
A Omitted Proofs: Upper Bound

This section contains omitted proofs from Section 3.

Lemma (Lemma 1). Let ` : R → RY+ be a discrete target loss and suppose the surrogate L : Rd →
RY+ and link ψ : Rd → R are calibrated for `. Then for any p ∈ ∆Y , there exists αp ≥ 0 such that,
for all u ∈ Rd,

R`(ψ(u), p) ≤ αpRL(u, p).

Proof. Fix p ∈ ∆Y . Let Cp = maxr∈RR`(r, p). The maximum exists because ` is discrete, i.e. R
is finite. Meanwhile, recall that, when defining calibration, we let BL,ψ,`(p) = {RL(u, p) : ψ(u) 6∈
γ(p)}. Let Bp = inf BL,ψ,`(p). By definition of calibration, we have Bp > 0.

To combine these bounds, let αp =
Cp
Bp

. Let u ∈ Rd. There are two cases. If ψ(u) ∈ γ(p), then
R`(ψ(u), p) = 0 ≤ RL(u, p) immediately. If ψ(u) 6∈ γ(p), then

R`(ψ(u), p) ≤ Cp
= αp ·Bp
≤ αpRL(u, p).

Lemma (Lemma 2). If (L,ψ) indirectly elicits `, then Γ = prop[L] refines γ = prop[`] in the sense
that, for all u ∈ Rd, there exists r ∈ R such that Γu ⊆ γr.

Proof. For any u, let r = ψ(u). By indirect elicitation, u ∈ Γ(p) =⇒ r ∈ γ(p). So Γu =
{p : u ∈ Γ(p)} ⊆ {p : r ∈ γ(p)} = γr.

Lemma (Lemma 3). Suppose (L,ψ) indirectly elicits ` and let Γ = prop[L]. Then for any fixed
u, u∗ ∈ Rd and r ∈ R, the functions RL(u, ·) and R`(r, ·) are linear in their second arguments on
Γu∗ .

Proof. Let u∗ ∈ Rd and p ∈ Γu∗ . By definition, for all p ∈ Γu∗ , L(p) = 〈p, L(u∗)〉. So for fixed u,

RL(u, p) = 〈p, L(u)〉 − 〈p, L(u∗)〉 = 〈p, L(u)− L(u∗)〉,

a linear function of p on Γu∗ . Next, by Lemma 2, there exists r∗ such that Γu∗ ⊆ γr∗ . By the same
argument, for fixed r, R`(r, p) = 〈p, `(r)−`(r∗)〉, a linear function of p on γr∗ and thus on Γu∗ .

Lemma (Lemma 4). If L : Rd → RY+ is polyhedral, then Γ = prop[L] has a finite set of level sets
that union to ∆Y . Moreover, these level sets are polytopes.

Proof. This statement can be deduced from the embedding framework of [10]. In particular, Lemma
5 of [10] states that if L is polyhedral, then its Bayes risk L is concave polyhedral, i.e. is the pointwise
minimum of a finite set of affine functions. It follows that there exists a finite set U ⊂ Rd such that

L(p) = min
u∈Rd
〈p, L(u)〉 = min

u∈U
〈p, L(u)〉 . (4)

We claim the level sets of U witness the claim. First, it is known (e.g. from theory of power diagrams,
[2]) that ifL is a polyhedral function represented as (4) and u ∈ U , then Γu = {p ∈ ∆Y : 〈p, L(u)〉 =
L(p)} is a polytope. Finally, suppose for contradiction that there exists p ∈ ∆Y , p 6∈ ∪u∈UΓu.
Then there must be some u′ 6∈ U with p ∈ Γu′ , implying that 〈p, L(u′)〉 > maxu∈U 〈p, L(u)〉,
contradicting (4).

Theorem (Theorem 3). Suppose the surrogate loss L : Rd → RY+ and link ψ : Rd → R are
consistent for the target loss ` : R → RY+. If L is polyhedral, then (L,ψ) guarantee a linear regret
transfer for `, i.e. there exists α ≥ 0 such that, for all D and all measurable h : X → Rd,

R`(ψ ◦ h;D) ≤ αRL(h;D).
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Proof. We first recall that by Fact 1, consistency implies that (L,ψ) are calibrated for ` and that
(L,ψ) indirectly elicit `. Next, by Observation 1, it suffices to show a linear conditional regret
transfer, i.e. for all p ∈ ∆Y and u ∈ Rd, we show R`(ψ(u), p) ≤ αRL(u, p).

By Lemma 4, the polyhedral loss L has a finite set U ⊂ Rd of predictions such that (a) for each
u ∈ U , the level set Γu is a polytope, and (b) ∪u∈UΓu = ∆Y . Let Qu ⊂ ∆Y be the finite set of
vertices of the polytope Γu, and define the finite set Q = ∪u∈UQu.

By Lemma 1, for each q ∈ Q, there exists αq ≥ 0 such that R`(ψ(u), q) ≤ αqRL(u, q) for all u. We
choose

α = max
q∈Q

αq.

To prove the conditional regret transfer, consider any p ∈ ∆Y and any u ∈ Rd. There exists u ∈ U
such that p ∈ Γu, a polytope. So we can write p as a convex combination of its vertices, i.e.

p =
∑
q∈Qu

β(q)q

for some probability distribution β. Recall that Qu ⊆ Γu and RL and R` are linear in p on Γu by
Lemma 3. So, for any u′:

R`(ψ(u′), p) = R`

ψ(u′) ,
∑
q∈Qu

β(q)q


=
∑
q∈Qu

β(q)R`(ψ(u′), q)

≤
∑
q∈Qu

β(q)αqRL(u′, q)

≤ α
∑
q∈Qu

β(q)RL(u′, q)

= αRL(u′, p).

B Omitted Proofs: Lower Bound

This section contains omitted proofs from Section 4.
Theorem (Theorem 4). Suppose the surrogate loss L and link ψ satisfy a regret transfer of ζ for a
target loss `. If L, ψ, and ` satisfy Assumption 1, then there exists c > 0 such that, for some ε∗ > 0,
for all 0 ≤ ε < ε∗, ζ(ε) ≥ c

√
ε.

Proof outline: By assumption we have a boundary report u0 which is L-optimal for a distribution
p0. We have some r, r′ which are both optimal for p0, and ψ(u0) = r′. First, we will choose a p1
where r is uniquely optimal, hence u0 is a strictly suboptimal choice. We then consider a sequence
of distributions pλ = (1 − λ)p0 + λp1, approaching p0 as λ → 0. For all such pλ, it will happen
that r is optimal while u0 and r′ = ψ(u0) are strictly suboptimal. We show that R`(r′, pλ) = c`λ
for some constant c` and all small enough λ. Meanwhile, we will show that RL(u0, pλ) ≤ O(λ2),
proving the result. The last fact will use the properties of strong smoothness and strong convexity in
a neighborhood of u0.

Proof. Obtain α, u0, p0, r, r′, and an open neighborhood of u0 from Assumption 1 and the definition
of boundary report. Assume without loss of generality that ψ(u0) = r′; otherwise, swap the roles of
r and r′.

Linearity of R`(r′, pλ). As ` is non-redundant by assumption, there exists some p1 ∈ γ̊r, the
relative interior of the full-dimensional level set γr. We therefore have R`(r′, p1) = 〈p1, `(r′) −
`(r)〉 =: c` > 0, and R`(r′, p0) = 0. Let pλ := (1 − λ)p0 + λp1. By convexity of γr, we have
pλ ∈ γr for all λ ∈ [0, 1], which gives R`(r′, pλ) = λc`.
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Obtaining the global minimizer uλ of Lλ. Let Lλ : Rd → R+ be given by Lλ(u) =
〈pλ, L(u)〉 = (1 − λ)〈p0, L(u)〉 + λ〈p1, L(u)〉. Let δ > 0 such that the above open neighbor-
hood of u0 contains the Euclidean ball Bδ(u0) of radius δ around u0. Let u1 ∈ Γ(p1). We argue that
for all small enough λ, Lλ(u) is uniquely minimized by some uλ ∈ Bδ(u0). For any u /∈ Bδ(u0),
we have, using local strong convexity and the optimality of u1,

Lλ(u)− Lλ(u0) = (1− λ) (L0(u)− L0(u0)) + λ (L1(u)− L1(u0))

≥ (1− λ)
(α

2
δ2
)

+ λ (L1(u1)− L1(u0))

> 0

if λ < λ∗ := αδ2/(2αδ2 + 4L1(u0)− 4L1(u1)). For the remainder of the proof, let λ < λ∗. Then
any u /∈ Bδ(u0) has Lλ(u) > Lλ(u0), hence is suboptimal. By α-strong convexity of L0 on Bδ(u0),
Lλ is strictly convex on Bδ(u0). So it has a unique minimizer uλ, and by the above argument this is
the global minimizer of Lλ. Then L(pλ) = Lλ(uλ), and thus RL(u0, pλ) = Lλ(u0)− Lλ(uλ). We
also observe here that RL(u0, pλ) is continuous in λ, e.g. because the Bayes risk of L is continuous
in p as is 〈p, L(u0)〉. It is also zero when λ = 0.

Showing RL is quadratic in λ. By assumption, the gradient of Ly is locally Lipschitz for all
y ∈ Y . We will apply this fact to the compact set C = {u ∈ Rd : ‖u− u1‖ ≤ ‖u0 − u1‖+ δ}. By
compactness, we have a finite subcover of open neighborhoods; let β be the minimum Lipschitz
constant over this finite set of neighborhoods. We thus have that Ly is β-strongly smooth on C, and
hence so is Lλ for any λ ∈ [0, 1].

We now upper bound ‖uλ − u0‖2, and then apply strong smoothness to upper bound RL(u0, pλ) =
Lλ(u0)− Lλ(uλ). Consider the first-order optimality condition of Lλ:

0 = ∇Lλ(uλ) = (1− λ)∇L0(uλ) + λ∇L1(uλ)

=⇒ (1− λ)‖∇L0(uλ)‖2 = λ‖∇L1(uλ)‖2 .

By optimality of u0 and u1, strong convexity of L0 and strong smoothness of L1, and the triangle
inequality, we have

‖∇L0(uλ)‖2 = ‖∇L0(uλ)−∇L0(u0)‖2 ≥ α‖uλ − u0‖2 ,
‖∇L1(uλ)‖2 = ‖∇L1(uλ)−∇L1(u1)‖2 ≤ β‖uλ − u1‖2

≤ β (‖uλ − u0‖2 + ‖u0 − u1‖2) .

Combining,

(1− λ)α‖uλ − u0‖2 ≤ (1− λ)‖∇L0(uλ)‖2
= λ‖∇L1(uλ)‖2
≤ λβ (‖uλ − u0‖2 + ‖u0 − u1‖2) .

Now rearranging and taking λ ≤ 1
2

α
α+β , we have

‖uλ − u0‖2 ≤
λβ

(1− λ)α− λβ
‖u0 − u1‖2 ≤ λ

2β

α
‖u0 − u1‖2 .

Finally, from strong smoothness of Lλ and optimality of uλ,

Lλ(u0)− Lλ(uλ) ≤ β

2
‖u0 − uλ‖22 ≤

β

2

(
λ

2β

α
‖u0 − u1‖2

)2

= cLλ
2 ,

where cL = 2β3

α2 ‖u0 − u1‖22 > 0.

To conclude: we have found a λ∗ > 0 and shown that for all 0 ≤ λ < λ∗, R`(r′, pλ) = c`λ and
RL(u0, pλ) ≤ cLλ

2. In particular, let ε∗ = sup0≤λ<λ∗ RL(u0, pλ). Then for all 0 ≤ ε < ε∗, by
continuity, we can choose λ < λ∗ such that RL(u0, pλ) = ε ≤ cLλ2. Meanwhile, R`(ψ(u0), pλ) =
c`λ ≥ c`√

cL

√
ε. Recalling that ζ(RL(u0, pλ)) ≥ R`(ψ(u0), pλ) by definition, this implies ζ(ε) ≥

c
√
ε for all ε < ε∗, with c = c`√

cL
.
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C Omitted Proofs: Constant Derivation

This section contains omitted proofs from Section 5.

C.1 Hoffman constants

First we appeal to a known fact, the existence of Hoffman constants for systems of linear inequalities.
See Zalinescu [35] for a modern treatment.

Theorem 7 (Hoffman constant [14]). Given a matrix A ∈ Rm×n, there exists some smallest
H(A) ≥ 0, called the Hoffman constant (with respect to ‖ · ‖∞), such that for all b ∈ Rm and all
x ∈ Rn,

d∞(x, S(A, b)) ≤ H(A)‖(Ax− b)+‖∞ , (5)

where S(A, b) = {x ∈ Rn | Ax ≤ b} and (u)+
.
= max(u, 0) component-wise.

Lemma (Lemma 5). Let L : Rd → RY+ be a polyhedral loss with Γ = prop[L]. Then for any fixed
p, there exists some smallest constant HL,p ≥ 0 such that d∞(u,Γ(p)) ≤ HL,pRL(u, p) for all
u ∈ Rd.

Proof. Since L is polyhedral, there exist a1, . . . , am ∈ Rd and c ∈ Rm such that we may write
〈p, L(u)〉 = max1≤j≤m aj ·u+cj . LetA ∈ Rm×d be the matrix with rows aj , and let b = L(p)1−c,
where 1 ∈ Rm is the all-ones vector. Then we have

S(A, b)
.
= {u ∈ Rd | Au ≤ b}
= {u ∈ Rd | Au+ c ≤ L(p)1}
= {u ∈ Rd | ∀i (Au+ c)i ≤ L(p)}
= {u ∈ Rd | max

i
(Au+ c)i ≤ L(p)}

= {u ∈ Rd | 〈p, L(u)〉 ≤ L(p)}
= Γ(p) .

Similarly, we have maxi (Au− b)i = 〈p, L(u)〉 − L(p) = RL(u, p) ≥ 0. Thus,

‖(Au− b)+‖∞ = max
i

((Au− b)+)i

= max((Au− b)1, . . . , (Au− b)m, 0)

= max(max
i

(Au− b)i, 0)

= max
i

(Au− b)i

= RL(u, p) .

Now applying Theorem 7, we have

d∞(u,Γ(p)) = d∞(u, S(A, b))

≤ H(A)‖(Au− b)+‖∞
= H(A)RL(u, p) .

C.2 Separated links

Lemma (Lemma 6). Let polyhedral surrogate L : Rd → RY+, discrete loss ` : R → RY+, and link
ψ : Rd → R be given such that (L,ψ) is calibrated with respect to `. Then there exists ε > 0 such
that ψ is ε-separated with respect to Γ

.
= prop[L] and γ .

= prop[`].

Proof. Suppose that ψ is not ε-separated for any ε > 0. Then letting εi
.
= 1/i we have se-

quences {pi}i ⊂ ∆Y and {ui}i ⊂ Rd such that for all i ∈ N we have both ψ(ui) /∈ γ(pi)
and d∞(ui,Γ(pi)) ≤ εi. First, observe that there are only finitely many values for γ(pi) and Γ(pi),
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asR is finite and L is polyhedral. Thus, there must be some p ∈ ∆Y and some infinite subsequence
indexed by j ∈ J ⊆ N where for all j ∈ J , we have ψ(uj) /∈ γ(p) and Γ(pj) = Γ(p).

Next, observe that, as L is polyhedral, the expected loss 〈p, L(u)〉 is β-Lipschitz in ‖ · ‖∞ for some
β > 0. Thus, for all j ∈ J , we have

d∞(ui,Γ(p)) ≤ εj =⇒ ∃u∗ ∈ Γ(p)‖uj − u∗‖∞ ≤ εj
=⇒ |〈p, L(uj)〉 − 〈p, L(u∗)〉| ≤ βεj
=⇒ |〈p, L(uj)〉 − L(p)| ≤ βεj .

Finally, for this p, we have

inf
u:ψ(u)/∈γ(p)

〈p, L(u)〉 ≤ inf
j∈J
〈p, L(uj)〉 = L(p) ,

contradicting the calibration of ψ.

C.3 Combining the loss and link

Lemma 7. Let ` : R → RY+ be a discrete target loss, L : Rd → RY+ be a polyhedral surrogate loss,
and ψ : Rd → R a link function. If (L,ψ) indirectly elicit ` and ψ is ε-separated, then for all u and
p,

R`(ψ(u), p) ≤ C`HL,p

ε
RL(u, p).

Proof. If ψ(u) ∈ γ(p), then R`(u, p) = 0 and we are done. Otherwise, applying the definition of
ε-separated and Lemma 5,

ε < d∞(u,Γ(p))

≤ HL,pRL(u, p).

So R`(ψ(u), p) ≤ C` ≤ C`HL,p
ε RL(u, p).

Theorem (Constructive linear transfer, Theorem 5). Let ` : R → RY+ be a discrete target loss,
L : Rd → RY+ be a polyhedral surrogate loss, and ψ : Rd → R a link function. If (L,ψ) are
consistent for `, then

(∀h,D) R`(ψ ◦ h;D) ≤ C`HL

εψ
RL(h;D) .

The proof closely mirrors the proof of the nonconstructive upper bound, Theorem 1.

Proof. By Lemma 6, ψ is separated and εψ well-defined. By Lemma 7, for each p ∈ Q,
R`(ψ(u), p) ≤ C`HL

εψ
RL(u, p) for all u. Now consider a general p, which is in some full-dimensional

polytope level set Γu. Write p =
∑
q∈Qu β(q)q for some probability distribution β, where Qu is the

set of vertices of Γu. By Lemma 3, RL and R` are linear in p on Γu, so for any u′,

R`(ψ(u′), p) =
∑
q∈Qu

β(q)R`(ψ(u′), q)

≤
∑
q∈Qu

β(q)
C`HL,p

εψ
RL(u′, q)

≤ C`HL

εψ

∑
q∈Qu

β(q)RL(u′, q)

≤ C`HL

εψ
RL(u′, p).

By Observation 1, this conditional regret transfer implies a full regret transfer, with the same
constant.
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