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A RELATED WORKS

Our research contributes to the extensive body of multi-agent imitation learning. One line of studies in
particular applies single-agent IL algorithms to Markov games (Song et al., 2018; Yu et al., 2019; Jeon
et al., 2020). However, the scalability of these methods is limited due to the exponential expansion of
agent interactions as the number of agents rises.

To improve the scalability, Fan Yang et al. provide a new multi-type mean field approximation to
approximate Nash equilibrium in Markov game (Yang et al., 2020), but they did not incorporate MFG
and mean field equilibrium into their work and decouple the interdependence between mean field
flow and policy. One conventional solution concept of imitation learning for MFG is MFNE.

There are also some variants of MFNE such as stationary mean field equilibrium (SMFE) and
stationary mean-field social-welfare optimal (SMF-SO) (Subramanian & Mahajan, 2019). Yang et al.
used inverse reinforcement learning to solve MFG by reducing MFG to a Markov decision process
(Yang et al., 2018a). However, this simplification only applies in a fully cooperative setting. As a
result, it requires demonstrations are sampled from an MFSO rather than an MFNE, which limits
the scope of application as MFSO is a specific type of MFNE. Chen et al. used individual behaviors
to infer ground-truth reward functions for MFG and allowed demonstrations are sampled from an
MFNE (Chen et al., 2022).

Inspired by CE, There have been recent studies that generalized correlated equilibrium from the
stateless game to the MFCE (Muller et al., 2022; Campi & Fischer, 2022). But their assumptions
restricted the space of policy. Compared with work focusing on recovering CE in matrix game
(Waugh et al., 2013), our work improved the scalability by incorporating MFGs and considering the
game with a sequential setting.

B PRELIMINARIES OF IMITATION LEARNING

Here we provide some background introductions to single-agent imitation learning (IL). Let
M = (S,A, P, r, μ0, γ, T ) denote an single-agent Markov decision process (MDP). S and A
are, respectively, the state and action spaces. P : S × A → P(S) is the transition kernel for the
state dynamics. r : S × A → R is the reward function. μ0 is the initial distribution of initial
state s0. γ ∈ (0, 1] is the discount factor. T is the horizon. The expected return of policy π is

J(π) = E[
∑T
t=0 γ

tr(st, at)], where the expectation is taken with respect to s0 ∼ μ0, at ∼ π(·|st),
st+1 ∼ P (·|st, at).
In the Imitation Learning (IL) setting, the reward function is unknown, but a set of demonstration
trajectories under expert policy πE are provided. The goal of imitation learning is to recover the
expert policy πE using the demonstration trajectories.

Inverse Reinforcement Learning (IRL) is a subclass of IL and it solves the problem in two steps. It
first finds a reward function r̃ that rationalizes the expert policy πE .

r̃ = max
r

(
min
π
−H(π) + J(π)

)
− J(πE)

Then a recovered policy is extracted from the reward function r̃ by a reinforcement learning method.

Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) treats IL as a mini-max
game and it is trained through the Generative Adversarial Network (GAN). Note that GAIL extracts
a policy directly from the expert demonstrations and does not aim at recovering a reward function.
In particular, it introduces a discriminator Dω to differentiate the state-action pairs from πE and
other policies. The recovered policy πθ, parameterized by θ, plays the role of a generator. It aims at
generating state-action pairs that are difficult for Dω to differentiate. The target function of GAIL is
thus defined as

max
θ

min
w

E(s,a)∼πθ
[log (Dω(s, a))] + E(s,a)∼πE [log (1−Dω(s, a))] .

where E(s,a)∼πθ
is expectation taken with respect to st+1 ∼ P (·|st, at), at ∼ πθ(·|st), s0 ∼ μ0 and

E(s,a)∼πE is expectation taken with respect to st+1 ∼ P (·|st, at), at ∼ πE(·|st), s0 ∼ μ0.
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C EXAMPLE

Proof. We verify the example by the definition of AMFCE. If u(a) = a, Δt(s0, μ0, u;πππ,ρρρ) = 0. If
u(R) = L, ∑

z′∈Z
ρ0(z

′)π0(a0|s0, z′)Δt(s0, μ0, u;πππ,ρρρ)

=ρ0(0)π0(R|s = ·, z = 0)
(
Φ(μ0, π0, z0 = 0)(L)− Φ(μ0, π0, z0 = 0)(R)

)
+ ρ0(1)π0(R|s = ·, z = 1)

(
Φ(μ0, π0, z0 = 1)(L)− Φ(μ0, π0, z0 = 1)(R)

)
=− 1

18
< 0

As
∑
z′∈Z ρ0(z

′)π0(a0|s0, z′) > 0, Δt(s0, μ0, u;πππ,ρρρ) ≤ 0. The same is true for u(L) = R. So the
example in the Example 1 is an AMFCE.

C.1 FINITE HORIZON EXAMPLE

Example 2. Consider a game with state space S = {C,L,R}. The action space is A = {L,R}.
Initial mean field μ0(C) = 1. The reward r(s, a, μ) = 1{s=L}μ(L) + 1{s=R}μ(R) and T =
{0, 1, 2}. If agent is in the state C, the environment transition is deterministic. P (s1 = R |
s0 = C, a = R) = 1, P (s1 = L | s0 = C, a = R) = 0, P (s1 = R | s0 = C, a = L) = 0,
P (s1 = L | s0 = C, a = L) = 1. P (s2 = R | s1 = R, a = R) = 1, Given the current state L,
agent will be transited to state R with probability P (s2 = R | s1 = L, a = R) = 3

4 , and stay in L
with probability P (s2 = L | s1 = L, a = R) = 1

4 . If she choose action L in the state L, she will
stay in state L with probability P (s2 = L | s1 = L, a = L) = 1. The case is similar for agents
whose current state is R. P (s2 = L | s1 = R, a = L) = 3

4 , P (s2 = R | s1 = R, a = L) = 1
4 ,

P (s2 = R | s1 = R, a = R) = 1, P (s2 = L | s1 = R, a = R) = 0.

The mediator in an AMFCE gives recommendation as follows. At time step t = 0, a random
variable z is sampled from the correlated signal space Z = {0, 1} with equal probability ρ0(z =
0) = ρ(z = 1) = 0.5, and the mediator gives the action recommendation for each agent according
to the policy π0(a = L|z = 0) = 2/3, π0(a = R|z = 0) = 1/3, π0(a = R|z = 1) = 2/3,
π0(a = L|z = 1) = 1/3. At time step t = 1, z is sampled from the correlation device ρ1(z =
0) = ρ1(z = 1) = 0.5, the action recommendation for each agent is π1(a = L|s = L, z = 0) = 1,
π1(a = R|s = L, z = 0) = 0, π1(a = L|s = L, z = 1) = 8/9, π1(a = L|s = L, z = 1) = 1/9.
π1(a = L|s = R, z = 0) = 8/9, π1(a = R|s = R, z = 0) = 1/9, π1(a = L|s = R, z = 1) = 0,
π1(a = L|s = R, z = 1) = 1. It can be verified that (πππ,ρρρ) is an AMFCE.

D PROOF

D.1 PROOF OF BELLMAN EQUATION

Proof.

Qπππt (s, a, μ, z;πππ
′) =r(s, a, μ) + γEπππ′

[
T∑

i=t+1

γi−t−1r(si, ai, μi)

∣∣∣∣∣ (st, at, μt, zt) = (s, a, μ, z)

]

=r(s, a, μ) + γEπππ′
[
r(st+1, at+1,Φ(μ, π

′
t, z))

+ γ
T∑

i=t+2

γi−t−2r(si, ai, μi)
∣∣∣(st, at, μt, zt) = (s, a, μ, z)

]
(12)

where Eπππ′ [
∑T
i=k γ

i−kr(si, ai, μi)] is the expectation taken with respect to zi ∼ ρi(·), ai ∼
πi(·|si, zi), si+1 ∼ P (·|si, ai, μi), μi(·) =

∑
a∈A

∑
s∈S μi−1(s)P (·|s, a, μi−1)π

′
i−1(a|s, zi−1),
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∀i ∈ {t+ 1, t+ 2, · · · , T}.

Eπππ′
[
r
(
s′, a′,Φ(μ, π′t, z)

)
+ γ

T∑
i=t+2

γi−t−2r(si, ai, μi)
]

=E

[
r
(
s′, a′,Φ(μ, π′t, z)

)
+ γEπππ′

[ T∑
i=t+2

γi−t−2r(si, ai, μi)|(st+1, at+1, μt+1, zt+1) = (s′, a′,Φ(μ, π′t, z), z
′)
]]

=E

[
Qπππt+1

(
s′, a′,Φ(μ, π′t, z), z

′;πππ′
)]

(13)

where the outer expectation is taken with respect to z′ ∼ ρt+1(·), s′ ∼ P (·|s, a, μ), a′ ∼ π(·|s, z).
The outer expectation is the conditional expectation given (st, at, μt, zt) = (s, a, μ, z). We omit
(st, at, μt, zt) = (s, a, μ, z) for brevity. Combine (12) and (13), we get the Bellman equation.

Qπππt (s, a, μ, z;πππ
′) =r(s, a, μ) + γE

[
Qπππt+1

(
s′, a′,Φ(μ, π′t, z), z

′;πππ′|(st, at, μt, zt) = (s, a, μ, z)
)]

where expectation is taken with respect to z′ ∼ ρt+1(·), s′ ∼ P (·|s, a, μ), a′ ∼ πt(·|s, z).

D.2 PROOF OF THEOREM 1

Lemma 1. Policy πππ′ is the best response of πππ given ρρρ if and only if
∑
z∈Z ρt(z)π

′
t(a|s, z) > 0 is a

sufficient condition of a ∈ argmaxa′∈A Ez∼ρpred
t (·|It)Q

∗(s, a′, μ, z;πππ), ∀t ∈ T .

Proof. We denote

Qπππt (s, a, μ, It;πππ) = Ez∼ρpred
t (·|It)Q

πππ
t (s, a, μ, z;πππ)

and Q∗t (s, a, μ, It;πππ) = Ez∼ρpred
t (·|It)Q

∗
t (s, a, μ, z;πππ).

If πππ′ is the best response of πππ, but
∑
z∈Z ρt(z)π

′
t(a|s, z) > 0 is not sufficient condition of a ∈

argmaxa′∈AQ∗t (s, a, μ, It;πππ). Then there exists t ∈ T , such that
∑
z∈Z ρt(z)π

′
t(a|s, z) > 0,

while a �∈ argmaxa′∈AQ∗t (s, a′, μ, It;πππ).
If πππ and ρρρ are fixed, the mean field is also fixed. Finding the best response of πππ is equivalent to

solving an MDP. Then the expected return is E
[
Qπππ′

0 (s0, a0, μ0, I0;πππ)
]
, where the expectation is

taken with respect to z ∼ ρ0(·), s0 ∼ μ0, a0 ∼ π′0(·|s0, z0). We assume that there exists πππ∗ such
that

∑
z∈Z ρt(z)π

∗
t (a|s, z) > 0 is sufficient condition of a ∈ argmaxa′∈AQ∗t (s, a, μ, It;πππ). The

expected return of πππ∗ is higher than the expected return of πππ′ as suboptimal action is impossible to be
sampled in the MDP under the population policy πππ, which conflicts with the assumption.

If there exists πππ′ such that for all a ∈ argmaxa′∈AQ∗t (s, a, μ, It;πππ), we have∑
z∈Z ρt(z)π

′
t(a|s, z) > 0 is true. Then ∀t ∈ T , E

[
Qπππ′

0 (s0, a0, μ0, I0;πππ)
]

=

maxπ̃̃π̃π E
[
Qπ̃̃π̃π0 (s0, a0, μ0, I0;πππ)

]
, where the first expectation is taken with respect to z ∼ ρ0(·),

s0 ∼ μ0, a0 ∼ π′0(·|s0, z0) and the second expectation is taken with respect to z ∼ ρ0(·), s0 ∼ μ0,
a0 ∼ π̃0(·|s0, z0). So the πππ′ is the best response of πππ.

Lemma 2. BR(π;ρρρ) has a closed graph.

Proof. We assume that limn→∞ πππn = πππ, limn→∞ πππ′n = πππ′, πππn ∈ BR(πππ′n;ρρρ), but
πππ �∈ BR(πππ′;ρρρ). Consequently, there exists a ∈ A that

∑
z∈Z ρt(z)πn,t(a|s, z) >

0, a ∈ argmaxa′ Q∗t (s, a′, μ, It;πππ′n), while a �∈ argmaxa′ Q∗t (s, a′, μ, It;πππ′). Let a� =
argmaxa′ Q∗t (s, a′, μ, It;πππ′). Let ε denote the margin of Q value

Q∗t (s, a�, μ, It;πππ′)−Q∗t (s, a, μ, It;πππ′) = ε > 0

From the continuity of Q∗t (s, a, μ, It;πππ′) = Ez∼ρt(·)Q
∗
t (s, a, μ, z;πππ

′). It is obvious that there exists

N ∈ N such that |Q∗t (s, a, μ, It;πππ′)−Q∗t (s, a, μ, It;πππ′n)| < ε
2 , ∀n > N, a′ ∈ A.
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Then we can induce that

Q∗t (s, a�, μ, It;πππ′n)−Q∗t (s, a, μ, It;πππ′n)
=Q∗t (s, a�, μ, It;πππ′n) +Q∗t (s, a�, μ, It;πππ′)−Q∗t (s, a�, μ, It;πππ′) +Q∗t (s, a, μ, It;πππ′)
−Q∗t (s, a, μ, It;πππ′)−Q∗t (s, a, μ, It;πππ′n)

≥Q∗t (s, a�, μ, It;πππ′)−Q∗t (s, a, μ, It;πππ′)− |Q∗t (s, a�, μ, It;πππ′n)−Q∗t (s, a�, μ, It;πππ′)|
− |Q∗t (s, a, μ, It;πππ′n)−Q∗t (s, a, μ, It;πππ′)|

>ε− ε

2
− ε

2
= 0

contradicting a ∈ argmaxa′ Q∗t (s, a′, μ, It;πππ′n). So BR(πππ;ρρρ) has a closed graph.

Lemma 3. BR(πππ;ρρρ) is a convex set given πππ.

Proof. We assume that π1,π2 ∈ BR(π′;ρρρ). From Lemma 1,
∑
z∈Z ρt(z)πi,t(a | s, z) > 0, a ∈

argmaxa′∈AQ∗(s, a′, μ, It;πππ′), ∀t ∈ T , ∀i ∈ {1, 2}. Then the convex combination π = λπ1 +
(1−λ)π2, λ ∈ [0, 1] also satisfies the requirements of Lemma 1. Therefore π ∈ BR(π′;ρρρ). BR(π;ρρρ)
is a convex set given πππ.

Theorem 1. If the functions r(s, a, μ) and P (s′|s, a, μ) are bounded and continuous with respect to
μ, there exists an AMFCE solution.

Proof. As πt ∈ ΔA, in which ΔA are simplices with finite dimensions, they are compact. And
BR(π;ρρρ) maps to a non-empty set, because the MDP induced by fixed μ and ρρρ has an optimal policy.
From Lemma 2 and 3, the requirements of Kakutani’s fixed point theorem holds for BR(π;ρρρ). By
Kakutani’s fixed point theorem, there exists a fixed point π∗ ∈ BR(πππ∗;ρρρ). And ∀u ∈ U , ∀s ∈ A,
∀t ∈ T ,

Δt(st, μt, u;πππ
∗, ρρρ) =

∑
z∈Z

∑
a∈A

ρt(z)π
∗
t (a|s, z)

(
Qπππ

∗
t (st, u(a), μt, z;πππ

∗)−Qπππ∗
(st, a, μt, z;πππ

∗)
)
≤ 0,

where μt = Φ(μt−1, π
∗
t−1, zt). Then (πππ∗, ρρρ) is an AMFCE.

D.3 PROOF OF COROLLARY 1

Corollary 1. If (π,μ) is an MFNE, then it leads to an AMFCE solution (π, ρρρ) with |Z| = 1 and
ρt(z) = 1 for all t ∈ T where z ∈ Z is the single element in the signal space.

Proof. Assume that (π,μ) is an MFNE, so the following condition holds (Cui & Koeppl, 2021).
πt(a | s, z) > 0 is sufficient condition of a ∈ argmaxa′∈AQ

∗
t (s, a

′, μ, z;πππ). If z ∈ Z is the single
element in the signal space Z , ρt(z) = 1 is true for all t ∈ T .

∑
z ρt(z)πt(a | s, z) > 0 is sufficient

condition of a ∈ argmaxa′∈A Ez∼ρpred
t (·|It)Q

∗
t (s, a

′, μ, z;πππ). Besides, the mean field μμμ satisfies

that μt = Φ(μt−1, πt−1, z). So (πππ,ρρρ) is an AMFCE.

D.4 PROOF OF COROLLARY 2

Corollary 2. MaxEnt-AMFCE is a unique equilibrium solution if Δ(πππ,ρρρ) is convex w.r.t. (πππ,ρρρ).

Proof. If Δ(πππ,ρρρ) is convex w.r.t. (πππ,ρρρ), the set Π = {(πππ,ρρρ)|Δ(πππ,ρρρ) ≤ 0} is convex. As H(πππ,ρρρ)
is concave function, max(πππ,ρρρ)∈ΠH(πππ,ρρρ) has unique solution. So the MaxEnt-AMFCE is a unique

equilibrium solution if Δ(πππ,ρρρ) is convex w.r.t. (πππ,ρρρ).

D.5 PROOF OF PROPOSITION 1

Proposition 1. The entropy can be decoupled: H(πππ,ρρρ) =
∑T
t=0[H(ρt) + Eπππ,ρρρH(πt|st, zt)].
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Proof.
H(πππ,ρρρ)

=

T∑
t=0

Eπππ,ρρρ

[∑
at,zt

−ρt(zt)πt(at | st, zt) log πt(at | st, zt)ρt(zt)
]

=

T∑
t=0

Eπππ,ρρρ

[
−

∑
at,zt

ρt(zt)πt(at | st, zt) log ρt(zt)
]

−
T∑
t=0

Eπππ,ρρρ

[∑
at,zt

ρt(zt)πt(at | st, zt) log πt(at | st, zt)
]

=

T∑
t=0

Eπππ,ρρρ

[∑
zt

−ρt(zt) log ρt(zt)
]
+

T∑
t=0

Eπππ,ρρρ

[
−

∑
zt

ρt(zt)
∑
at

πt(a | st, z) log πt(at | st, zt)
]

=

T∑
t=0

[H(ρt) + Eπππ,ρρρH(πt|st, zt)]

D.6 PROOF OF PROPOSITION 2

Proposition 2. (πππ,ρρρ) is an AMFCE solution if and only ifR(a0:T ,πππ,ρρρ) ≤ 0, ∀a0:T ∈ AT .

Proof. (Sufficient Condition). If (πππ,ρρρ) is a solution of AMFCE, but the inequality in Proposition 2
does not hold. There exists some t and trajectory such that

E

[
T∑
t=0

γtr(st, at, μt)

]
> J(πππ,ρρρ)

From the definition of AMFCE,∑
a∈A

∑
z∈Z

ρt(z)πt(a|s, z)
[
Qπππt (s, a, μt, z;πππ)−Qπππt (s, a′, μt, z;πππ)

]
≥ 0

We have that

E

[
T∑
t=0

γtr(st, at, μt)

]

=E

[
T−1∑
t=0

γtr(at, st, μt) + γT r(sT , aT , μT )

]

≤E
[
T−1∑
t=0

γtr(at, st, μt) + γTE [QπππT (sT , a, μT , z;πππ)]

]

The outer expectation is taken with respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, μt−1) and the inner
expectation is taken with respect to z ∼ ρT (·), a ∼ πT (·|sT , z). Similarly, we can induce that

E

[
T∑
t=0

γtr(st, at, μt)

]

=E

[
T−2∑
t=0

γtr(at, st, μt) + γT−1r(sT−1, aT−1, μT−1) + γTE [QπππT (sT , a, μT , z;πππ)]

]

≤E
[
T−2∑
t=0

γtr(at, st, μt) + γT−1
E[QπππT−1(sT−1, a, μT−1, z;πππ)]

]

≤E
[
Qπππ0 (s0, a, μ0, z;πππ)

]
= J(πππ,ρρρ)
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where the last expectation is taken with respect to z ∼ ρ0, s0 ∼ μ0(·), a ∼ π0(·|s0, z).
It contradicts with the assumption.

(Necessary Condition). We assume that the inequality holds and (πππ,ρρρ) is not an AMFCE. There
exists a time step t ∈ T such that Δt(s, μ, u;πππ,ρρρ) = E[Qπππt (s, u(a), μ, z) − Qπππt (s, a, μ, z)] > 0.
Then agent can achieve a strictly higher expected return if she chooses action u(a) when she is
recommended action a at time step t. It implies that there exists an action sequence such that
R(a0:T ,πππ,ρρρ) > 0, which conflicts with the assumption.

D.7 PROOF OF THEOREM 2

Theorem 2. For policy πππ and correlation device ρρρ, let λ∗πππ(τk) =
∏T
t=0 ρt(zt)π

∗
t (at|st, zt) be the

probability of generating the sequence τk if the individual policy isπππ∗. Then we have L(πππ,ρρρ, λ∗πππ, r) =
E[

∑T
t=0 γ

tr(st, at, μt)]− J(πππ,ρρρ)− α
∑T
t=0 Eπππ,ρρρH(πt|st, zt), where the expectation is taken with

respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, μt−1), at ∼ π∗t (·|st, zt), μt = Φ(μt−1, πt−1, zt−1).

Proof. We note that∑
τk∈DE

λ∗πππ(τi)Eπππ

[
T∑
t=0

γtr(st, at, μt)

]
= Eπππ∗Eπππ

[
T∑
t=0

γtr(st, at, μt)

]
= E[

T∑
t=0

γtr(st, at, μt)]

The Eπππ is expectation taken with respect to zt ∼ ρt(·), st ∼ P (·|st−1, at−1, μt−1), μt =
Φ(μt−1, πt−1, zt−1). The Eπππ∗ is taken with respect to at ∼ π∗t (·|st, zt). The third expec-
tation is taken with respect to zt ∼ ρt(·), at ∼ π∗t (·|st, zt), st ∼ P (·|st−1, at−1, μt−1),
μt = Φ(μt−1, πt−1, zt−1). Then we can derive the conclusion directly.

L(π, ρρρ, λ∗πππ, r) =E

[ T∑
t=0

γjr(st, at, μt)
]
− J(πππ,ρρρ)− α

T∑
t=0

EH(πt|st, zt)

D.8 PROOF OF PROPOSITION 3

Proposition 3. The policy πππ learned on the reward function recovered by AMFCE-IRL can be
characterized as follows:

MFRL◦AMFCE-IRLψ(πππ
E , ρρρE):= argmin

πππ
max
r
J(πππE , ρρρE)− E[

T∑
t=0

γtr(st, at, μt)]− ψGA(r)

where the expectation is taken with respect to zt ∼ ρEt (·), st ∼ P (·|st−1, at−1, μt−1), at ∼
πt(·|st, zt), μt = Φ(μt−1, π

E
t−1, zt−1).

The objective to recover MaxEnt-AMFCE is defined as:

min
πππ

max
ω

Eπππ,ρρρE
[ T∑
t=0

γt logDω(st, at, μt)
]
+ EπππE ,ρρρE

[ T∑
t=0

γt log
(
1−Dω(st, at, μt)

)]
(9)

where Dω is the discriminator network parameterized with ω, with input (st, at, μt) and output a real
number in (0, 1]. The first expectation is taken with respect to zt ∼ ρEt (·), st ∼ P (·|st−1, at−1, μt−1),
at ∼ πt(·|st, zt), μt = Φ(μt−1, π

E
t−1, zt−1).

Proof. We denote r̃ = AMFCE-IRL(πE). The saddle point of L(πππ,ρρρ, λ, r) is λEπππ (τk) =∏T
t=0 π

E
t (at|st, zt) and (πππE , ρρρE) ∈ MaxEnt-AMFCE. So given expert demonstrations sampled

from (πππE , ρρρE) ∈ MaxEnt-AMFCE, we can recover πππE by (14).

πππ = argmin
πππ

−α
T∑
t=0

EH(πEt |st, zt) + J(πππE , ρρρE)− E[

T∑
t=0

γtr̃(st, at, μt)]

= argmin
πππ

max
r
J(πππE , ρρρE)− E[

T∑
t=0

γtr(st, at, μt)]− ψGA(r) (14)
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If we select ψGA as the regularizer, and make the change of variables r(s, a, μ) = − log(d(s, a, μ)),
we get

max
r
J(πππE , ρρρE)− E[

T∑
t=0

γtr(st, at, μt)]− ψGA(r)

=−max
d

EπππE ,ρρρE [
T∑
t=0

γt log(d(st, at, μt))] + Eπππ,ρρρE [
T∑
t=0

γt log(d(st, at, μt))]

−max
d

EπππE ,ρρρE [
T∑
t=0

g(r(st, at, μt))]

=max
ω

Eπππ,ρρρE
[ T∑
t=0

γt logDω(st, at, μt)
]
+ EπππE ,ρρρE

[ T∑
t=0

γt log
(
1−Dω(st, at, μt)

)]

where the expectation EπππE ,ρρρE is taken with respect to st ∼ P (·|st−1, at−1, μt−1), at ∼ πEt (·|st, zt),
zt ∼ ρEt (·), μt = Φ(μt−1, π

E
t−1, zt−1) and the expectation Eπππ,ρρρE is taken with respect to st ∼

P (·|st−1, at−1, μt−1), at ∼ πt(·|st, zt), zt ∼ ρEt (·), μt = Φ(μt−1, π
E
t−1, zt−1).

D.9 PROOF OF PROPOSITION 4

Proposition 4. If ρρρφ is parameterized with φ, the gradient to optimize φ given state s is

Ez∼ρφt (·)

[
∇φ log ρφt (z)

(
− α log ρφt (z) + αH(πt(a|s, z)) + Ea∼πt(·|s,z)Q

πππ
t (s, a, μ, z;πππ)

)]
.

(10)

Proof. The gradient of parameterized ρφ is

∇φ
∑
z∈Z

ρφt (z)
(
− α log ρφt (z) + αH(πt(a|s, z)) +

∑
a∈A

πt(a|s, z)Qπππt (s, a, μ, z;πππ)
)

=− α
∑
z∈Z

(
∇φρφt (z) log ρφt (z) + ρφt (z)∇φ log ρφt (z)−∇φρφt (z)H(πt(a|s, z)

)
+

∑
z∈Z

∇φρφt (z)
∑
a∈A

πt(a|s, z)Qπππt (s, a, μ, z;πππ)

=Ez∼ρφt (·)

[
− α log ρφt (z)∇φ log ρφt (z) + αH(πt(a|s, z))∇φ log ρφt (z)

+
∑
a∈A

πt(a|s, z)Qπππt (s, a, μ, z;πππ)∇φ log ρφt (z)
]

=Ez∼ρφt (·)

[
∇φ log ρφt (z)

(
− α log ρφt (z) + αH(πt(a|s, z)) + Ea∼πt(·|s,z)Q

πππ
t (s, a, μ, z;πππ)

)]

E FURTHER DETAILS ABOUT TASKS

E.1 SEQUENTIAL SQUEEZE

we present a discrete version of this problem: The state space is S = {0, 1, 2}. Let A = {0, 1}
denote the action space. The horizon of the environment is 3. The initial mean field is μ0(s = 2) = 1.
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The dynamic of the environment is given by:

P (st+1 = 1 | st = ·, a = 1) =
3

4
,

P (st+1 = 0 | st = ·, a = 1) =
1

4
,

P (st+1 = 1 | st = ·, a = 0) =
1

4
,

P (st+1 = 0 | st = ·, a = 0) =
3

4

The reward function is
r(s, a, μ) = 1{s=L}μ(L) + 1{s=R}μ(R)

E.2 RPS

The dynamic is deterministic:

P (st+1 | st, at, μt) = 1st+1=at (15)

Formally, the state space S = {R,P, S} and the action space A = {R,P, S}. The reward function
is shown in the following

r(R, a, μt) = 2 · μt(S)− 1 · μt(P )
r(P, a, μt) = 4 · μt(R)− 2 · μt(S)
r(S, a, μt) = 2 · μt(P )− 1 · μt(R)

E.3 FLOCK

We simplify the setting, and the dynamic of the new setting is following

xt+1 = xt + vtΔt

Action space A = {0, 1, 2, 3} corresponding to four directions of velocity with unit speed. The
reward is

fflockβ (x, v, u, μ) = −

∥∥∥∥∥∥∥
∫
R2d

(v − v′) dμ (x′, v′)(
1 + ‖x− x′‖2

)β
∥∥∥∥∥∥∥
2

In our setting, β is set to 0.

E.4 TRAFFIC NETWORK

In this task, we use the traffic data of London from Uber Movement. The dynamic of the environment
is deterministic. The expert demonstrations is the traffic flow data. The goal of this experiment
is to predict the traffic flow of a real-world traffic network including six locations: Lewisham,
Hammersmith, Ealing, Redbridge, Enfield, and Big Ben. The detailed result is shown in Section G.5.

F EXPERIMENT DETAIL

The experiments were run on the server with AMD EPYC 7742 64-Core Processor and NVIDIA
A100 40GB.

Due to the instability nature of generative adversarial networks (GANs) (Arjovsky & Bottou, 2017;
Mescheder et al., 2018), the convergence of Algorithm 1 may not be not guaranteed. To address this
issue, we integrate the gradient penalty into the objective function of CMFIL to stabilize the training
of policy π. It has been proven that GAN training with zero-centered will enhance the training
stability (Mescheder et al., 2018). To provide a fair comparison, we use Soft Actor-Critic algorithm
for both CMFIL and MFIRL. The input of SAC is an extended state, a concatenation of state, action,
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Table 4: The hyperparameters in the experiment

hyperparameters value
hidden size of actor network 256
hidden size of critic network 256
hidden size of discriminator network 128

time step, and signature. The input of the discriminator is the extended state and the action. We did
not use signature in the Ocean Ranch and RPS because signature requires the length of sequential
data is larger than 1. For games with the sequential setting, the depth of truncated signature is 3.
For actor and network of SAC, we adopt two-layer perceptrons with the Adam optimizer and the
ReLU activation function. For the network of the discriminator, we adopt three-layer perceptrons
with Adam optimizer. The activation functions between layers are Leaky ReLU, while the activation
function of output is the sigmoid activation function. The setting of main hyperparameters is shown
in Table 4.

G RESULTS

In this section we will show more results of the experiments.

G.1 OCEAN RANCH

The Learning curves of CMFIL and MFIRL for Ocean Ranch are show in the following.

(a) The learning curve of CMFIL in the game
Ocean Ranch.

(b) The learning curve of MFIRL in the game
Ocean Ranch.

G.2 SEQUENTIAL SQUEEZE

The Learning curves of CMFIL and MFIRL for Ocean Ranch are show in the following.

G.3 RPS

The Learning curves of CMFIL and MFIRL for RPS are show in the following.

G.4 FLOCK

The mean and standard deviation of learned policies of CMFIL and MFIRL for Flock are shown in
the following.

G.5 TRAFFIC NETWORK

The mean and standard deviation of predicted traffic flow are shown in the Table 5.
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(a) Policies recovered by CMFIL at step t = 0. (b) Policies recovered by CMFIL at step t = 1.

(c) Policies recovered by MFIRL at step t = 0. (d) Policies recovered by MFIRL at step t = 1.

Figure 3: The learning curves of CMFIL and MFIRL in Sequential Squeeze. It suffers from large
variance.

Figure 4: Learning curves of CMFIL and MFIRL in the RPS. The results show that CMFIL success-
fully recover the policy of MFNE.

Lewisham Hammersmith Ealing Redbridge Enfield Big Ben
Lewisham (real) 0.00000 0.62500 0.00000 0.37500 0.00000 0.00000

Lewisham (CMFIL) 0.00011 (0.00002) 0.58001 (0.02947) 0.03665 (0.00289) 0.36931 (0.02939) 0.01283 (0.00304) 0.00109 (0.00030)
Lewisham (MFIRL) 0.3742 (0.31665) 0.00000 (0.00000) 0.29434 (0.29654) 0.00001 (0.00000) 0.00002 (0.00001) 0.33143 (0.28029)
Hammersmith (real) 0.11628 0.00000 0.67442 0.00000 0.20930 0.00000

Hammersmith (CMFIL) 0.11903 (0.0076) 0.00267 (0.00090) 0.62725 (0.01706) 0.03761 (0.00147) 0.20359 (0.01060) 0.00985 (0.00080)
Hammersmith (MFIRL) 0.00000 (0.00000) 0.33332 (0.33329) 0.00608 (0.00608) 0.33334 (0.33330) 0.32724 (0.32723) 0.32724 (0.32723)

Ealing (real) 0.00000 0.44643 0.00000 0.19643 0.35714 0.00000
Ealing (CMFIL) 0.00010 (0.00000) 0.41772 (0.02494) 0.0238 (0.00079) 0.19804 (0.00655) 0.34396 (0.01901) 0.01638 (0.00088)
Ealing (MFIRL) 0.33340 (0.33326) 0.00001 (0.00001) 0.38909 (0.30909) 0.00001 (0.00000) 0.00002 (0.00001) 0.27774 (0.27737)
Redbridge (real) 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

Redbridge (CMFIL) 0.00003 (0.00000) 0.00004 (0.00001) 0.00003 (0.00000) 0.00003 (0.00000) 0.94945 (0.01079) 0.05042 (0.01078)
Redbridge (MFIRL) 0.00021 (0.00013) 0.09834 (0.12118) 0.32801 (0.32788) 0.00539 (0.00536) 0.00001 (0.00001) 0.56804 (0.29208)

Enfield (real) 0.00000 0.00000 0.11111 0.88889 0.00000 0.00000
Enfield (CMFIL) 0.00036 (0.00006) 0.00119 (0.00013) 0.12593 (0.00626) 0.84096 (0.00693) 0.03005 (0.00199) 0.00152 (0.00007)
Enfield (MFIRL) 0.33148 (0.33144) 0.03788 (0.03535) 0.00001 (0.00001) 0.00001 (0.00001) 0.32516 (0.28418) 0.30545 (0.30520)

Big Ben (real) 0.24828 0.17241 0.24138 0.19310 0.144828 0.00000
Big Ben (CMFIL) 0.24146 (0.00961) 0.17970 (0.0073) 0.23051 (0.00365) 0.19614 (0.00844) 0.14475 (0.00434) 0.00743 (0.00015)
Big Ben (MFIRL) 0.47647 (0.29003) 0.14370 (0.15027) 0.33336 (0.33331) 0.03697 (0.03595) 0.00004 (0.00002) 0.00946 (0.00863)

Table 5: The mean and standard deviation of predicted traffic flow for Traffic Network.
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(a) CMFIL policy given z = 0. (b) CMFIL policy given z = 1.

(c) CMFIL policy given z = 2. (d) CMFIL policy given z = 3.

Figure 5: Learning curves of CMFIL and MFIRL in Flock, Results are averaged over 3 independent
runs. It does not converges to the expert policy.

Equilirbrium MFCE AMFCE
Distribution π(B|s′, z = 0) ρ(z = 0) π(B|s′, z = 0) π(B|s′, z = 1) ρ(z = 0) ρ(z = 1)

Value 1 1 1/2 1 1/2 1/2

Table 6: The only MFCE and a possible AMFCE in the absent-minded driver game.

H COMPARISON WITH MFCE DERIVED BY MULLER ET AL.

In this section, We use the absent-minded driver game (Piccione & Rubinstein, 1996) to show the
difference between AMFCE and the MFCE framework proposed by Muller et al. (Muller et al.,
2022). Their notion of MFCE assumes that the mediator selects a mixed policy for the population
and then sample a deterministic policy from the mixed policy and recommends to every agent, while
our AMFCE framework assumes that the mediator selects a behavioral policy for the population at
every time step and sample an action for every agent as recommendation. If agents are of bounded
rationality, the mixed policy is not equivalent to the behavioral policy.

Example 3. Suppose that the absent-minded driver game has two time steps. At the initial time, all
the agents stay in state s1. The agent will stay in the state s1 if action B is chosen and the current
mean field μ(s1) = 1. If action E is chosen, the agent will move to state s2. If the agent enter the
state s2, the agent will stay in s2 until the ending of the game. The reward function is

r(s, a, μ) =

⎧⎨
⎩

3(1− μ(s1)), a = E, s = s1
1
2 , a = B, s = s1, μ = ·
0, otherwise

.

Consider the case where the agents cannot remember the time step and the history. and the agent
does not choose to take the deterministic policy of action E at s′ because the policy makes the final
payoff 0. So the only MFCE policy in the game is the deterministic policy to take action B in any
state, which has a final payoff of 1.

On the other hand, we can find a possible AMFCE shown in the Table 6. The agents will choose
action E if it is recommended.

24



Under review as a conference paper at ICLR 2023

Example 3 suggests that AMFCE has larger policy space than the MFCE proposed by Muller et al.
(Muller et al., 2022) because AMFCE assumes that the correlated signal sampled by the mediator
corresponds to a behavioral policy.
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