A Omitted Proofs: Upper Bound

This section contains omitted proofs from Section 3.

Lemma (Lemma 1). Let ¢ : R — R{ be a discrete target loss and suppose the surrogate L : R? —
Rz and link v : R — R are calibrated for {. Then for any p € Ay, there exists oy, > 0 such that,
forall u € R4,

Re(d’(“):?) < apRL(uap)'

Proof. Fix p € Ay. Let C, = max,cr R¢(r, p). The maximum exists because ¢ is discrete, i.e. R
is finite. Meanwhile, recall that, when defining calibration, we let By, ¢(p) = {Rp(u,p) : ¥ (u) &
v(p)}. Let B, = inf By, 4 ¢(p). By definition of calibration, we have B, > 0.
To combine these bounds, let o, = %. Let u € RY. There are two cases. If ¢(u) € v(p), then
Ri(¢(u),p) =0 < Rp(u,p) immediately. If ¢)(u) & v(p), then
RZ(’(/)(ULP) S Cp
=ap- By
S apRL (’LL, p)

O

Lemma (Lemma 2). If (L, ) indirectly elicits ¢, then T' = prop[L] refines v = prop|¢] in the sense
that, for all w € R, there exists r € R such that T, C .

Proof. For any u, let r = 1(u). By indirect elicitation, u € I'(p) = r € y(p). So Ty, =
p:uelp)cip:rev®}t=7 O

Lemma (Lemma 3). Suppose (L, ) indirectly elicits £ and let ' = prop|L]. Then for any fixed

u,u* € R and r € R, the functions Ry, (u,-) and Ry(r,-) are linear in their second arguments on
T,

Proof. Letu* € R? and p € T',,~. By definition, for all p € T, L(p) = (p, L(u*)). So for fixed u,
Rp(u,p) = (p, L(u)) — (p, L(u")) = (p, L(u) — L(u")),

a linear function of p on I',~. Next, by Lemma 2, there exists r* such that I',« C v,~. By the same
argument, for fixed r, Ry (r, p) = (p, £(r) — £(r*)), a linear function of p on .~ and thuson I',,~. O

Lemma (Lemma4). If L : R? — Rz is polyhedral, then T' = prop[L] has a finite set of level sets
that union to Ay. Moreover, these level sets are polytopes.

Proof. This statement can be deduced from the embedding framework of [10]. In particular, Lemma
5 of [10] states that if L is polyhedral, then its Bayes risk L is concave polyhedral, i.e. is the pointwise
minimum of a finite set of affine functions. It follows that there exists a finite set U C R such that

L(p) = min (p, L(u)) = min{p, L(w)) . )

We claim the level sets of U witness the claim. First, it is known (e.g. from theory of power diagrams,
[2]) that if L is a polyhedral function represented as (4) andu € U, thenT',, = {p € Ay : (p, L(u)) =
L(p)} is a polytope. Finally, suppose for contradiction that there exists p € Ay, p & Uyeu Ty
Then there must be some v’ ¢ U with p € 'y, implying that (p, L(v')) > max,ev(p, L(w)),
contradicting (4). ]

Theorem (Theorem 3). Suppose the surrogate loss L : RY — R{ and link ¢ : R* — R are
consistent for the target loss £ : R — ]RX. If L is polyhedral, then (L, 1)) guarantee a linear regret
transfer for ¢, i.e. there exists o > 0 such that, for all D and all measurable h : X — R?,

Ry(¢ o h; D) < aRp(h; D).
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Proof. We first recall that by Fact 1, consistency implies that (L, ) are calibrated for £ and that
(L,) indirectly elicit £. Next, by Observation 1, it suffices to show a linear conditional regret

transfer, i.e. for all p € Ay and u € R%, we show R, (v (u), p) < aRp(u,p).

By Lemma 4, the polyhedral loss L has a finite set U C R? of predictions such that (a) for each
u € U, the level set I',, is a polytope, and (b) U,cpl'y = Ay. Let Q,, C Ay be the finite set of
vertices of the polytope I',,, and define the finite set Q@ = Uy,cpy Q.

By Lemma 1, for each ¢ € Q, there exists oy > 0 such that R (¢ (u), q) < aqRr(u,q) for all u. We
choose

= max aq.
qeQ

To prove the conditional regret transfer, consider any p € Ay and any u € R?. There exists u € U
such that p € I',,, a polytope. So we can write p as a convex combination of its vertices, i.e.

p="Y_ Bla)
q€Qy

for some probability distribution 3. Recall that Q,, C I', and R}, and Ry are linear in p on I, by
Lemma 3. So, for any u’:

Re((u'),p) = Ry | w(w'), > Blg)g

qEQu

= Z B(q)Re(1(u'), q)
qEQ,

< Y Blg)agRL(v,q)
qEQy

<a Y BleRL,q)

qEQ,
= OéRL(ulvp)'

B Omitted Proofs: Lower Bound

This section contains omitted proofs from Section 4.

Theorem (Theorem 4). Suppose the surrogate loss L and link 1) satisfy a regret transfer of ¢ for a
target loss £. If L, 1, and { satisfy Assumption 1, then there exists ¢ > 0 such that, for some €* > 0,
forall0 < e <¢€*, ((e) > cv/e

Proof outline: By assumption we have a boundary report ug which is L-optimal for a distribution
po. We have some r, " which are both optimal for pg, and 1(ug) = 7’. First, we will choose a p;
where r is uniquely optimal, hence wy is a strictly suboptimal choice. We then consider a sequence
of distributions p) = (1 — A)pg + Ap1, approaching po as A — 0. For all such p,, it will happen
that r is optimal while ug and 7’ = 1) (ug) are strictly suboptimal. We show that Ry(r', py) = ceA
for some constant ¢, and all small enough A\. Meanwhile, we will show that Ry, (ug, py) < O(\?),
proving the result. The last fact will use the properties of strong smoothness and strong convexity in
a neighborhood of uy.

Proof. Obtain o, ug, pg, 7, 7’, and an open neighborhood of ug from Assumption 1 and the definition
of boundary report. Assume without loss of generality that ¢)(ug) = r’; otherwise, swap the roles of
rand r'.

Linearity of R;(r',p)). As £ is non-redundant by assumption, there exists some p; € 7, the
relative interior of the full-dimensional level set ,.. We therefore have Ry(r',p1) = (p1,£(r") —
0(r)) =:¢g > 0, and Re(r',po) = 0. Let py := (1 — X\)po + Ap1. By convexity of ,, we have
pa € 7 forall A € [0, 1], which gives Ry (17, px) = Acy.
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Obtaining the global minimizer u) of L). Let L) : RY — R, be given by Ly(u) =
(px, L(u)) = (1 — N){po, L(u)) + A(p1, L(u)). Let § > 0 such that the above open neighbor-
hood of u contains the Euclidean ball Bs(ug) of radius § around ug. Let u; € T'(py). We argue that
for all small enough A, Ly (u) is uniquely minimized by some uy € Bj(ug). For any u ¢ Bs(ug),
we have, using local strong convexity and the optimality of u,

L(u) — La(ug) = (1 = A) (Lo(u) — Lo(uo)) + A (L1(u) — Li(uo))
> (1= (59) + A(La(wn) = Ly (w0))
>0

if A < \* := ad?/(2a0? + 4Ly (ug) — 4L1(uy)). For the remainder of the proof, let A < \*. Then
any u ¢ Bs(ug) has Ly(u) > Lx(ug), hence is suboptimal. By a-strong convexity of Lo on Bj(ug),
L, is strictly convex on Bj(ug). So it has a unique minimizer u, and by the above argument this is
the global minimizer of L. Then L(py) = Lx(uy), and thus Ry, (ug, px) = Lx(up) — La(uy). We
also observe here that Ry, (ug, p») is continuous in ), e.g. because the Bayes risk of L is continuous
in pasis (p, L(up)). It is also zero when A = 0.

Showing R; is quadratic in A. By assumption, the gradient of L, is locally Lipschitz for all
y € Y. We will apply this fact to the compact set C = {u € R? : |lu — u1|| < ||up — u1| + &}. By
compactness, we have a finite subcover of open neighborhoods; let 5 be the minimum Lipschitz
constant over this finite set of neighborhoods. We thus have that L, is 5-strongly smooth on C, and
hence so is L) for any A € [0, 1].

We now upper bound ||uy — wug||2, and then apply strong smoothness to upper bound Ry, (ug, px) =
L (ug) — Lx(uy). Consider the first-order optimality condition of Ly:
0= VL)\(U)\) = (1 — )\)VL()(U,\) + )\VLl(U)\)
= (L= N[[VLo(ux)ll2 = A[VL1(ur)|2 -

By optimality of uy and w4, strong convexity of Ly and strong smoothness of L1, and the triangle
inequality, we have

IVLo(ux)ll2 = [[VLo(ux) = VLo (uo)ll2 = aflux — uoll2 ,

IVLy(u)ll2 = [[VL1(ux) = VL1 (u1)ll2 < Bllux — uall2

< B ([lux — uoll2 + [luo — uall2) -

Combining,

(1= Naflux —uoll2 < (1 = N)[|VLo(ur)ll2
= M|VLi(un)ll2
< AB([Jux —uoll2 + [luo — ual2) -

Now rearranging and taking A < %%ﬂg, we have

AB

2p3
M g —ualls < A ug — ualls -
Ty )\BHUO upl|e < o lwo — u1l|2

lux — uoll2 <

Finally, from strong smoothness of Ly and optimality of u},

Iafu) ~ L) < Sl — wr < 5 (32

2
=5 =5 l|lug — u1||2> =cp)\?,

where ¢;, = 20%3”“0 — w3 > 0.

To conclude: we have found a A* > 0 and shown that for all 0 < A\ < A*, Ry(’,p)) = ceA and
Rr(ug,px) < cp A2 In particular, let €* = SUPg<y<a+ RL(uo,px). Then forall 0 < e < ¢*, by
continuity, we can choose A < A\* such that Ry, (ug, px) = € < cp,A\%. Meanwhile, R, (¢(ug),py) =

coN > \;57\/5 Recalling that ((Ry (ug, px)) > Re¢(¢(ug), px) by definition, this implies {(e) >
cy/eforall e < €*, with ¢ = S O
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C Omitted Proofs: Constant Derivation

This section contains omitted proofs from Section 5.

C.1 Hoffman constants

First we appeal to a known fact, the existence of Hoffman constants for systems of linear inequalities.
See Zalinescu [35] for a modern treatment.

Theorem 7 (Hoffman constant [14]). Given a matrix A € R™*™, there exists some smallest
H(A) > 0, called the Hoffman constant (with respect to || - ||o0), such that for all b € R™ and all
e R",

doo(,S(A, b)) < H(A)||(Ax — )1 [|oc (5)
where S(A,b) = {x € R" | Ax < b} and (u)4+ = max(u,0) component-wise.

Lemma (Lemma 5). Let L : R? — RI be a polyhedral loss with T' = prop|L]. Then for any fixed
p, there exists some smallest constant Hy, , > 0 such that do(u,I'(p)) < Hp pRr(u,p) for all

u € R%

Proof. Since L is polyhedral, there exist ay,...,a,, € R?and ¢ € R™ such that we may write
(p, L(u)) = maxj<j<m a;j-u+c;. Let A € R™*9 be the matrix with rows a;, and letb = L(p)1 —c,
where 1 € R™ is the all-ones vector. Then we have

S(A,b) = {u € RY | Au < b}
={ueR?| Au+c < L(p)1}
={u e R?|Vi(Au+c); < L(p)}
= {u € R" [ max (Au+c); < L(p)}
={ueR?[(p,L(u)) < L(p)}
=T(p) .
Similarly, we have max; (Au — b); = (p, L(u)) — L(p) = Ry (u,p) > 0. Thus,
[(Au = b) ¢ [loo = max ((Au —b)+)i
= max((Au —b)1,...,(Au— 1), 0)
= max(miax (Au —b);, 0)

= max (Au —b);

= RL(uvp) .
Now applying Theorem 7, we have
doo (1, T(p)) = doc (u, S(A, b))
< H(A)[[(Au = b) 4[|
= H(A)RL(u,p) .

C.2 Separated links

Lemma (Lemma 6). Let polyhedral surrogate L : R — Rz, discrete loss £ : R — Rz, and link
¥ : RY — R be given such that (L, 1)) is calibrated with respect to {. Then there exists ¢ > 0 such
that 1 is e-separated with respect to I’ = prop|L] and v = prop[¢).

Proof. Suppose that ¢ is not e-separated for any ¢ > 0. Then letting ¢; = 1/i we have se-
quences {p;}; C Ay and {u;}; C R? such that for all i € N we have both v (u;) ¢ ~(p;)
and doo (u;, I'(p;)) < €;. First, observe that there are only finitely many values for v(p;) and I'(p;),
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as R is finite and L is polyhedral. Thus, there must be some p € Ay and some infinite subsequence
indexed by j € J C N where for all j € J, we have ¢(u;) ¢ v(p) and I'(p;) = I'(p).

Next, observe that, as L is polyhedral, the expected loss (p, L(u)) is S-Lipschitz in || - ||o, for some
B > 0. Thus, for all j € J, we have
doo(ui; T'(p)) < €5 = Fu™ € T(p)|lu; — u'lloc <

= [(p, L(uy)) = (p, L(u))| < Be;

= [(p, L(u)) — L(p)| < Be; -
Finally, for this p, we have

inf , L(u)) < inf (p, L(u;)) = L(p) ,
ol (p L) < inf(p, () = L)

contradicting the calibration of . O

C.3 Combining the loss and link

Lemma7. Let{: R — R{ be a discrete target loss, L : R — R}’r be a polyhedral surrogate loss,
and ¢ : R? — R a link function. If (L, 1)) indirectly elicit ¢ and <) is e-separated, then for all v and

b,
CiHp,

Ry((u),p) < “E2 Ry (up).

Proof. If p(u) € v(p), then Ry(u,p) = 0 and we are done. Otherwise, applying the definition of
e-separated and Lemma 5,

€ < doo(u, T'(p))
S HL,pRL(uap)'

So Re(¢(u),p) < Cp < CHr2 Ry (u,p). O

Theorem (Constructive linear transfer, Theorem 5). Let / : R — RX be a discrete target loss,

L:R* = Rz be a polyhedral surrogate loss, and v : R® — R a link function. If (L,1) are
consistent for {, then

(Vh,D) Ry(oh;D) <

The proof closely mirrors the proof of the nonconstructive upper bound, Theorem 1.

Proof. By Lemma 6, 9 is separated and €; well-defined. By Lemma 7, for each p € O,
Ri(¢(u),p) < %RL(u p) for all u. Now consider a general p, which is in some full-dimensional

polytope level set F Writep =5 4€0u B(q)q for some probability distribution 3, where Q,, is the
set of vertices of I",,. By Lemma 3, Ry, and Ry are linear in p on I',,, so for any /,

Re((u'),p) = > Bl@)Re(vp(u'), q)

qEQu

> Bla) ’pR( q)

q€EQu

CllL S~ (g Ry ()

€
v qEQu

CyH
S £ LRL(ulap)'

IN

IN

By Observation 1, this conditional regret transfer implies a full regret transfer, with the same
constant. O
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