

Table 1: Performance of STIC compared with the original LVLM model LLaVA-v.16 (Vicuna 13B) across vision-language reasoning tasks. Image data used for 13B model remain the same as what we used for the 7B model.

Model	LLaVA-Bench			MM-Vet			MMBench					
	Complex	Conv	Detail	All	Rec	Ocr	Know	Gen	Spat	Math	Total	All
LLaVA-v1.6 (7B)	87.4	61.3	77.8	77.3	43.1	40.6	29.6	32.5	44.7	15.4	42.2	63.7
LLaVA-v1.6 (13B) w/ STIC	94.0	73.8	78.7	84.5	52.2	47.1	38.8	45.2	42.7	26.9	48.9	70.6
	93.5	78.1_(+4.3)	79.4	85.6_(+1.1)	54.5	48.0	42.3_(+3.5)	49.4_(+4.2)	42.0	23.1	50.5_(+1.6)	72.3_(+1.7)

Table 2: Test performance of 11ava-v1.6-mistral-7b using various prompts with DaR. We evaluate prompt quality using DaR as a prompting method. DaR=None represents the original LVLM model’s performance. Normal prompt refers to the simple prompt we used for DaR in our paper. GPT-4’s well-curated prompt refers to the prompt we used for preferred response generation, and we include Mistral 7B’s curated prompt for additional comparison.

Model	DaR	LLaVA-Bench			MM-Vet			MMBench				
		None	77.3	42.2	63.7	Normal Prompt	78.5 _(+1.2)	42.3 _(+0.1)	50.7 _(-13.0)	Hallu Prompt	73.7 _(-3.6)	40.5 _(-1.7)
LLaVA-v1.6 (7B)	Well-curated (Llama-3 8B)	77.2 _(+0.1)	40.0 _(-2.2)	60.1 _(-3.6)								
	Well-curated (GPT-4)	79.1 _(+2.1)	42.9 _(+0.7)	60.9 _(-2.8)								

Figure 1: Scaling law for STIC (acc gain in LLaVA-Bench).

Table 3: Performance of STIC on different stage-1 training images compared with the original LVLM model LLaVA-v.16 (Vicuna 13B) across vision-language reasoning benchmarks.

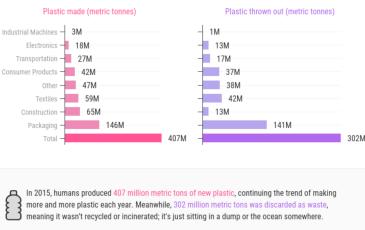

Model	Data	LLaVA-Bench						MM-Vet			MMBench		
		Complex	Conv	Detail	All	Rec	Ocr	Know	Gen	Spat	Math	Total	All
LLaVA-v1.6 (7B)	-	87.4	61.3	77.8	77.3	43.1	40.6	29.6	32.5	44.7	15.4	42.2	63.7
w/ STIC	COCO	89.1	63.7	79.5	79.2	45.7	42.5	30.4	34.9	45.1	22.7	45.0	67.8
w/ STIC	VFLAN	92.8	68.4	77.9	81.9	45.7	43.0	31.0	36.2	45.1	26.5	45.1	68.3

Figure 2: Response examples from original LLaVA-v1.6 and STIC (LLaVA-v1.6) in MM-Vet.

Plastic Waste is Out of Control

In 2015, humans threw out almost as much plastic as they made.

Query: What is the difference in metric tonnes between the amount of plastic produced and the amount discarded?

Base (LLaVA-v1.6 7B):

The difference between the amount of plastic produced and the amount discarded is **302 million metric tonnes**.

STIC (LLaVA-v1.6 7B):

The image shows that in 2015, humans **produced 407 million metric tons of new plastic**, while **302 million metric tons were discarded as waste**. **The difference** between the amount of plastic produced and the amount discarded is **105 million metric tons**. This indicates that a significant portion of the plastic produced is not being properly managed and is ending up in the environment or landfills.

Figure 3: Response examples from original LLaVA-v1.6 and STIC (LLaVA-v1.6) in MM-Vet.