in [2].

A.2 Proximal Operators and Proxinal Gradient Descent

The proximal problem of a function ϕ with parameter λ is defined as

P (z;y) =
1

2λ
∥z − y∥2 + ϕ(z), (25)

and the mapping from y to the minimal point of P (·;y), is called the proximal operator of ϕ:

proxϕ : y 7→ argmin
z

1

2λ
∥z − y∥2 + ϕ(z). (26)

It can be shown that, for an objective function h = f+ϕ, where f is smooth, alternatively performing
gradient descent on f and proximal projection of ϕ, i.e.

y(t+1) = proxϕ

(
y(t) − α∇f

(
y(t)

))
, (27)

is a descent algorithm of h, which is often referred to as proximal gradient descent [10].
∗Work completed during an internship at the AWS Shanghai AI Lab.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

A.3 Subgradient

For a (not necessarily smooth) convex function f : Rd → R, it can be proven that the following set is
always not empty [5]:

∂f(x) = {g|∀y ∈ Rd, f(y) ≥ f(x) + g⊤(y − x)}. (28)

We call ∂f(y) the subdifferential of f at point y, and the elements of ∂f(y) the subgradients of ∂f
at point y.

Subdifferential satisfies linearity, which means

α∂f(y) + β∂g(y) = ∂(αf + βg)(y), (29)

where the summation of two sets is defined as the elementary summation

∂f(y) + ∂g(y) = {a+ b|a ∈ ∂f(y), b ∈ ∂ ∈ g(y)}. (30)

Although subdifferentials are sets, based on the linearity, it is easier to use the equation symbol =
instead of ∈ to denote subgradient, e.g. ∂f(y) = a means a ∈ ∂f(y).

One very useful property of the subgradient is that it can indicate the global minimum of a convex
function :
Proposition A.2. If f is convex, then

0 ∈ ∂f(y) ⇐⇒ y ∈ argmin
z

f(z), (31)

which is quite straight forward from the definition of subgradient. More detailed introduction and
discussion of subgradients can be found in [3, 5].

B Proofs, Discussion, and Extensions of Section 3 Results

We now provide a complement of Section 3 of the main paper, including the proofs and discussion.
For Theorem 3.1, we prove a more generalized version, taking into account of the structure of
attention and the step size, as mentioned in Remark 3.2.

To achieve this, we extend the techniques used in [12] and show how to construct an energy function
whose iterative optimization steps match Transformer-style self-attention on arbitrary graph structures
– including fully connected graphs.

Note that this section provides a more general framework that assumes a certain graph structure exists
in token-level interactions, which covers some attention sparsification works like [6, 7]. And when
the graph is fully connected, we obtain a normal Transformer structure as analyzed in the main paper.

B.1 General Unfolded Optimization Results for Creating Self-Attention on Graphs

Suppose G = (V, E) is an undirected graph, whose adjacency matrix is A ∈ Rn×n, incidence-matrix
is B ∈ Rm×n, degree matrix is D = diag (A)1, and Laplacian matrix is L = D − A = B⊤B,
where n = |V| and m = |E|. We use a tuple (u, v) to represent an edge in the graph that connects
node u and v. Furthermore, let there be an index for each edge, suppose the ith edge connects fr(i)
and to(i) and the index of edge that connecting (u, v) is ind(u, v). Then, the incidence matrix B can
be defined as

Bi,j =


1 if j = fr(i)

−1 if j = to(i)

0 others.
(32)

Consider a generalized version of the energy function (9):

E1(Y) =
∑

u,v∈E
ρ

(
1

2
∥yu − yv∥2

)
+R(Y), (33)

where yu ∈ Rd×1 is the u-th row of matrix Y ∈ Rn×d, ρ : R+ → R is a concave non-decreasing
function and R : Rn×d → R is a convex function.

We refer to [12] that Algorithm 3 optimizes E1:

2

Algorithm 3
Execute the following two assignment operations in arbitrary order:

1. γ
(t)
u,v =

∂ρ(z2)
∂z2

∣∣∣∣
z2= 1

2

∥∥∥y(t)
u −y

(t)
j

∥∥∥2
;

2. Y (t+1) = Y ′(t) such that Ẽ1

(
Y ′(t),Γ(t)

)
≤ Ẽ1

(
Y (t+1),Γ(t)

)
,

where Γ(t) ∈ Rn×n,Γ
(t)
i,j = γ

(t)
i,j , and Ẽ1 (Y,Γ) =

∑
u,v∈E

1
2γu,v∥yu − yv∥2 +R(Y).

Proposition B.1 (Lemma 3.2 in [12]). Let Y (t) be the input of Algorithm 3 and Y (t+1) be the output,
then E1

(
Y (t+1)

)
≤ E1

(
Y (t)

)
.

In Algorithm 3, Step 1 converts the non-linear function ρ to edge weights in graphs, which correspond
to attention weight matrices. If in Step 2 we use gradient descent, then the update rule is

Y (t+1) = α(I −B⊤ΓB)Y (t) +

[
(1− α)I −

∂R
(
Y (t)

)
∂Y (t)

]
Y (t), (34)

where the attention weights are injected into coefficients 1−B⊤ΓB. However, this naive framework
does not include softmax used in Transformers. In the following subsections we show that with a
special choice of ρ and a reweighting of each row of Y , we get exactly self-attention updates with
softmax.

Now, consider ρ
(
z2
)
= − exp

{
−z2

}
, R(Y) = 1

2∥Y ∥2F . Then Step 1 gives

γ(t)
u,v = exp

{
−1

2

∥∥∥y(t)
u − y(t)

v

∥∥∥2}
= exp

{
y(t)
u ⊤y(t)

v

}
βuβv,

(35)

where βu = exp

{
− 1

2

∥∥∥y(t)
u

∥∥∥2}. Note that γu,u = e0 = 1.

For Step 2, consider using gradient descent with Jacobi preconditioning, from which we arrive at the
following Theorem:

Theorem B.2. Consider updating Ẽ1 using a gradient step with step size α and Jacobi preconditioner
D−(t):

Y (t+1) = Y (t) − αD−(t) ∂Ẽ1

(
Y,Γ(t)

)
∂Y

∣∣∣∣∣
Y=Y (t)

, (36)

where

D(t) =
∂2Ẽ1

(
Y,Γ(t)

)
∂Y 2

∣∣∣∣∣
Y=Y (t)

, (37)

and α ≤ 1, it follows that Ẽ1

(
Y (t+1)

)
≤ Ẽ1

(
Y (t)

)
. And the update rule in (36) can be written as

y(t+1)
u = (1− α)y(t)

u + α

∑
v∈Ñ (u)

βv exp
{
y(t)⊤
u y(t)

v

}
y(t)
v

∑
v∈Ñ (u)

βv exp
{
y(t)⊤
u y(t)

v

} , ∀u. (38)

Notice that it requires α ≤ L−(t) to guarantee (36) is a descent step of Ẽ1, where L(t) is the Lipschitz
constant of the gradient of D−(t)Ẽ1

(
Y,Γ(t)

)
[2]. And by the definition of D(t), L(t) is always 1.

Therefore, α ≤ 1 always satisfies the condition.

3

B.2 The Proof of Theorem 3.1

In Theorem B.2, if we take G to be a complete graph, then Ñ (u) = {1, 2, · · · , n}. Besides, if α = 1,
(38) becomes

y(t+1)
u =

∑n
v=1 exp

{
y
(t)⊤
u y

(t)
v

}
βvy

(t)
v∑n

v=1 exp
{
y
(t)⊤
u y

(t)
v

}
βv

, (39)

which guarantees the descent of Ẽ1 (Y) by Theorem B.2. And further by Proposition B.1, Theorem
3.1 is proved.

B.3 Discussion

From the analysis above, we have the following observations. Firstly, if we set α to other values, say
α = 1

2 , then the residual term in (10) is maintained, which corresponds with the common use of skip
connections in the self-attention. Secondly, by assuming arbitrary graphs G (as opposed to merely
the fully connected case described in the main paper), this framework can naturally handle attention
mechanisms with special structure as in [6, 7].

C Proofs of Section 4 Results

In this section, we prove the propositions in Section 4.

C.1 The Proof of Theorem 4.1

Firstly, from the Lipschitz smooth assumption of the objective functions, we can bound the norm of
the noise term:

∥∆t∥ =

∥∥∥∥∇f
(
y(t)

)
+∇g

(
y(t)

)
− α1

α2
∇f

(
y(t)

)
−∇g

(
y(t) − α1∇f

(
y(t)

))∥∥∥∥
≤

∥∥∥∥(1− α1

α2

)
∇f

(
y(t)

)∥∥∥∥+
∥∥∥∇g

(
y(t)

)
−∇g

(
y(t) − α1∇f

(
y(t)

))∥∥∥
≤

∥∥∥∥(1− α1

α2

)
∇f

(
y(t)

)∥∥∥∥+ α1Lg

∥∥∥∇f
(
y(t)

)∥∥∥
=

(
1− α1

α2
+ α1Lg

)∥∥∥∇f
(
y(t)

)∥∥∥
≤

(
1− α1

α2
+ α1Lg

)
δ
(
y(t)

)∥∥∥∇h
(
y(t)

)∥∥∥ .

(40)

In the following we write ∇h for short to refer to ∇h
(
y(t)

)
; similarly δ for δ

(
y(t)

)
and ∆ for ∆t.

From (40) we have

∥∆∥2 ≤
(
1− α1

α2
+ α1Lg

)2

δ2 ∥∇h∥2 , (41)

and from Cauchy-Schwarz

∇h⊤∆ ≥ −∥∇h∥∥∆∥ ≥ −
(
1− α1

α2
+ α1Lg

)
δ∥∇h∥2. (42)

4

Therefore, by Lipschitz smoothness and convexity assumptions, and the inequalities (40), (41) and
(42), and notice that α2Lh ≤ 1, we have

h
(
y(t+1)

)
− h

(
y(t)

)
≤− α2∇h⊤ (∇h+∆) +

Lh

2
α2
2 ∥∇h+∆∥2

=− α2∥∇h∥2 − α2∇h⊤∆+
Lhα

2
2

2

(
∥∇h∥2 + ∥∆∥2 + 2∇h⊤∆

)
=α2

[(
Lhα2

2
− 1

)
∥∇h∥2 + Lhα2

2
∥∆∥2 + (Lhα2 − 1)∇h⊤∆

]
≤α2∥∇h∥2

[
1

2
Lhα2

(
1− α1

α2
+ α1Lg

)2

δ2

+(1− Lhα2)

(
1− α1

α2
+ α1Lg

)
δ +

(
Lhα2

2
− 1

)]
.

(43)

While seemingly complex, if we define a = 1
2Lhα2 ∈

[
0, 1

2

]
and b = 1− α1

α2
+ α1Lg ≥ 0, (43) can

be rewritten as
1

α2∥∇h∥2
[
h
(
y(t+1)

)
− h

(
y(t)

)]
≤ ab2δ2 + (1− 2a)bδ + (a− 1). (44)

Clearly, when δ ∈
[
a−1
ab , 1

b

]
, we have

ab2δ2 + (1− 2a)bδ + (a− 1) ≤ 0, (45)

and δ ≥ 0 ≥ a−1
ab by definition. Therefore, we conclude that h

(
y(t+1)

)
−h

(
y(t)

)
≤ 0 is guaranteed

when
δ ≤ 1

b
=

α2

α2 − α2 + α1α2Lg
. (46)

C.2 The Proof of Lemma 4.3

We only need to notice that ∇f
(
y∗
f

)
= ∇h (y∗

h) = 0, then by Lipschitz smoothness and convexity
of the objectives,

∥∇f(y)∥ ≤ Lf

∥∥y − y∗
f

∥∥ and ∥∇h(y)∥ ≥ ch ∥y − y∗
h∥ . (47)

Therefore, when y ∈ S(C),

δ(y) =
∥∇f(y)∥
∥∇h(y)∥

≤
Lf∥y − y∗

f∥
ch∥y − y∗

h∥
≤ C . (48)

D Proofs of Section 5 Results

For simplicity, in the following we use y to denote y(t+1) and x to denote y(t) this section. We also
use x∗ to denote the optimal solution of the proximal problem (19):

x∗ = argmin
z

P (z;x) = ReLU(x). (49)

Recall that
y = argmin

z

1

2λ
∥z − x+ α2∇h(x)− α2∆t∥2 + ϕ(z). (50)

First we shall prove the bound of the subgradient of proximal problem (19) at the point of y:
Lemma D.1.

∂P (y;x) = −α2

λ
∆t (51)

5

Proof. Since y is the optimal point of (50), we have

∂

∂y

(
1

2λ
∥z − x+ α2∇h(x)− α2∆t∥2 + ϕ(z)

)
= 0, (52)

which gives

∂ϕ(y) =
1

λ
(x− y − α2∇h(x) + α2∆(t)) . (53)

Therefore, the subgradient of (19) at y is

∂P (y;x) =
1

λ
(y − x+ α2∇h(x)) + ∂ϕ(y)

= −α2

λ
∆t.

(54)

Then, we shall show the descent of P (y;x) to P (x;x) can be bounded by the distance between x
and x∗.

Lemma D.2.

P (x;x)− P (y;x) ≥ cP
2

∥x− x∗∥2 − α2
2(1 + α1Lg)

2δ(x)2

cPλ2
∥∇h(x)∥2. (55)

Proof. Let cP denote the convexity of proximal problem P (z;x). And note since x∗ is the optimal
point of P (z;x), we have ∂P (x∗) = 0. Then by convexity we have

P (x;x) ≥ P (x∗) +
cP
2

∥x− x∗∥2 (56)

and

P (x∗) ≥ P (y;x) + ∂P (y;x)⊤(x∗ − y) +
cP
2

∥x∗ − y∥2

≥ P (y;x)− ∥∂P (y;x)∥ ∥x∗ − y∥

≥ P (y;x)− 1

cP
∥∂P (y;x)∥2

= P (y;x)− α2
2

cPλ2
∥∆t∥2 (By Lemma D.1)

≥ P (y;x)− α2
2

cPλ2
(1 + α1Lg + α1α

−1
2)2δ(x)2 ∥∇h(x)∥2 . (By (40)

(57)

Combining (56) and (57) we prove the lemma.

Given Lemma D.2, we only need to bound ∥x− x∗∥. The following lemma shows that, ∥x− x∗∥ is
related to

D : (ξ1, ξ2) 7→
d∑

i=1

min
(
ξ22,i − ξ21,i, 0

)
, (58)

as stated in the main paper.

Lemma D.3. Given D (α2∇h (x) ;x) ≥ −κ, we have

∥x− x∗∥2 ≥ (1− κ)α2
2∥∇h(x)∥2. (59)

Proof. Note x∗
i = σ(xi − α2∇h(x)i) = max(xi − α2∇h(x)i, 0). We have

x∗
i − xi = max(−α2∇h(x)i,−xi) = −min(α2∇h(x)i,xi). (60)

6

Therefore

∥x− x∗∥2 =

d∑
i=1

min(α2∇h(x)i,xi)
2

≥
d∑

i=1

min(α2
2∇h(x)2i ,x

2
i)

=

d∑
i=1

α2
2∇h(x)2i +

d∑
i=1

min
(
x2
i − α2

2∇h(x)2i , 0
)

= α2
2 ∥∇h(x)∥2 + α2

2∥∇h(x)∥2D(α2∇h(x);x)

= (1 +D(α2∇h(x),x))α2
2∥∇h(x)∥2

≥ (1− κ)α2
2∥∇h(x)∥2

(61)

Next, we shall show that P (z;x) is actually an upper bound of f(z) + ϕ(z):
Lemma D.4. If λ ≤ α2 ≤ 1

Lh
, there exists a function η(x), which is only dependent on x, which

satisfies
P (z;x) + η(x) ≥ h(z) + ϕ(z) (62)

and
P (x;x) + η(x) = h(x) + ϕ(x). (63)

Proof. Let η(x) = h(x)− α2
2

2λ∥∇h(x)∥2, then by the assumed Lipschitz condition we have

h(z) + ϕ(z) ≤ h(x) +∇h(x)⊤(z − x) +
L

2
∥z − x∥2 + ϕ(x)

≤ h(x) +∇h(x)⊤(z − x) +
1

2α2
∥z − x∥2 + ϕ(z)

≤ 1

2α2

[
∥z − x∥2 + 2α2∇h(x)⊤(z − x) + α2

2∥∇h(x)∥2
]

+ ϕ(z)− α2

2
∥∇h(x)∥2 + h(x)

≤ 1

2λ
∥z − x+ α2∇h(x)∥2 + ϕ(z)− λ

2
∥∇h(x)∥2 + h(x)

= P (z;x) + η(x).

(64)

And it is also straightforward to verify that

P (x;x) + β(x) =
α2
2

2λ
∥∇h(x)∥2 + ϕ(x)− α2

2

2λ
∥∇h(x)∥2 + h(x) = h(x) + ϕ(x). (65)

It is worth noting that, although there’s a parameter λ in the definition of P , when ϕ is defined as

ϕ(z) =

{
+∞ if z < 0

0 if z ≥ 0
, which we used in the main paper to derive ReLU, the proximal operator

proxϕ is independent of λ, which means we can always select a λ small enough to satisfy λ ≤ α2,
which is required by Lemma D.4.

Lemma D.4 provides us with a majorization minimization perspective, which allow us to bound
h(z)+ϕ(z) by bounding P (y;x). And Lemma D.2 provides a way to bound the descent of P (y;x).
Now we are ready to prove Theorem 5.1.

The proof of Theorem 5.1 Combining Lemmas D.2 and D.3 and recalling the bound of δ(x) we have

P (x;x)− P (y;x) ≥ α2
2∥∇h(x)∥2

[
cP (1− κ)

2
− (1 + α1Lg + α1α2)

2δ(x)2

cPλ2

]
. (66)

7

Given D
(
α2∇h

(
y(t)

)
;y(t)

)
≥ −κ and (66), it follows that P (x;x)−P (y;x) ≥ 0, i.e. P (x;x) ≥

P (y;x).

By Lemma D.4,

h(y) + ϕ(y) ≤ P (y;x) + η(x) ≤ P (x;x) + η(x) = h(x) + ϕ(x), (67)

which proves the theorem.

E Experiment Details

In the experiments of Section 6, the dataset and pre-processing scripts are provided by fastNLP2. The
code to reproduce all experiments in the main paper is available3 for the reference of the complete
implementation of the experiments.

F Further Discussion

In this section, we provide further discussion related to symmetric weights, layer-dependent weights,
layer normalization, and initial residual connections [4] as mentioned in the main paper.

F.1 Asymmetric Weights

It initially seems hard or impossible to directly interpret an asymmetric transformation (i.e. f(y) =
Wy where W is asymmetric) as a gradient (See Lemma 5.3 in [13]). However, non-PSD weights are
possible to be viewed as a gradient since

∂y⊤Wy

∂y
=

(
W +W⊤)y, (68)

where W +W⊤ is symmetric but not necessarily PSD. Moreover, if the activation function is linear
or meets certain criteria, it is also possible to use symmetric weights [13].

Furthermore, there is other work showing that models with symmetric weights are also universal
approximators [8] or can have matching empirical results to models with asymmetric weights [9],
which suggests that using symmetric weights might not adversely affect the expressivity of the model
provided the hidden dimension can be increased sufficiently.

F.2 Layer-dependent Weights

Note that since in the unfolding framework every step is the optimization process of a certain energy
function, the model must exhibit a characteristic of recursive models like in (4), where the same
weight matrix is shared at each layer. However, as has been discussed in various contexts, if the
number of model layers is finite, it is possible to use shared weights to “simulate" layer-dependent
weights [1, 11, 13]. Moreover, from the construction in [13], when the number of model layers is
finite, the weights can even be asymmetric.

F.3 LayerNorm

In the main paper, the model is actually a simplified version of the Transformer since LayerNorm is
missing. Here we note that it is possible to combine LayerNorm in our proposed unfolding model.
Apart from parameters, LayerNorm can be viewed as following process:

1. Translation: u(t) = y(t) − 1
∑d

i=1 y
(t)
i ,

2. Rescaling: y(t+1) = u(t)/
∥∥u(t)

∥∥;

which can both be interpreted as gradient steps:

2https://github.com/fastnlp/fastNLP
3https://github.com/FFTYYY/Transformers-From-Optimization

8

1. Translation: u(t) = y(t) − ∂
∂y

(∑d
i=1 y

(t)
i

)2

,

2. Rescaling: y(t+1) = u(t) − ∂
∂u(t)

(
1
2

∥∥u(t)
∥∥2 − ∥∥u(t)

∥∥).

Therefore, using the techniques in Section 4, we can insert LayerNorm in an unfolding model by
adding extra energy terms. Moreover, with LayerNorm applied, the reweighted softmax in (39)
becomes normal softmax.

F.4 Other forms of Residual Connections

Apart from the residual connections mentioned in Section B.3, it is also possible to derive other
forms like initial residual connections that directly connect the input and current layer [4]. In order to
achieve this, we can change the R(Y) in (9) and Theorem 3.1 from 1

2∥Y ∥2F to 1
2∥Y −B∥2F , then the

basic update in (11) becomes

Y (t+1) = softmaxβ

(
Y (t)Y (t)⊤

)
+B, (69)

where B ∈ Rn×d can be any bias term that is not depended on Y . For example if the entries of B are
learnable parameters, then it just changes the linear transformations to affine transformations, and if
B = f(X) where f(X) ∈ Rn×d is some transformation of input features X , then B serves as an
initial residual connection just like the one used in [4]. The same can also be done with the ∥Y ∥2F
term in E2 defined in Section 4.2.

References
[1] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Annual Conference

on Neural Information Processing Systems, NeurIPS, 2019.

[2] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Rev., 60(2):223–311, 2018.

[3] Giuseppe C Calafiore and Laurent El Ghaoui. Optimization models. Cambridge university
press, 2014.

[4] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, ICML, Proceedings
of Machine Learning Research, 2020.

[5] Patrick Cheridito. Convex analysis. Lecture Notes (Princeton University, Princeton, NJ), 2013.

[6] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509, 2019.

[7] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. Star-
transformer. In Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT, 2019.

[8] Shell Xu Hu, Sergey Zagoruyko, and Nikos Komodakis. Exploring weight symmetry in deep
neural networks. Comput. Vis. Image Underst., 187, 2019.

[9] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020, 2020.

[10] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization,
1(3):127–239, 2014.

[11] Xingyu Xie, Qiuhao Wang, Zenan Ling, Xia Li, Yisen Wang, Guangcan Liu, and Zhouchen Lin.
Optimization induced equilibrium networks. CoRR, abs/2105.13228, 2021.

[12] Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei, Zheng Zhang,
Zengfeng Huang, and David Wipf. Graph neural networks inspired by classical iterative
algorithms. In International Conference on Machine Learning, ICML, 2021.

9

[13] Yongyi Yang, Yangkun Wang, Zengfeng Huang, and David Wipf. Implicit vs unfolded graph
neural networks. CoRR, abs/2111.06592, 2021.

10

	Theory Background
	Lipschitz Conditions and Strong Convexity
	Proximal Operators and Proxinal Gradient Descent
	Subgradient

	Proofs, Discussion, and Extensions of Section 3 Results
	General Unfolded Optimization Results for Creating Self-Attention on Graphs
	The Proof of Theorem 3.1
	Discussion

	Proofs of Section 4 Results
	The Proof of Theorem 4.1
	The Proof of Lemma 4.3

	Proofs of Section 5 Results
	Experiment Details
	Further Discussion
	Asymmetric Weights
	Layer-dependent Weights
	LayerNorm
	Other forms of Residual Connections

