
Under review as a conference paper at ICLR 2024

A COMPARISON METHODS

First, we will introduce several baseline approaches to demonstrate the capabilities of various models
in executing plans and generating code.

Blind LLMs For blind LLMs, we utilize only the environment message as model input,
training models that emulate the behavior of GPT-4 but internalize the guiding system message.
Specifically, we trained two models: LLaMA2-7B-Chat 3 and CodeLLaMA-7B 4. When testing, it
also receives the environment message with both object (O) and relation (R) information
parsed from simulator, denoted as GT (O+R).

TAPA (Wu et al., 2023) The TAPA model utilizes the open-vocabulary detection (OVD) tech-
nique (Zhou et al., 2022b) to recognize objects within images. Once identified, these objects serve
as input to language models to derive plans. To adapt TAPA for OctoGibson tasks, we augmented its
programming prowess by incorporating training from CodeLLaMA, enabling the translation of tex-
tual object lists into coherent plans and executable codes. Traditionally, TAPA constructs its plans
solely at the commencement, generating the entirety of the plan and its associated code in a single
step. In our implementation, we preserve this ”task-level” planning structure but also introduce a
”step-level” approach. This novel addition enables TAPA to generate actions sequentially, granting
it the flexibility to make on-the-fly adjustments during inference, akin to the Octopus model. For
a more refined experimentation process, we substituted the OVD input with a ground-truth object
list, which denotes GT (O), for both the training and testing phases, bolstering the effectiveness of
TAPA’s methodologies and facilitating a richer understanding of its capabilities.

EmbodiedGPT (Mu et al., 2023) In our work, we employed EmbodiedGPT as the foundational
architecture, modifying its design principles to better suit the OctoVerse dataset and corresponding
tasks. Unlike the original application of EmbodiedGPT, which predominantly targets low-level
control signal generation for robotic arm movements, our tasks required code and API-based control
mechanisms. Consequently, we omitted certain components such as text query feedback and policy
mapping networks from the baseline architecture. Our modified design bears structural similarities
to InstructBLIP (Dai et al., 2023). Initial experimentation revealed inadequate convergence when
using a frozen Vision Encoder and Language Decoder in the EmbodiedGPT architecture. To address
this, we adopted a fully trainable approach, updating all the model parameters during training.

B DISCUSSION, LIMITATIONS, AND OUTLOOKS

We have presented Octopus, an avant-garde vision-language programmer, adeptly marrying vision
and language to generate precise plans and executable commands. Harnessing GPT-4 within the
OctoVerse and incorporating Reinforcement Learning with Environmental Feedback (RLEF),
Octopus continually refines its understanding and execution, demonstrating impressive adaptability
and prowess in diverse testing scenarios.

Limitations Despite its capabilities, Octopus has notable limitations. In its current incarnation,
it can only produce succinct code. When confronted with intricate tasks, it often falters, making
errant attempts and heavily relying on environmental feedback for course correction—often without
ultimate success. Future endeavors could address these shortcomings by evolving Octopus to navi-
gate more challenging environments and tasks or by melding it with state-of-the-art LLMs adept at
crafting sophisticated, well-structured programs.

Additionally, the existing Octopus operates solely within a simulated realm. Transitioning to the tan-
gible world could introduce a plethora of complications. For instance, real-world scenarios might
not afford readily accessible ground truth scene graphs like those in OctoGibson, complicating the
utilization of scene graph models (Yang et al., 2022; 2023) to convey environmental nuances. The
current reliance on static image inputs also raises questions about the efficacy of video inputs in

3meta-llama/Llama-2-7b-chat-hf
4codellama/CodeLlama-7b-hf

14

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf

Under review as a conference paper at ICLR 2024

Explain: Since there is no previous action code

or execution error, we can start planning from

scratch. The task goal is to find a carboy. From

the observed objects, we know that the carboy is

currently inside the bottom cabinet. Therefore,

the first step is to open the cabinet and check

if the caray is inside.

Subtask:

(1) Open the bottom cupboard.

(2) Check if the carboy is inside the cabinet.

Code:

def act(robot,env,camera):

Subtask 1: Open bottom cabinet

bottom_cabinet = registry(env,

"bottom_cupboard_no_top_vzzafs_0")

open(bot, bottom_cafeteria_counter_top)

donothing(env)

Inventory:None

Target States:

(a) ['bottom_caferua_top', 'openable', '1']

(a) TAPA (step) + CodeLLaMA

Explain: Since there is no previous action code or

execution error, we can start planning from scratch.

The task goal is to find a carboy. From the observed

objects, we can see that the carboy is within the

environment but it is not within the robot's reach.

Therefore, the robot needs to move closer to the

carboy before it can interact with it.

Subtask:

(1) Move the robot to the carboy.

(2) Grasp the carboy.

Code:

def act(robot,env,camera):

Subtask 1: Move the robot to the carboy

reagent_bottle_189 =

registry(env,"reagent_bottle_189")

MoveBot(env, robot, reagent_bottle_189, camera)

donothing(env)

Inventory:None

Target States:

(a) ['robot', 'nextto', 'reagent_bottle_189', '1']

Explain: Since there is no previous action code or

execution error, we can start planning from scratch.

The task goal is to find a carboy. From the observed

objects, we know that the carboy is currently inside

the bottom cabinet. Therefore, the first step should be

to open the bottom cabinet to access the carboys.

Subtask:

(1) Open the bottom cabinet.

(2) Grasp a carboy.

(3) Check if the carboy is the one we are looking for.

Code:

def act(robot,env,camera):

Subtask 1: Open the bottom cabinet

bottom_cabinet = registry(env,

"bottom_cabinet_no_top_qudfwe_0")

open(robot, bottom_cabinet)

donothing(env)

Inventory:None

Target States:

(a) ['bottom_cabinet_no_top_qudfwe_0', 'openable', '1']

(b) Octopus (SFT only) (c) Octopus (SFT + RLEF)
Explain: There is a need to find a carboy in the

environment. Based on the images provided, there appears to

be a carboy or similar object floating above the dining

table. The task will be to approach this object and identify

it to confirm if it is indeed the carboy.

Subtasks:

(1) Move to the dining table where the floating object is

located.

(2) Identify the object to confirm if it is the carboy.

Code:

def act(robot, env, camera):

Subtask 1: Move to the dining table where the floating

object is located.

dining_table = registry(env, "breakfast_table_dnsjnv_0")

MoveBot(env, robot, dining_table, camera)

donothing(env)

Target States:

(1) Inventory: None

(2) Object Information:

(a) robot, nextto, “breakfast_table_dnsjnv_0”, 1

(e) GPT-4V Output(d) Vision Input for Vision-Language Models (e.g., b, c, e)

BEV-I BEV-II

EGO-0 EGO-45 EGO-90 EGO-135

EGO-180 EGO-225 EGO-270 EGO-315

Figure A1: Qualitative Results on the task of find a carboy in OctoGibson environment. We show
that the models shown can write executable code, but the proposed Octopus has stronger planning
ability, especially after RLEF. We also explore the performance of GPT-4V on the specific task.

enhancing task performance. Given these unresolved challenges, we are making our code avail-
able to the public. This open-source gesture beckons the broader research community to push the
boundaries and drive advancements in this burgeoning field of embodied AI.

Ethical Statement In the development and application of Octopus, we have adhered to rigorous
ethical standards. Particular attention has been paid to data privacy and security, ensuring that no
sensitive information is compromised. The entire development environment is based on open-source
simulators or publicly released, vetted video games. The collected datasets and the model are de-
signed for ethical use across a spectrum of applications under regulations and do not autonomously
execute actions that would raise ethical concerns. Especially, we meticulously design GTA-related
tasks to be friendly, ensuring they exclude any inappropriate or violent behaviors. To the best of our
knowledge, currently, no known ethical concerns are associated with this research.

C SIMULATOR DETAILS

C.1 EMBODIED AI SIMULATOR

Simulation Environment: We provide an extensive comparison between OctoGTA and Octogib-
son and other embodied AI simulator in table C.1. We incorporate various attributes that enhance di-
versity and realism, noting a substantial advancement in both OctoGTA and OctoGibson simulation
environments. First, a wide range of well-formulated tasks are established in Octopus’s simulator
showcasing from fine-grained indoor routine activities to outdoor open-world tasks. This contrasts
with other simulation environments that often target a relatively restricted set of activities.

C.2 OCTOGIBSON

Illustration and Statistic Results of OctoGibson The dataset for vision-language programming
tasks is collected based on the simulation environment called OctoGibson. This environment sup-

15

Under review as a conference paper at ICLR 2024

Table A1: Overview of Embodied AI simulator The characteristics of the dataset’s virtual elements
are closely connected with the Embodied AI simulators employed in constructing these datasets. In
this summary, we outline the simulators commonly utilized throughout the process of creating the
dataset.

Simulation Environment Kinematics
Continuous

Extended States

Flexible

Materials

Deformable

Bodies

Realistic

Fluid

Realistic

Action Execution

TaskPlanning

and/or

Control

Well-Formulated

Tasks

Code

Execution

OpenAIGym (Brockman et al., 2016) X ⇥ ⇥ ⇥ ⇥ X C ⇥ ⇥
Matterport3D (Chang et al., 2017) X ⇥ X ⇥ ⇥ X C ⇥ ⇥
AI2THOR (Kolve et al., 2017) X ⇥ ⇥ ⇥ ⇥ ⇥ TP ⇥ ⇥
VirtualHome (Puig et al., 2018) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ TP ⇥ ⇥
House3D (Wu et al., 2018) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ TP ⇥ ⇥
Habitat 1.0 (Savva et al., 2019) X ⇥ ⇥ ⇥ ⇥ X C ⇥ ⇥
Robosuite (Zhu et al., 2020) X ⇥ ⇥ ⇥ ⇥ X C ⇥ ⇥
RFUniverse (Fu et al., 2023) X ⇥ X X X X TP+C ⇥ ⇥
GTA (gta, 2014) X X X X X X TP+C ⇥ ⇥
Omnigibson (Li et al., 2023c) X X X X X X TP+C ⇥ ⇥
OctoGTA X X X X X X TP+C X X
Octogibson X X X X X X TP+C X X

ports 476 tasks and enables interactions with 78,138 objects across 16 scenes. Each object’s operable
properties are described by 8 unary states, such as openable and heatable, as well as 12 binary re-
lations, such as next to and on top, to illustrate its spatial relationships with other objects. These
details are essential for defining the environment settings for the agent. In the dataset, 37,760 vision
inputs from tasks occurring in 155 rooms are organized into 16 types of layouts. Layouts are further
categorized into 3 types: Interior Scene, Outdoor Scene, and Public Scene.

Table A2: An Statistical Overview of Dataset Characteristics in the OctoGibson Dataset.
Dataset Type Number Comments

OctoGibson

Objects 78,138 Objects are divided into 428 categories. (E.g. pork, scanner, sofa, sweater)
States 8 States represent the operable properties of an object. (E.g. openable, heatable)

Relations 12 Relations describe the spatial relations between two objects. (E.g. nextto, ontop)
Images 37,760 The images are captured in an 80% egocentric and 20% bird’s-eye view perspective
Layout 16 Layout provides task environments: Interior Scene, Outdoor Scene, and Public Scene.
Rooms 155 Rooms are categorized into 29 types that support a variety of tasks. (E.g. garage, child’s room, and dining room)

C.3 OCTOGIBSON DATASET

Statistic results of OctoGibson Training Dataset The OctoGibson training dataset comprises
476 tasks, further subdivided into 3,776 instructional subtasks. Corresponding to these subtasks,
37,760 images are collected for training, forming image-instruction data pairs that enhance the ca-
pabilities of vision-language models.

C.4 GTA-V

C.4.1 EXPERIMENTAL ENVIRONMENT

Objective and Construction of the OctoGTA Environment The primary objective of utilizing
this environment is to assess the adaptability and effectiveness of our model in complex, customiz-
able settings across diverse tasks. We aspire for the model to learn and devise effective strategies
for solving a multitude of custom tasks in the GTA environment, showcasing its generalization ca-
pabilities and practical relevance in real-world scenarios. The OctoGTA environment is built on top
of the renowned video game Grand Theft Auto V (GTA V) using SHVDN (Script Hook V .NET),
a versatile open-source scripting plugin enabling profound customization and control over in-game
elements, transforming GTA V from a gaming platform into a flexible research sandbox.

Detailed Description of the GTA Environment Leveraging SHVDN allows for the crafting of
game scripts using .NET languages, notably C#, and facilitates the manipulation of the in-game
environment, the creation of custom missions, and control over in-game entities. This adaptability
has enabled us to tailor the game extensively to align with our research requirements. In this en-
vironment, the model is exposed to a myriad of task scenarios and challenges, including walking,
swimming, climbing, and engaging in diverse interactions with environmental objects.

16

Under review as a conference paper at ICLR 2024

Support and Convenience for Model Training The GTA environment offers extensive cus-
tomization options and a range of experimental conditions like weather conditions, experimental
scenes, and interactive objects, aiding in a comprehensive assessment of the model’s performance
and adaptability. The abundance of annotated objects within this environment enables the model to
interpret its visual inputs more precisely, thereby enhancing learning efficiency and contributing to
the anticipated outcomes, which are expected to provide insights and advancements in addressing
real-world problems and supporting future research in related fields.

C.4.2 EXPERIMENT PROCEDURE

Data Preparation Prior to the experiment, we first prepared the pertinent datasets, including a
variety of scenes, tasks, and interactive functions, ensuring the model can learn and adapt under
diverse conditions.

We have established four different categories of tasks, including having the player get a pet dog into
the car, guiding a homeless person to a specific location, assisting in steering the boat towards the
coast, and intervening when conflicts occur between pedestrians. For each category of task, we have
set them in five different scenarios, totaling 20 tasks. Each task, upon creation, loads the player and
the necessary objects and NPCs to the designated locations to complete the task.

First and Third-Person View Acquisition: Script Hook V5 primarily provides sup-
port for native function calls in GTAV’s single-player mode, enabling script develop-
ers to easily access and set game attributes, coordinates, and other parameters related
to characters, interactable items, cameras, and other game elements. More specifically,
we employed SET GAMEPLAY CAM RELATIVE HEADING from the CAM section and
SET ENTITY HEADING from the ENTITY section for automatic camera rotation, combined with
RGB-D image acquisition to automatically gather environmental information.

BEV Image Capture Using MOD: The mod called Script Cam Tool6 allows for the decoupling of
the camera from the player character, achieving more versatile panoramic and wide-angle shooting.
We used this mod to set surveillance perspectives for the camera during panoramic image captures.

Task System: The library ScriptHookVDotNet7 enables the use of C# to invoke native functions
within GTA-V, create in-game tasks (such as brawls between pedestrians), and read or set game
states (alter character health, modify or retrieve character locations). Building upon this foundation,
we combined these functions to facilitate the creation of custom complex tasks and the monitoring
of task progress.

We have developed a series of action control functions using ScriptHookVDotNet. In addition
to allowing the player to perform basic actions such as walking, running, swimming, climbing,
and jumping, they also enable interaction with objects or non-player characters (NPCs) within the
scenario, such as entering and driving vehicles, assigning tasks to NPCs, and having them follow or
stay still. With these functions, the model can control the player and objects within the scenario by
invoking these functions to accomplish the tasks we have set.

To train the model, we composed 20 scripts that could smoothly accomplish the tasks by invoking
action functions. In each script, we decomposed the target task into multiple subtasks that are exe-
cuted in sequence. At the beginning and end of each subtask, we captured images of the environment
surrounding the player and provided textual descriptions. This collected information served as our
training data.

D PROMPT

Subsequently, we will present the system message, GPT-4 query example and GPT-4 output exam-
ple. Red arrows denote line breaks within the same row of text.

5Script Hook V is the library that allows to use GTA-V script native functions in custom .asi plugins.
6https://www.gta5-mods.com/scripts/scripted-camera-tool-1-0#

description_tab
7https://github.com/scripthookvdotnet/scripthookvdotnet/

17

http://dev-c.com/gtav/scripthookv/
https://www.gta5-mods.com/scripts/scripted-camera-tool-1-0#description_tab
https://www.gta5-mods.com/scripts/scripted-camera-tool-1-0#description_tab
https://github.com/scripthookvdotnet/scripthookvdotnet/

Under review as a conference paper at ICLR 2024

D.1 SYSTEM MESSAGE

You are a vision language assistant agent with high intelligence.

You are placed inside a virtual environment and you are given a
goal that needs to be finished, you need to write codes to
complete the task.

You can solve any complex tasks by decomposing them into subtasks
and tackling them step by step, but you should only provide
the action code for solving the very next subtask, because the
action code needs time to be compiled and executed in the

,! simulator
to check whether they can be operated successfully.

Here are some useful programs that you may need to use to
,! complete the tasks.

You need to use the utility functions to complete the tasks.

Utility Functions:
donothing(env): wait for the system to capture.
registry(env, obj_name): each time you want to use an object in

,! the environment, call this function first. obj(str): the
,! object in the environment. e.g. apple_1234 =
,! registry(env,"apple_1234"), then you can use apple_1234 to
,! represent "apple_1234" in the environment. For each object,
,! you can only register it once, don’t register an object
,! multiple times. By default, the variable name should be the
,! same as the string.

The Action List contains multiple defined functions, you could
,! execute your actions by calling these functions.

I will first give you the name of the function as well as its
,! input, then I will give you an explanation of what it can
,! do, e.g. function_name(inputs): capability of the function.

Action List:
EasyGrasp(robot, obj): The robot will grasp the object.
MoveBot(env, robot, obj, camera): Move the robot in the env to

,! the front of obj. Note that the robot can only move to a
,! position in front of large objects (e.g., tables, ovens,
,! etc.) that are placed directly on the ground. The robot
,! cannot directly move to small objects (e.g., apples,
,! plates, etc.). The camera should always be set to camera.

put_ontop(robot, obj1, obj2): Put the obj1 within the robot’s
,! hands onto obj2

put_inside(robot, obj1, obj2): Put the obj1 within the robot’s
,! hands inside obj2

cook(robot,obj): cook the given object.
burn(robot,obj): burn the given object.
freeze(robot,obj): freeze the given object.
heat(robot,obj): heat the given object.
open(robot,obj): open the given object.
close(robot,obj): close the given object.
fold(robot,obj): fold the given object.
unfold(robot,obj): unfold the given object.
toggle_on(robot,obj): toggle on the given object.

18

Under review as a conference paper at ICLR 2024

toggle_off(robot,obj): toggle off the given object.

At each round of conversation, I will give you
Observed Objects: ...
Observed Relations: ...
Inventory: ...
Task Goal: ...
Original Subtasks: ...
Previous Action Code: ...
Execution Error: ...

I will give you the following information for you to make a
,! one-step action decision toward the final goal.

(1) Observed Objects: contains object names, its editable states
,! with the corresponding value of the states and distance
,! measuring the centroid of Agent towards the object. It
,! denotes with (object, [(state1, value1), (state2, value2)],
,! distance).e.g. (fridge, [(’openable’, 1)], 1.8) means the
,! object fridge can be opened, and it is currently openedand
,! and the distance is a float value measured in meters.

(2) Observed Relations: a scene relation graph triplet denotes
,! with (object, relation, object), e.g. (apple, ontop, desk).
,! You are termed with Agent in this context.

(3) You should pay attention to the relation graph which is
,! essential for you to understand the status of the
,! environment.

(3) The observation may not include all the information about the
,! objects you need to interact with, the objects may be
,! hidden inside other objects, so feel free to explore the
,! reasonable place they might appear.

(4) The Inventory contains a stack-like structure, you could put
,! things inside. But remember first in last out. It contains
,! all the things the robot has in its hand. If nothing is in
,! Inventory, denoted with None.

(5) The Task Goal contains instructions and the Agent finished
,! state for the entire goal.

(6) Original Subtasks: The sub-tasks that is planned in the
,! conversation. Note that the original plans could be
,! problematic and unable to solve the problem, so you might
,! need to make revision and set up a new plan if necessary.

(7) Previous Actions: The action code for solving the previous
,! subtasks would be provided so that you can understand what
,! was going on and extend the code with the action code for
,! solving the next subtask. Pay attention to the number used
,! in camera functions in previous code, make sure the number
,! is continuous.

(8) Execution Error: The execution error for last round will be
,! provided to help you in this round.

You should then respond to me with
Explain (if applicable): Are there any steps missing in your

,! plan? Why does the code not complete the task? What does
,! the chat log and execution error imply?

Subtasks: How to complete the Task Goal step by step by calling
,! given action functions. You should plan a list of subtasks
,! to complete your ultimate goal. You need to make the
,! planning consistent to your previous round unless those
,! need to change. You should pay attention to the Inventory

19

Under review as a conference paper at ICLR 2024

,! since it tells what you have. The task completeness check
,! is also based on your final inventory. Pay attention that
,! you can only interact with the objects within two meters of
,! you, so you need to be close enough to interact with the
,! objects.

Code:
(1) Remember you can only interact with the objects within two

,! meters of you.
(2) Only use functions given in Utility Functions, Action List.

,! Write a function taking the ’robot’, ’env’ and ’camera’ as
,! the only three arguments.

(3) Reuse the above useful programs as much as possible.
(4) Your function will be reused for building more complex

,! functions. Therefore, you should make it generic and
,! reusable. You should not make strong assumptions about the
,! inventory (as it may be changed at a later time), and
,! therefore you should always check whether you have the
,! required items before using them. If not, you should first
,! collect the required items and reuse the above useful
,! programs.

(5) The function name should always be ’act’, but you need to
,! explain what task it completes.

(6) Each time you take an action in the provided action list,
,! after you take the action, you have to use the function
,! ’donothing’ before you take another action in the action
,! list. So the block should look like "One action in the
,! action list + donothing". Remember one action in your plan
,! may contain multiple actions in the action list, you have
,! to use the block for each action in the action list.

(7) Registry every object you might need to use first.
(8) You should only output the action code to finish your very

,! next subtask. Remember not to generate the entire action
,! code unless it is the final step.

(9) You can have more than one things in Inventory.

Also please notice that registration should not be considered as
,! one subtask. Make sure that your subtask planning should
,! start with real actions like "open the door" while keeping
,! the object registry as the default action.

Target States: A state to check the completeness of the subtask.
,! You should generate the state for self-verifying if the
,! code can successfully run and reach a desired state in the
,! simulator environment to finish the subtask. The state
,! should be in the format

(1) Inventory (describe what you could have in Inventory in this
,! state): object

(2) Object Information (describe the object information in this
,! environment): format1: object, state, value or format2:
,! object1, state, object2, value. The value can only be 0 or
,! 1, representing False or True of the state. For example,
,! [fridge_1234, openable, 1] means fridge_1234 is opened;
,! [meat_jhg, inside, fridge_1234, 1] means meat_jhg is inside
,! fridge_1234. For format1, you can only choose the state
,! from: [’cookable’, ’burnable’, ’freezable’, ’heatable’,
,! ’openable’, ’togglable’, ’foldable’, ’unfoldable’]. For
,! format2, you can choose the state from: [’inside’,
,! ’nextto’, ’ontop’, ’under’, ’touching’, ’covered’,

20

Under review as a conference paper at ICLR 2024

,! ’contains’, ’saturated’, ’filled’, ’attached’, ’overlaid’,
,! ’draped’]. If the object is the robot, denote it with
,! ’robot’.

(3) If the object has not been changed in this conversation, do
,! not add it into the target states.

(4) You don’t need to write any annotations for target states.
(5) Remember to make sure the states you use is in the provided

,! state list for format1 and format2.
(5) You can only use the objects provided in the Object

,! Information part, you cannot use the name you registered in
,! the code.

(6) The object information of target states should be the last
,! part of your response, no more explanations are needed.

Format Requirement
You should only respond in the format described below. Please

,! strictly pay attention to the format of the bullet points,
,! especially the brackets for the number (e.g., "(1), (2),
,! and (3)").

{response_format}
Now, I will send the message so that you can make planning
accordingly.

Explain:
...
Subtasks:
(1) ...
(2) ...
(3) ...
// Please provide me with ALL previous subtasks (E.g if subtask1

,! & 2 are successfully acted and make mistakes in subtask3,
,! please return me with subtask1 & 2 and new plan of subtask3)

...
Code:
‘‘‘python
// import neccessary modules first
// helper functions (only if needed, try to avoid them)
...
// main function after the helper functions
def act(robot,env,camera) {
// comment should be clear and correspond to subtasks above

,! (e.g., Subtask 1: xxxx)
//only generate one subtask in each act function

}
‘‘‘
Target States:
(1) Inventory: ... //robot can grasp more than one thing at the

,! same time
(2) Object Information:

(a) ... // e.g. (a) table, nextto, fridge, 1
(b) ...
(c) ...

D.2 ENVIRONMENTAL MESSAGE

Observed Objects: (bacon_150, ([’heatable’, 0], [’freezable’,
,! 0], [’burnable’, 0], [’cookable’, 0]),
,! 1.89)(fridge_xyejdx_0, ([’openable’, 0], [’heatable’,

21

Under review as a conference paper at ICLR 2024

,! 0], [’freezable’, 0]), 2.12)(stove_rgpphy_0,
,! ([’togglable’, 0], [’heatable’, 0], [’freezable’, 0]),
,! 1.59)(tray_156, ([’heatable’, 0], [’freezable’, 0]),
,! 1.85)(griddle_157, ([’togglable’, 0], [’heatable’, 0],
,! [’freezable’, 0]), 1.68)

Observed Relations: [(’bacon_150’, ’inside’, ’tray_156’),
,! (’tray_156’, ’inside’, ’fridge_xyejdx_0’), (’bacon_150’,
,! ’inside’, ’fridge_xyejdx_0’)]

Inventory: None
Task Goal: cook_bacon
Original Subtasks: None
Previous Action Code: No code
Execution error: No error
Now, please output Explain, Subtasks (revise if necessary),

,! Code that completing the next subtask, and Target
,! States, according to the instruction above. Remember you
,! can only use the functions provided above and pay
,! attention to the response format.

D.3 GPT-4 RESPONSE EXAMPLE

Explain:
Since our task goal is to cook bacon and the bacon is inside the

,! fridge on a tray, the first step should be to approach the
,! fridge, open it, and take out the bacon. Once the bacon is
,! retrieved, we can proceed to cook it on a suitable
,! appliance like the griddle or stove.

Subtasks:
(1) Approach the fridge.
(2) Open the fridge.
(3) Retrieve the tray containing the bacon from the fridge.
(4) Approach the or stove.
(5) Place the bacon on the stove.
(6) Toggle on the stove to cook the bacon.

Code:
def act(robot, env, camera):

Subtask 1: Approach the fridge
fridge_xyejdx_0 = registry(env, "fridge_xyejdx_0")
MoveBot(env, robot, fridge_xyejdx_0, camera)
donothing(env)

Target States:
(1) Inventory: None
(2) Object Information:
(a) robot, nextto, fridge_xyejdx_0, 1

22

	Introduction
	Related Work
	Embodied AI with Large Models
	Vision-Language Models
	Feedback in Large Language Models

	The OctoVerse Environment and Data Collection
	Overview of OctoVerse
	Instructions From Exploration
	Environmental Feedback

	Octopus: The Embodied Vision-Language Programmer
	Architecture
	Supervised Finetuning with Instructions From Exploration
	Reinforcement Learning with Environmental Feedback (RLEF)

	Experiments
	blueMain Results
	Ablation Study
	Performance of GPT-4 and GPT-4V
	Transferability On GTA Tasks

	Comparison Methods
	Discussion, Limitations, and Outlooks
	Simulator Details
	Embodied AI Simulator
	OctoGibson
	OctoGibson Dataset
	GTA-V
	Experimental Environment
	Experiment Procedure

	Prompt
	System Message
	Environmental Message
	GPT-4 Response Example

