A Abstract

In this supplementary, we provide implementation details (Section [B), R-CNN configuration details
(Section [C), details on LVIS and Visual Genome datasets (Section D)), results for additional ablations
(Section[E]), details on reproducing the prior works (Section[F), segmentation and scores of higher
granularity for the best-scoring models (Section[G)), and additional qualitative examples (Section [H].

B Implementation Details

Our model is based on Mask R-CNN [11]] configuration from Detectron2 [23]] with ResNet50-
based [10] FPN [16] backbone. Different from the standard configuration, we use AMP [19],
SyncBatchNorm [24], MoCo [12] for backbone initialization, and class-agnostic localization and
mask heads. In section|[C| we provide more details and analysis of the introduced modifications.

During the supervised training phase, for all experiments, we follow Detectron2 and use a batch
size of 16, train all networks using SGD optimizer for 180K iterations, and use random resize and
random flip augmentations. We linearly increase the learning rate from 10~2 to 10~2 for the first 1 K
iterations and decrease it tenfold at iterations 120K and 160K. When switching between COCOy,; ¢
+ LVIS and LVIS + VG setups, architecture-wise, we only change the number of target classes in the
known classification head.

During the discovery training phase, we train for 15K iterations with a learning rate of 10~2 and
follow a cosine decay schedule with linear ramp-up. The learning rate is linearly increased from
1075 to 10~2 for the first 3K epochs and then decayed with a cosine decay schedule [17] to 1073.

For the supervised forward pass during the discovery training phase, we do not change the hyperpa-
rameters of the R-CNN and use the exact same model configuration with the same batch size, base
learning rate, and set of input images (re-shuffled). However, we remove the background (unmatched)
Rol proposals from supervised pass training and keep only proposals that got matched to annotations.
We also use a supervised loss scale coefficient of 0.5, which results in an effective learning rate for
the supervised loss to be twice smaller than that of the discovery loss.

For the discovery forward pass, we use a separate pool of unlabeled images (that include images
from the labeled pool). For RPN hyperparameters, we extract 50 proposals per image and do not
use NMS. We use a memory module with a size of 20K = 100 - 4 - 50 features per GPU, where
100 is its size (in the number of batches stored), 4 is the per-GPU batch size, and 50 is the upper
limit of the number of RPN proposals extracted per image in the batch. As the memory is empty
at the beginning of training, we start training only after 150 iterations (batches) to allow it to get
filled with features. We use a number of iterations slightly higher than the memory size to account
for images with less than 50 ﬁroposals. For self-supervision prior, similarly to [[L], we let marginals
follow Lognormal(1,0.5) - WI where M is the number of samples used for Sinkhorn and NN is the
total number of classes. In our experiments, M is calculated dynamically, based on the number of
proposals in the current batch, and, at most, equals 20.2K (where 20K and 200 are the memory size
and the maximum number of proposals in the batch respectively). For NV we use 3080 classes in the
COCOpyq1f + LVIS setup and 4203 = 1203 + 3000 classes in the LVIS + VG setup. We set A = 20
for the Sinkhorn algorithm. To obtain multi-view features for each proposal, we use augmentations
similar to the ones from SimCLR [3]]. Specifically, we use weaker versions of random color distortion
(color jitter, grayscale), random Gaussian blur, and random resizing. We do not use random cropping
to avoid cropping out some proposals only for one of the views. We use a batch size of 16 that is split
across 4 GPUs, resulting in a per-GPU batch size of 4. We use torch.distributed backend [14] for
training, with the memory module and pseudo-labels being local to each of the 4 GPU processes.

For evaluation on LVIS and VG datasets, we follow LVIS evaluation specification [9] and use up to
300 top-scoring predictions with a per-prediction confidence cutoff of 1e~*. We use 4x NVIDIA
A40 GPUs for all experiments.

C R-CNN Configuration Details

In Table[C] we provide details on modifications introduced to the Detectron2’s default configuration
that we used for R-CNN models. We provide scores for the fully-supervised models trained on



COCOpqi¢ and LVIS datasets. The models marked in bold were used for initialization during
the discovery phases in COCOy,q;5 + LVIS and LVIS + VG setups, respectively. To the default
configuration, we first introduced AMP [19] to allow for training larger models during the discovery
phase and SyncBatchNorm [24]] to stabilize training. Then, we replaced supervised ImageNet [6]
initialization for the backbone with self-supervised initialization. We avoided using supervised
initialization to ensure that no supervision was given for the novel classes we aim to discover, as
some of the ImageNet classes overlap semantically with classes from LVIS and VG. Specifically, we
use MoCo v2 [5]] applied on ImageNet dataset [6]] and use weights from a public repository provided
by the authors of the paper from https://github.com/facebookresearch/mocol Finally, we
switch to class-agnostic localization & mask heads.

Table C1: Performance of fully-supervised models on COCOy,,; ; and LVIS datasets. In bold, we
highlight the configuration used for the supervised training phase and the fully-supervised baseline.

Model COCOpqf mAP LVIS mAP
Default Detectron Mask R-CNN FPN Res50 34.92 18.87
+ add AMP, SyncBN 34.07 18.03
+ replace ImageNet w/ MoCo init 35.78 18.85
+ use class-agnostic heads 35.69 18.47

D LVIS + Visual Genome Setup

For the LVIS + Visual Genome (VG) setup, we use annotations from the LVIS v1 [9] dataset and aim
to discover novel classes present in the Visual Genome (VG) v1.4 dataset [13]]. The LVIS dataset
contains 120K images with annotations for 1203 classes. Its training and validation splits contain
100K and 20K images, respectively. VG dataset contains 108/ images with annotations for more
than 7K categories mapped to WordNet [20] synsets. 50K of VG images overlap with LVIS dataset
images. To simplify the training and evaluation of experiments, we define the validation split of the
VG dataset as a set of images from the LVIS validation split that also appear in VG. This results in
100K and 8K images for VG training and validation splits, respectively. For the supervised training
phase, we use 100K images from the LVIS train split with LVIS annotations. During the discovery
phase, for the unlabeled pool, we merge LVIS and VG training images, resulting in 158 K images
total. We use 8K images from the VG validation split for evaluation. Out of more than 7K synsets
from VG, we keep only those that appear in both generated training and validation VG splits, resulting
in 3367 classes in total. We observe that they include 641 LVIS classes by using exact matching of
Wordnet synsets of classes, leaving 2726 novel classes to discover. We note, however, that with such
exact mapping, we do not account for potential overlapping word senses. Moreover, annotations
provided in VG are not exhaustive per class, and many of its classes are abstract. As a result, many
categories of the resulting dataset may be semantically overlapping, and we note that quantitative
mAP results provided may not reflect the real model’s performance.

E Additional RNCDL Ablations

Table E1: Ablations for RPN hyperparameters, memory size, and multi-head setup. We study
the results of our method as a function of a) the NMS coefficient used by RPN and Rol heads to
generate class-agnostic proposals during the discovery phase, b) the number of RPN proposals, ¢)
memory size in the number of mini-batches stored. In d), we demonstrate that it’s possible to train the
model in a multi-head setup with a varying number of classes without substantial loss in performance.
We train the model with multiple heads of 1000, 3000, and 5000 classes and then evaluate each of the
heads separately.

NMS coeff. mAP,; # proposals mAP,; # mem. batches mAP,;

#novel classes mAP,; mAPkpown MAP, 46
0.8 5.76 20 6.49 0 2.83 1000 537 25.87 368
0.9 6.77 50 6.92 20 4.66
3000 6.34 25.56 4.76
0.99 6.84 100 6.86 50 5.83 5000 514 2525 348
no NMS 6.92 150 6.75 100 6.92 . . ‘
(a) (b) (©) (d)


https://github.com/facebookresearch/moco

NMS coefficient for proposals. In Table[ETh, we ablate the strength NMS used by RPN to filter
out class-agnostic overlapping proposals during the discovery phase. Note that this only concerns
the coefficient used for filtering the proposals generated for the discovery phase training and not the
NMS used during inference. We observe that a larger (weaker) NMS yields better results, and the
absence of NMS yields the best results. This demonstrates that the network benefits from observing
more proposals per image during training, even if they highly overlap.

Number of proposals per image. We experiment with extracting a different number of RPN
proposals per image during the discovery phase in Table[ETp. We observe that the optimal number of
proposals is 50, and having more proposals per image damages its performance.

Memory module size. We experiment with different memory module sizes, expressed in the number
of last mini-batches stored, in Table [ETk. We observe a large jump in performance of 1.83 mAP
when introducing a memory module of 20 batches. Afterward, the performance tends to grow as its
size increases roughly log-linearly. Due to memory and time limitations, we only experiment with
memory sizes at most 100 and expect the models’ performance to improve further with more features
stored.

Sensitivity to the number of novel classes for a multi-head setup. In Table[EI{d, we experiment
with attaching and training multiple heads jointly during the discovery phase, where the total discovery
loss is computed as an average loss per head, and the memory module is shared across heads. We
observe that scores degrade in such a setup but do not observe a substantial drop in results. This
suggests that for a practitioner, it is possible to train a single framework with multiple heads, each
with hypothesized number of categories to discover and then to use any of the heads for the desired

grouping.

FC instead of cosine classification layer. We experiment with replacing the cosine classification
layer [8, 4} 121]] of the novel classification head with an FC layer and observe that the training diverges.

F Details on Baselines and Prior Work Reproduction

In this section, we provide implementation details for baselines and prior works that we compare.
For all the methods, we use 3000 for the number of novel categories.

For comparison with Weng et al. [22]] work, we trained their method in our setting using the code
provided by authors available at https://github. com/ZZWENG/longtail _segmentation. As
the method starts with a similar supervised training phase, for a fair comparison, we used an R-CNN
trained in the same manner as in RNCDL experiments. We followed the authors’ configuration and
extracted the top 50 proposals per image with an NMS of 0.75 before the clustering phase. For the
clustering phase we found multiple inconsistencies with the code provided by the authors and the
original manuscript. Even after correspondence with the authors, we could not resolve all issues and
reproduce results comparable to those reported in [22|]. We thus report results that best reflect the
foregoing method according to the available official implementation.

For comparison with NCD works, which operate on images tightly cropped to the object of interest,
we used localization coordinates of annotations and generated proposals to obtain a set of image
crops. Specifically, for labeled images pool, we used annotations from COCOy,,; s dataset, and for
unlabeled images pool, we used predicted RPN proposals. We used these annotations and proposals
to crop images to the box coordinates of each instance. This resulted in more than 350K labeled
crops and 5M unlabeled crops. We then padded each crop to a squared shape using the mean pixel
value of all crops and scaled them to the size of 224 x 224 to match ImageNet images specification.
To extract RPN proposals, we trained an R-CNN network on COCOy,; s with the same configuration
as during the supervised training phase to ensure comparable evaluation conditions. We then applied
state-of-the-art ORCA [2], UNO [7], and baseline k-means [18] method to the resulting labeled and
unlabeled crops to train image classifiers. Having trained the classifiers, we followed a standard R-
CNN inference loop, replacing the default FC classification head with each of the resulting classifiers.
We do not alter other R-CNN procedures, such as post-processing, NMS, etc.

ORCA [2]] is directly applicable to such an image classification setup. We followed the configuration
used by the authors for the ImageNet-100 dataset, but used a batch size of 1024 and trained for 10
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Table G1: Detailed results for the RCNDL model.

Classes | mAP  mAPs; mAP;5 | mAP, mAP,, mAP; | mAP, mAP. mAP;

known | 25.00 4241 2493 | 1325 3241 34.56 - - 25.00
novel 542 8.00 5.81 2.62 6.05 9.40 8,02 5.75 3.55
all 6.92 10.63 7.27 3.57 8.31 12.22 | 8.02 5.75 7.74

(a) Detection scores for the RNCDL model in COCOpq; ¢ + LVIS setup

Classes | mAP  mAP;, mAP7; | mAP, mAP,, mAP; | mAP, mAP. mAP;

known | 25.21  40.69 26.12 | 11.23  31.77 39.98 - - 25.21
novel 5.16 7.44 548 2.09 6.19 9.51 8.03 5.29 3.39
all 6.69 9.97 7.06 291 8.39 1292 | 8.03 5.29 7.65

(b) Segmentation scores for the RNCDL model in COCOy,q; 5 + LVIS setup

Classes | mAP  mAP5;, mAP7; | mAP, mAP,, mAP; | mAP, mAP. mAP;
12.55 2143 12.48 6.24 1459 1825 | 1333 1024 1391

known
novel
all

2.56 3.95 2.65 1.39 2.04 3.15 3.02 2.83 1.72
4.46 7.28 4.52 2.47 4.79 6.22 3.34 4.05 5.69

(c) Detection scores for the RNCDL model in LVIS + VG setup

epochs with a learning rate annealed by a factor of 10 at epochs 6 and 8. UNO [7] operates under the
assumption that images from the unlabeled pool may only contain novel classes. We thus extended the
method to allow known classes to be present in the unlabeled pool. We implemented this by allowing
pseudo-labels generated at each iteration to contain known classes. We followed the configuration
used by the authors for the ImageNet dataset but used a batch size of 1024, and trained the supervised
learning phase for 100 epochs and the discovery learning phase for 20 epochs. For k-means [18], we
used a contrastive self-supervised method [12] to initialize a backbone and fine-tune it with images
from the labeled pool. We then extracted features for all the images and learned cluster centroids.
During the evaluation, as k-means does not output confidence, we classified each RPN proposal based
on the closest cluster centroid and marked its confidence as 100%. In another k-means ablation, we
applied the same methodology on top of Rol box head features of instances and proposals without
training a new backbone.

Finally, we also experimented with evaluating the RNCDL model right after attaching the novel head,
with weights for MLP projection and cosine classification layers initialized randomly.

G Segmentation, Per-Area, and Per-Frequency Results

In Table we provide additional quantitative results for the best-scoring RNCDL models from
COCOpq¢ + LVIS and LVIS + VG setups. Specifically, we report mAP for small, medium, and
large object instances, following COCO [15]], and rare, common, and frequent object classes,
as proposed in LVIS [9]]. In addition, we report segmentation scores of our Mask R-CNN model
for COCOy,q; ¢ + LVIS setup. We do not report segmentation scores for LVIS + VG setup as VG
annotations do not contain segmentation masks.

H Additional Qualitative Examples

We provide more qualitative results for both COCOy,q; ¢ + LVIS and LVIS + VG setups. For both
setups, we use larger models and train longer to obtain clusters of higher quality. Specifically, we
train for 25 K iterations, use a learning rate of 0.015, and use 8 GPUs with a batch size of 4 per GPU,
making the effective batch size 32.

In Figures [HT|and [H2] we provide more qualitative examples for COCOpal f + LVIS and LVIS + VG
setups, respectively. In addition, we highlight novel classes, determined according to the mapping
procedure, in red.



a) COCO — LVIS

Figure H1: Visualization of predictions for validation images of the fully-supervised model and our
RNCDL framework in COCOy,q; ¢ + LVIS setup. We color the discovered novel classes in red.

In Figure [H3| we provide the top clusters ordered by confidence and size that were not mapped to
one of the known classes by the mapping procedure. For the most confident clusters, we observe that
many of them semantically overlap with the known annotated classes. This could indicate that the
network splits some known classes into sub-clusters. For most of the largest clusters, we observe that
their content can be characterized as noisy, and most images do not contain a clear object instance
present. This could indicate that the network learns to group noisy proposals.
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b) LVIS — VisualGenome

Figure H2: Visualization of predictions for validation images of the fully-supervised model and our
RNCDL framework in LVIS + VG setup. We color the discovered novel classes in red.
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Figure H3: The largest and the most confident clusters discovered.
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