
A Experiments

A.1 Details of the dataset

MS-Celeb [21] is a dataset with 10M face images of nearly 100K individuals. A cleaned version [15]
with about 5.8M face images of 86K identities is used in this paper. The protocol and features are
the same as that in [63], where the dataset is divided into 10 parts by identities (Part0-9): Part0 for
training and Part1-9 for testing. The feature dimension is 256. The data amounts of Part 0-9 (0, 1, 3,
5, 7 and 9) are respectively: 584K, 584K, 1.74M, 2.89M, 4.05M and 5.21M.

MSMT17 [59] is the current largest ReID dataset. It contains 32,621 images of 1,041 individuals for
training and 93,820 images of 3,060 individuals for testing. These images are captured by 15 cameras
under different time periods, weather and light conditions. This work uses the SOTA features from
AGW [65] with a dimension of 2048.

VeRi-776 [37] is a commonly used vehicle ReID benchmark, which contains over 40K bounding
boxes of 619 vehicles captured by 20 cameras in unconstrained traffic scenes. The dataset is divided
into two parts: 37,715 images of 576 vehicles for training, and 13,257 images of 200 vehicles for
testing. This work uses the features extracted by the SOTA ViT-B/16 Baseline in TransReID [24],
with 768 dimensions.

A.2 Effectiveness of the Sim-M

The experiments on MSMT17 and VeRi-776 also show that the advantage of Sim-M over Sim-S is
increasingly obvious as k increases and then drops for introduction of too much noise as in Table 5.

Table 5: AUC of Sim-S (AUCS), Sim-M (AUCM) and their difference (AUC�=AUCM-AUCS) on
MSMT17 and VeRi-776. The values of AUC are scaled by a factor of 100 for a better show.

Datasets MSMT17 VeRi-776

k ENR AUCS AUCM AUC� ENR AUCS AUCM AUC�

5 0.06 89.23 89.74 0.52 0.01 90.96 90.40 -0.56
10 0.13 89.33 90.02 0.69 0.03 89.34 90.09 0.75
20 0.26 87.78 88.63 0.85 0.07 85.86 86.54 0.68
40 0.48 86.72 86.62 -0.10 0.17 83.05 82.89 -0.16

A.3 Performance on larger scales of MS-Celeb

Experiments are also conducted to compare these baselines on larger scales of MS-Celeb (i.e.,
Part3-9). The same model for MS-Celeb Part1 is used as in Section 3.3, but tested on Part3-9. The
results in Table 6 show that all baselines have performance degradation when the scale enlarges. The
B-Attention obtains the best results in all parts; Aself works better than GCN; all output features
are much better than the original ones. Among the baselines with attention mechanisms, the ones
using GCN-based networks have better performances. The GCN with Aband has the highest mAP
scores. Figure 5 shows the ROC curves of GCN, “GCN w/ Aself” and “GCN w/ Aband” across all
parts of MS-Celeb, from which we can also see the performance degradation with larger testsets.
The performance degradation of “GCN w/ Aband” is much smaller than the other two baselines,
which is shown more clearly from the differences of AUC in Table 7. In Table 7, differences on
AUC of two adjacent parts (e.g., part1 - part3, part3 - part5, part5 - part7, part7 - part9) and their
summation for each method are shown. It can be observed that the summation of the differences of
“GCN w/ Aband” is 1.49, which is only 58.30% and 67.26% of the ones of GCN (2.56) and “GCN
with Aself " (2.22). This validates that the features from “GCN w/ Aband” have a much smaller
performance degradation than the other two baselines with larger testsets from the perspective of
verification. Similar observations can also be seen in Table 6, where the performance degradation of
the baselines with attention mechanisms is much smaller than GCN and original features.
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(a) GCN (b) GCN with Aself (c) GCN with Aband

Figure 5: ROC curves of GCN (a), GCN with Aself (b), and GCN with Aband (c) on MS-Celeb
Part1-9.

Table 6: Feature quality (mAP) on different scales of MS-Celeb.
Partition Part1 Part3 Part5 Part7 Part9

Original Feature 80.07 75.28 73.21 71.73 70.63
GCN 90.15 86.27 84.34 82.95 81.90
Transformer 93.86 91.32 89.99 89.03 88.28
GCN w/ Aself 94.09 91.66 90.38 89.45 88.73
Trans w/ Aband 95.70 93.38 92.08 91.09 90.30
GCN w/ Aband 95.97 93.71 92.38 91.30 90.46

Table 7: Differences on AUC (�AUC ) of two adjacent parts of MS-Celeb for GCN, “GCN with Aself "
and “GCN with Aband". The values in the table are scaled by a factor of 100 for better display.

�AUC GCN GCN with Aself GCN with Aband

part1 - part3 1.23 1.03 0.58
part3 - part5 0.58 0.51 0.37
part5 - part7 0.43 0.37 0.30
part7 - part9 0.32 0.31 0.25
summation 2.56 2.22 1.49

A.4 Ablation study on B-Attention

Ablation experiments are conducted mainly on MS-Celeb to study the design of the topological
architecture and attention fusion method of B-Attention. Similar to Section 3.3, models are trained
on Part0 and tested on Part1. All settings other than the factor being investigated are the same as that
in Section 3.3 for “GCN with Aband” with k = 120.

A.4.1 topological architecture design

This study compares the topological architecture of the B-Attention with three other designs: (1) one
with only the Aqart of B-Attention; (2) one using only the Q-Attention part but with the AX

replaced by Aself in Equation 8, denoted as eAqart; (3) and one with B-Attention but with the Aqart

replaced by eAqart, denoted as eAband. Table 8 shows their mAP results, where the results of “GCN
w/ Aband” and one with only Aself are also listed for comparison. For the purpose of ablation study,
the one with only Aself here has the same depth (i.e., three layers) with “GCN w/ Aband”, which
is different from that in Table 2 (two layers). The comparisons are made on two conditions: with
or without Wqart (i.e., WQ

qart and WK
qart) in Equation 8. For the cases without Wqart, WQ

qart

and WK
qart are both identity matrices, i.e., Qqart = Kqart = AX . Their ROC curves are shown

in Figure 6. It can be seen that the B-Attention design achieves the best results in both mAP and
ROC; Aqart has better performance than Aself ; eAqart and eAband are worse than Aqart and Aband

respectively. This shows that the combination of Aself and Aqart and the use of AX (instead of
Aself ) in Aqart both contribute to the performance improvement. In addition, the baselines with
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Wqart have better performances (higher mAP scores and better ROC) than those without, indicating
that WQ

qart and WK
qart are also critical for better graph structure learning.

Table 8: Feature quality (mAP) of differ-
ent topological architectures of the atten-
tion mechanism.

Arch./Cond. w/ Wqart w/o Wqart

Aself 88.10 88.10
eAqart 90.10 89.40
Aqart 92.26 88.92
eAband 94.19 89.53
Aband 95.97 93.67 Figure 6: ROC curves of different topological ar-

chitectures of the attention mechanism.

The ablation experiments are also conducted on attention map fusion method in Section A.4.2

in Appendix. The results in Table 9 and Figure 7 together will prove that the proposed form in
Equation 11 has the best performance across all datasets.

A.4.2 Attention map fusion method

The attention map fusion method is studied by comparing it to two other designs: direct element-wise
addition without weighting (Aqart +Aself ) and element-wise multiplication (Aqart �Aself ) in
Equation 11. The results are shown in Table 9 and Figure 7: The ✓qartAqart + ✓selfAself design
works the best, and the performance of Aqart � Aself is very close to ✓qartAqart + ✓selfAself .
However, results of MSMT17 and VeRi-776 in Table 9 shows our proposed method has the best
performance across all datasets.

Table 9: Feature quality (mAP) of different attention map fusion methods, where � denotes element-
wise multiplication.

Dataset Aqart +Aself Aqart �Aself ✓qartAqart + ✓selfAself

MS-Celeb 92.83 95.71 95.97

MSMT17 84.95 85.59 86.04

VeRi-776 85.97 85.53 87.59

Figure 7: ROC curves of different fusion
methods on MS-Celeb (part1).

Table 10: Clustering performance on MSMT17.

Dataset MSMT17

Metrics FP FB

K-Means 60.32 69.28
HAC 63.95 73.75
DBSCAN 48.23 53.90

Clusformer - -
STAR-FC - -
Ada-NETS 73.51 77.40

Original+G-cut 50.60 66.56
Ours+G-cut 74.93 79.91

Original+Infomap 71.33 79.16
Ours+Infomap 77.54 81.75

A.5 Clustering performance on MSMT17

The clustering tasks are also evaluated on MSMT17 and the results are in Table 10.
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A.6 Ensemble Performance on ReID tasks

In addition to directly comparing with the commonly used rerank methods (e.g., QE [13], LBR [39],
KR [67] and ECN [47]) in Section 4.4, the “GCN with Aband" can also be combined with them.
The commonly used rerank methods can utilize the enhanced features from “GCN with Aband" for
better ranking. The results are shown in Table 11. Since mAPR can provide a more comprehensive
evaluation of the feature quality than R1 for ReID, the mAPR is discussed more often. It can be
observed that new SOTA performances are obtained on both datasets. The mAPR on MSMT17 is as
high as 79.67 by “Aband+KR" and on VeRi-776 is as high as 85.92 by “Aband+LBR". For most of
the commonly used rerank methods, the mAPR of reranking with Aband is higher than with original
features and also higher than “GCN w/ Aband”. The only exception is “Aband+ECN" which is higher
than “GCN w/ Aband” but only comparable with “original+ECN". The results show that there is a
complementary relationship between “GCN with Aband" and commonly used rerank methods. The
“GCN with Aband" can provide better features so that the commonly used rerank methods can be
further improved, although the R1 results are only comparable.

Table 11: Ensemble ReID performance on MSMT17 and VeRi-776. “Original+X" means reranking
with original features by methods of “X". “Aband+X" means reranking with features from “GCN w/
Aband" by methods of “X".

Dataset MSMT17 VeRi-776

Metrics mAPR R1 mAPR R1

Original Feature 62.76 82.36 79.00 96.60
GCN w/ Aband 78.28 86.64 84.74 96.78

Original+QE 71.10 84.37 83.09 95.47
Original+LBR 70.36 85.28 83.63 97.13

Original+KR 76.46 85.48 82.32 96.84
Original+ECN 78.79 86.16 84.25 97.13

Aband+QE 79.37 86.91 85.88 96.90
Aband+LBR 79.54 86.86 85.92 96.90
Aband+KR 79.67 84.81 85.45 96.60
Aband+ECN 78.70 84.05 85.61 96.90

A.7 Declaration of the type of computing resources

All experiments are conducted on a single machine, with 54 E5-2682 v4 CPUs, 8 NVIDIA P100
cards and 400G memory.

B Limitations

Our approach achieves promising results in graph structure learning, but it still has the following
limitations:

• The B-Attention requires more computation and number of parameters as shown in Sec-
tion 2.3. However, the baseline methods can not achieve the same performance even adding
their network depth. The layer number of network in each method is tuned in all experiments.

• The superiority of B-Attention is not obvious enough on datasets with few samples in each
category compared with self attention as revealed in Section 3.3.

• The performance of B-Attention will also degrade when with large ENR as discussed in
Section 3.3, indicating the current form still has improvement room on the robustness against
noise to further investigate.

• The outputs B-Attention will vary depending on the choice of nearest neighbours. However,
the superiority of this method can be guaranteed as long as the conditions in Section 2.2 are
met.
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C Potential Negative Societal Impacts

The proposed graph structure learning method inherently is harmless just like many other AI tech-
nologies. This technology may have negative societal impacts if someone uses it for malicious
applications such as surveillance, personal information collections. As authors, we advocate for
proper technology usage.

D Pseudocode for self-attention and Q-Attention

Algorithm 1 PyTorch-style pseudocode for self-attention and Q-Attention

# X: the input feature matrix, with shape (N, D)
def self_attention(X):

Q_self = torch.matmul(X, W_self_Q)
K_self = torch.matmul(X, W_self_K)
self_attn = torch.matmul(Q_self, K_self.transpose(-2, -1))
return self_attn

def Q_attention(X):
A_X = torch.matmul(X, X.transpose(-2, -1))
Q_qart = torch.matmul(A_X, W_qart_Q)
K_qart = torch.matmul(A_X, W_qart_K)
Q_attn = torch.matmul(Q_qart, K_qart.transpose(-2, -1))
return Q_attn

E Detailed Proof of with generalized version of Chernoff Bounds

Below is a full analysis for the practical algorithm in Section 2.3 that does not assume a binary
relationship between two nodes in AX .

Let Xi denote a random variable with no distribution assumptions such that a  Xi  b for all i.
Define X =

Pm
1 Xi, µ = E(X). Then for all 0 < ✏ < 1, we have the general version of Chernoff

inequality as follows.

(i) Upper Tail: P(X � (1 + ✏)µ)  e
� ✏2µ2

m(b�a)2 ;

(ii) Lower Tail: P(X  (1� ✏)µ)  e
� ✏2µ2

m(b�a)2 .

The above show that with probability at least 1� �, (1� ✏)µ  X  (1 + ✏)µ where � = e
� ✏2µ2

m(b�a)2

or equivalently ✏ =
q

m(b�a)2log(1/�)
µ2 .

Instead of assuming p and q for making connections in the case of C(vi) = C(vj) and C(vi) 6= C(vj),
we assume that the similarity score si,j is sampled from a bounded distribution (bounded between
-1 and +1) with mean of s+ when C(vi) = C(vj), and si,j is sampled from a bounded distribution
(bound between -1 and +1) with mean of s� when C(vi) = C(vj). We of course assume s+ > s�.
In expectation, the number of edges connected under Sk

i,j on Vi,j is

⇢
µ� = s+s�m, C(vi) 6= C(vj) ,
µ+ = (↵s2+ + (1� ↵)s2�)m, C(vi) = C(vj) ,

(12)

where C(v) is the category of node v.
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It should be noted that (b� a)2 = 4 under our assumption. Therefore, when vi, vj are sampled from
different categories, we have, with probability at least 1� �,

X

k2Vi,j

Sk
i,j  (1 + ✏�)µ�

X

k2Vi,j

Sk
i,j 

 
1 +

s
4mlog(1/�)

(µ�)2

!
µ�

Si,j =
1

m

X

k2Vi,j

Sk
i,j 

 
1 +

s
4nlog(1/�)

(s+s�m)2

!
s+s� .

(13)

When vi, vj are sampled from the same category, we have, with probability at least 1� �,
X

k2Vi,j

Sk
i,j � (1� ✏+)µ+

X

k2Vi,j

Sk
i,j �

 
1�

s
4mlog(1/�)

µ+

!
µ+

Si,j =
1

m

X

k2Vi,j

Sk
i,j �

 
1�

s
4nlog(1/�)

(↵s2+ + (1� ↵)s2�)
2m2

!
(↵s2+ + (1� ↵)s2�) .

(14)

The two distributions can be well separated if the above two bounds do not overlap. That is, we
require that

(1 + ✏�)µ� < (1� ✏+)µ+ . (15)

On the other hand, it is obvious s+s� < ↵s2+ + (1� ↵)s2�, so we know

✏� =

s
4mlog(1/�)

(s+s�m)2
> ✏+ =

s
4mlog(1/�)

(↵s2+ + (1� ↵)s2�)
2m2

. (16)

Set ✏ = ✏� to have a larger step and a stricter condition, we have

(1 + ✏)µ� < (1� ✏)µ+

✏ <
u+

� u�

u+ + u�

(17)

s
4m log (1/�)

(s+s�m)2
<

(s+ � s�)2 + (2↵� 1)(s2+ � s2�)

(s+ + s�)2 + (2↵� 1)(s2+ � s2�)
. (18)

Because ↵ > 1
2 and s+ > s�,

(s+ � s�)
2 + (2↵� 1)(s2+ � s2�) > 0,

(s+ + s�)
2 + (2↵� 1)(s2+ � s2�) > 0.

(19)

So we have

m >
4((s+ + s�)2 + (2↵� 1)(s2+ � s2�))

2

s2+s
2
�((s+ � s�)2 + (2↵� 1)(s2+ � s2�))

2
) log(

1

�
). (20)

We complete the proof by substituting � with

� , 1

�
min((1� ↵)s�,↵(1� s+)). (21)
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where � > 1 is a constant.

Finally, we prove that

m >
4((s+ + s�)2 + (2↵� 1)(s2+ � s2�))

2

s2+s
2
�((s+ � s�)2 + (2↵� 1)(s2+ � s2�))

2
log

✓
�

min((1� ↵)s�,↵(1� s+))

◆
. (22)

We can guarantee that when the above condition is met, the proposed similarity measure between two
nodes from the same category is strictly larger than that for two nodes from different categories. It
is able to reduce the number of noisy edges and missing edges of the single test method by 1/� in
expectation.

F Case Studies on self attention, Q-Attention and B-Attention

To better understand the effect of multiple tests (i.e. the fourth order of statistics), we illustrate the
effect of self-attention, Q-Attention and B-Attention with the help of the tool BertViz5.

self attention ℬ-"##$%#&'%(	-"##$%#&'%

Figure 8: Case studies on self attention, Q-Attention and B-Attention. Each entry contains the
category and node index, e.g. “C0_node1” means this node belongs to category 0 and the node index
is 1. The shade of the colour represents the weight of attention. The darker the colour, the greater the
weight. The data of this case is sampled from the last layer of B-Attention on the MS-Celeb part1.

As shown in the left panel of Figure 8, self-attention introduces a number of noisy connections
between nodes belonging to different categories. In contrast, according to the middle panel of
Figure 8, Q-Attention is able to introduce many more connections between nodes from the same
category, and at the same time significantly reduces the weights for those noisy connections. In the
last panel, the combination self-attention with the fourth order statistics, The B-Attention further
removes those noisy connections while keeps most of the clean connections between nodes.

5https://github.com/jessevig/bertviz
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