
A Further Related Work

A.1 Empirical Investigation Of Recommendation Feedback Loops

A substantial body of evidence has emerged in recent years indicating that recommendation systems
can create feedback loops which drive negative social consequences. [23] observed that users
accessing videos with extreme political views are likely to get caught in an “ideological bubble”
in just a few clicks, and [16] explore the role of recommendation algorithms in creating distrust
and amplifying political polarization on social media platforms. By investigating a real-world e-
commerce dataset, [15] study the way in which recommendation systems drive agents’ self-reinforcing
preferences and lead them into “echo chambers” where they are separated from observing a diversity
of content. [31] conduct a meta-analysis over many datasets which focuses specifically on the “rabbit
hole” problem by means of exploring “taste distortion” of agents who observe recommendations
which are more extreme than their current preferences. Such results motivate investigating these
dynamics from game-theoretic and learning-theoretic foundations.

A.2 Modeling Feedback Loops in Recommendation Systems

A number of recent works from the recommendation systems literature have explored the role of
collaborative filtering algorithms for various models of agent behavior, aiming to understand how
feedback loops in recommendation patterns emerge, the harms they cause, and how they can be
corrected [7, 28]. A common theme is homogenization of recommendations across a population of
users, which can lead to exacerbation of biased utility distributions for minority groups [20], long-run
utility degradation [9], and a lack of traffic to smaller content providers which results in them being
driven to exit the platform [22]. Our work indirectly addresses this phenomenon by encouraging
diverse recommendations, but our primary focus is from the perspective of a single agent, who may
be led down a “rabbit hole” by an algorithm which optimizes for their immediate engagement.

A.3 Dueling Bandits

The “dueling bandits” problem, initially proposed as a model for similar recommendation systems
challenges [30, 29], and which has been generalized for sets larger than two [3, 26], considers a
similar setting in which bandit optimization is conducted with respect to the preference model of an
agent, occasionally represented via an explicit parametric form. Here, one presents a set of choices
to an agent, then receives only ordinal feedback about the relative rewards of the choices, and must
optimize recommendations with regret measured against the best individual choice. In contrast to our
setting, these works consider preferences which are fully determined a priori, and do not change as a
function of item history or exhibit preference feedback loops.

A.4 Online Stackelberg Problems

A number of works in recent years explore online problems where an agent responds to the decision-
maker’s actions, influencing their reward. The performative prediction setting, introduced in [24],
captures settings in which a deployed classifier results in changes to the distribution itself, in turn
affecting performance. This work has been extended to handle stochastic feedback [21] and notably,
to a no-regret variant [18] which involves learning mapping between classifiers and distribution shifts,
which bears some conceptual similarities to our procedure for locally learning an agent’s preference
model. The “revealed preferences” literature involves a similar requirement of learning a mapping
between actions and agent choices [27, 12]. Some features of our setting resemble elements of
other well-studied online problems, including the restricted exploration ability for limited switching
problems (e.g. [4]), and the contracting target set for chasing nested convex bodies (e.g. [6]).

A.5 Strategizing Against Adaptive Agents

Some recent work has begun to explore the problem of designing optimal strategies in a repeated
game against agents who adapt their strategies over time using a no-regret algorithm. In auction
problems, [5] study the extent to which an auction designer can extract value from bidders who use
different kinds of no-regret algorithms. More generally, [11] connect this line of investigation to
Stackelberg equilibria for normal-form games. In strategic classification problems, [32] study the

13

behavior when using a learning rate which is either much faster or much slower than that of the
agents which one aims to classify, and draw connections to equilibrium concepts as well. Our work
extends this notion of strategizing against adaptive agents to recommendation settings, with novel
formulations of adaptivity and regret to suit the problem’s constraints.

B Omitted Proofs for Sections 2

B.1 Proof of Linear Regret Lower Bounds (Theorem 1)

We give a separate lower bound construction for the uniform IRD item distribution benchmark and
the menu distribution benchmark, yielding the theorem.
Lemma 5. There is no algorithm which can obtain o(T) regret against the best item distribution in
the IRD set for the uniform vector, even when the preference model is known exactly and is expressible
by univariate linear functions.

Proof. First we give an example for which obtaining o(T) regret against IRD(v,M) for the uniform
vector vU is impossible. Consider the memory model M where:

• M(v)1 = λ+ 0.5 + n
n−1 · (v1 −

1
n) · (0.5− λ);

• M(v)2 = λ+ 0.5(1− v1 + 1
n);

• M(v)i = 0.5 + λ for i > 2.

Observe that at the uniform distribution where v1 = 1
n , all items have a score of 0.5 + λ. If v1 = 1,

we have that:

• M(v)1 = 1, and

• M(v)2 = λ+ 0.5
n .

If v1 = 0, we have that:

• M(v)1 = λ+ 0.5− 0.5−λ
n−1 , and

• M(v)2 = λ+ 0.5 · (1 + 1
n)

As scores linearly interpolate between these endpoints for any v1, M is λ-dispersed, and scores lie in
[λ, 1]. Let k = 2. Consider reward functions which give reward α > 0 for item 1 in each round up to
t∗ = T/2, giving reward 0 to each other item; after t∗, a reward of β > 0 is given for item 2 while
the rest receive a reward 0. The distribution which assigns probability 1/2 each to item 1 and 2, with
all other items having probability 0, is contained in IRD(vU ,M), as one can simply play the menu
with both items. This distribution yields a total expected reward of

Rv =
αt∗

2
+
βt∗

2
over T steps. Consider the performance of any algorithm A which results in item 1 being selected
with an empirical probability p over the first t∗ rounds. At t = t∗, we have vt∗,1 = p; its total
reward over the first t∗ rounds is αpt∗. For sufficiently large n and small λ, the score for item 2 is
approximated by M(v)2 = 0.5(1− p) up to any desired accuracy. In future rounds t ≥ t∗, the value
vt,s1 is at least pt∗

t , and so the score for item 2 is at most

M(v)2 = 0.5(1− pt∗

t
).

Each other item has a score of at least 0.5, yielding an upper bound on the probability that item 2 can
be selected even if it is always in the menu, as well as a maximum expected per-round reward of

Rt = β ·

(
0.5(1− pt∗

t)

1− 0.5pt∗

t

)
.

14

At time T = 2t∗, the instantaneous reward is at most

RT = β ·
(
2− p
4− p

)
,

which is also a per-round upper bound for each t ≥ t∗. This bounds the total reward for A by

RA = αpt∗ + βt∗ · 2− p
4− p

.

We can now show that for any p, there exists a β such that Rv − RA = Θ(T). For any p ≤ 1
3 , we

have

RA ≤
αt∗

3
+
βt∗

2
,

and for any p > 1
3 we have:

RA ≤ αt∗ +
5βt∗

11
.

In the first case, we immediately have Rv −RA ≥ Tα/6 for any β. In the second case, let β ≥ 22α.
We then have:

Rv −RA ≥
βt∗

22
− αt∗

2
≥ Tα/4.

The value of β can be determined adversarially, and so there is no algorithmA which can obtain o(T)
regret against IRD(v,M).

Next we show a similar impossibility result for regret minimization with respect to the set of all menu
distributions.

Lemma 6. There is no algorithm which can obtain o(T) regret against the best menu distribution in
∆
((

n
k

))
, even when the preference model is known exactly and is expressible by univariate linear

functions.

Proof. Let M be the λ-dispersed memory model where the functions for items (a, b, c), and every
other item i, are given by:

• M(v)a = λ+ (1− ϵ)(1− vb);

• M(v)b = λ+ (1− ϵ)vb;

• M(v)c = λ+ (1− ϵ)vc;

• M(v)i = λ+ (1− ϵ)(1− vb) for i /∈ {a, b, c};

for some λ > 0 and ϵ > λ. Let k = 2. Consider a sequence of rewards {ft} which yields reward α
to items (a, b) for each round t ≤ t∗ and 0 to the rest, then in each step after t∗, yields a reward of β
for item c, a reward of 0 for item b, and reward of −β for every other item. Note the total expected
reward for the following distributions:

R(a,b)(T) = αt∗ − β(T − t∗)/2;
R(b,c)(T) = αt∗/2 + β(T − t∗)/2;

The bound for R(a,b)(t
∗) follows from symmetricity of the resulting stationary distribution, given by

the unique solution va = 0.5 to the recurrence:

vb =
λ+ (1− ϵ)vb
2λ+ (1− ϵ)

15

which is approached in expectation for large T regardless of initial conditions for any constant λ.
Symmetricity also results in balanced expectations for each item in R(b,c).

Consider the distribution pt∗ played by an algorithm A over the first t∗ rounds, where t∗ is large
enough to ensure concentration. If pt∗,a + pt∗,b ≤ 1 − δ for some constant δ, then for β = 0 the
algorithm has regret δαt∗ = Θ(T) for any t∗ = Θ(T). Further, if regret is not bounded, the menu
(a, b) must be played in nearly every round, as other item placed in the menu has positive selection
probability. As such, the empirical probability of b must be close to 1/2.

After t∗, the algorithm cannot obtain a per-round utility which matches that of (b, c) up to δ until a
round t where either:

λ+ (1− ϵ)pt,c
2λ+ (1− ϵ)(pt,b + pt,c)

≥ 1/2− δ

or

λ+ (1− ϵ)pt,c
2λ+ (1− ϵ)(1− pt,b + pt,c)

≥ 1/2− δ,

which requires the total number of rounds in which c is chosen to approach t∗/2− C · δt∗, where
C is a constant depending on ϵ and λ. Let T = 3t∗/2, and so this cannot happen for small enough
constant δ, resulting in a regret of δβT/3−αT/3 with respect to (b, c), which is Θ(T) when δβ > α.

B.2 Proof of High-Entropy Containment of EIRD (Theorem 2)

Proof. By Lemma 14, for a λ-dispersed preference modelM with λ ≥ Ck2

n , any uniform distribution
over n/C items lies inside EIRD(M). We make use of a lemma from [2], which we restate here.

Lemma 7 (Lemma 8 in [2]). For a random variable A over [n] with H(A) ≥ log n − γ, there is
a set of ℓ+ 1 = O(γ/τ3)) distributions ψi for i ∈ {0, . . . , n} over a partition of the support of A
which can be mixed together to generate A, where ψ0 has weight O(τ), and where for each i ≥ 1:

1. log |supp(ψi)| ≥ log n− γ/τ .

2. ψi is within total variation distance O(τ) from the uniform distribution on its support.

Using this, we can explicitly lower bound the support of each ψi:

log |supp(ψi)| ≥ log(n)− γ/τ
= log(n)− log(exp(γ/τ))

= log

(
n

exp(γ/τ)

)
.

As such:

|supp(ψi)| ≥
n

exp(γ/τ)
.

Each uniform distribution over supp(ψi) lies inside EIRD(M) for λ ≥ Ck2

n , provided that C ≥
exp(γ/τ). The O(τ) bound on total variation distance is preserved under mixture, as well as when
redistributing the mass of ψ0 arbitrarily amongst the uniform distributions.

B.3 Proof of Query Learning Runtime Lower Bound (Theorem 3)

Proof. For any permutation σ, we can lower bound the steps required to move between any two
vectors adjacent in the ordering in terms of dmax and the number of rounds elapsed thus far.

Lemma 8. Consider two vectors v and v′, where v is the current empirical item distribution after t
steps. Reaching an empirical distribution of v′ requires at least t · dmax(v, v

′) additional steps.

16

Proof. Let x be the histogram representation of v with total mass t, and let j∗ = arg maxjvj − v′j ,
where vj − v′j = dmax(v, v

′). Let x′ = t′ · v′ be the histogram representation of v′ with total mass
t′, such that xj∗ = x′j∗ . Note that t′ is the smallest total mass (or total number of rounds) where a
histogram can normalize to v′, as any subsequent histogram must have x′j∗ ≥ xj∗ . As such, we must
have that t′ · v′j∗ ≥ t · vj∗ , implying that:

t′

t
≥ vj∗

v′j∗

=
v′j∗ + dmax(v, v

′)

v′j∗

≤ 1 + dmax(v, v
′).

At least one round is required to reach the first vector in a permutation, and we can use the above
lemma to lower-bound the rounds between any adjacent vectors in the ordering. Taking the minimum
over all permutations gives us the result.

C Proofs of Local Learnability for Section 2.4

Each proof gives a learning algorithm which operates in a ball around the uniform vector, which is
contained in EIRD(M) whenever λ ≥ k2

n by Lemma 4.

C.1 Proof of Univariate Polynomial Local Learnability

Proof. Query the uniform vector vU where each vi = 1
n . Let Z =

√
nd/6

α . Consider three sets each
of d/2 memory vectors where the items with indices satisfying i mod 3 = z each have memory
values 1

n + j
Z , items satisfying i mod 3 = z + 1 have values 1

n −
j
Z , and the remainder have 1

n

(for z ∈ {0, 1, 2}, and for 1 ≤ j ≤ d
2). All such vectors lie in Vα, as 2n/3 · (d/(2Z))2 ≤ α2. Query

each of the 3d/2 vectors. For each query, let Rv be the sum of all scores of the items held at 1
n ,

divided by the sum of those same items’ scores in the uniform query. Divide all scores by Rv. Let
R∗

v be the be the corresponding ratio of these sums of scores under {fi}; each sum is within [λ3 , 1]
at each vector, and the sums of observed scores have additive error at most nβ/3. As such, Rv has
additive error at most 2nβ

λ from R∗
v . This gives us estimates for d+ 1 points of f̂i(xj) = ŷj for each

polynomial, up to some universal scaling factor. We can express this d-degree polynomial f̂i via
Lagrange interpolation:

Ld,j(x) =

d∏
k ̸=j

x− xk
xj − xk

;

f̂i(x) =

d∑
j=0

ŷjLn,j .

Note that
∑

i f̂i(vU) = 1 as the scores coincide exactly with our query results at the uniform vector.
To analyze the representation error, let {f∗i } be the set of true polynomials fi rescaled to sum to 1 at
the uniform vector; this involves dividing by a factor S ∈ [nλ, n], and produces identical scores at
every point. Consider the difference

∣∣ŷj − y∗j ∣∣ for each y∗j = f∗i (xj). The query error for ŷj prior to
rescaling is at most β; rescaling by R∗

v would increase this to at most 3β/λ, which is amplified to at
most ∣∣ŷj − y∗j ∣∣ ≤ 3β

λ
+

2nβ

λ
≤ 3nβ

λ

17

as each query score is at most 1 (and our setting is trivial for n ≤ 2). The magnitude of each of the
d+ 1 Lagrange terms can be bounded by:

|Ld,j(x)| ≤
d/2∏
j=1

Z2

j2

≤ Zd

((d/2)!)2

for any x ∈ [0, 1], and so for any function f̂i(x) we can bound its distance from f∗i (x) by:∣∣∣f∗i (x)− f̂i(x)∣∣∣ = (d+ 1) · 3nβZd

λ((d/2)!)2

≤ (d+ 1)3nβZd

λ2d/2
.

This holds simultaneously for each f̂i which, using the fact that the true ratio is at least λ/n and the
per-function bound applies to each denominator term, gives us a total bound on the score estimates
we generate:∣∣∣∣∣ f̂i(x)∑x

j=1 f̂j(x)
− fi(x)∑

j=1 fj(x)

∣∣∣∣∣ ≤
(
1 +

(d+ 1)3nβZd

λ2d/2

)
· (d+ 1)3n3βZd

λ22d/2

≤ 7n3dβZd

λ22d/2

≤ 3 · (6nd)d/2+2β

αdλ22d/2

=
(3nd)d/2+2β

αdλ2
.

Taking β ≤ ϵαdλ2

(3nd)d/2+2 gives us an absolute error of at most ϵ per item score, satisfying a Euclidean

bound of ϵ from any true score vector M(w)/M∗
w for our hypothesis M̂(v) = {f̂i(vi) : i ∈ [n]}.

C.2 Proofs of Multivariate Polynomial Local Learnability

Recall that the two classes of multivariate polynomial models we consider are bounded-degree
multilinear polynomial preference modelsMBMLP , where:

• for each i, M(v)i = fi(v), where fi is a degree-d multilinear (i.e. linear in each item)
polynomial which takes values in [λ, 1] over ∆(n) for some constant λ > 0,

and the class of bounded-degree normalized multivariate polynomial preference modelsMBNMP ,
where:

• for each i, M(v)i = fi(v), where fi is a degree-d polynomial which takes values in [λ, 1]
over ∆(n) for some constant λ > 0, where

∑
i fi(v) = C for some constant C.

We prove local learnability results for each case.
Lemma 9. MBMLP is O(nd)-locally learnable by an algorithm ABMLP with β ≤
O(ϵ2

poly(n(d/α)d)).

Proof. Consider the set of polynomials where each vn term is reparameterized as 1 −
∑n−1

i=1 vi,
then translated so that the uniform vector appears at the origin (i.e. with xn = −

∑n−1
i=1 xi). Our

approach will be to learn a representation of each polynomial normalized their sum, which is unique
up to a universal scaling factor. Let f∗i be the representation of fi in this translation. Consider
the N =

∑d
j=0

(
n−1
j

)
-dimensional basis B where each variable in a vector x corresponds to a

18

monomial of at most d variables in v, each with degree 1, with the domain constrained to ensure
mutual consistency between monomials, e.g.:

B = {1, v1, . . . , vn−1, v1v2, . . . ,

n−1∏
j=n−d

vj}.

Observe that each f∗i is a linear function in this basis. Let qi(x) =M(v)i/M
∗
v denote the normalized

score for item i at v, where v translates to x in the new basis. For we any x we have:
f∗i (x)∑n
j=1 f

∗
j (x)

= qi(x),

and let q̂i(x) denote the analogous perturbed query result, both of which sum to 1 over each i. We
are done if we can estimate the vector q(x) up to distance ϵ for any x.

With f∗i (x) = ⟨a, x⟩+ a0 and
∑n

i=1 f
∗
i (x) = ⟨b, x⟩+ b0, our strategy will be to estimate the ratio

of each coefficient with b0, for each f∗i , in increasing order of degree. While our parameterization
does not include item n, we will explicitly estimate b separate from each a, which we can then use to
estimate f∗n(x) = ⟨b, x⟩ + b0 −

∑n−1
i=1 f

∗
i (x). For a monomial m of degree j, we can estimate its

coefficient for all f∗i simultaneously by moving the values for variables it contains simultaneously
from the 0 vector, and viewing the restriction to its subset monomials as a univariate polynomial of
degree j. We will use a single query to the 0 vector, and 2j + 1 additional queries for each degree-j
monomial (which can be used for learning that monomial’s coefficient in all f∗i simultaneously),
resulting in a total query count of:

1 +

d∑
j=1

(2j + 1) ·
(
n− 1

j

)
= 1 +

d∑
j=1

(2j + 1)
(n− 1)!

j!(n− j − 1)!

= O(nd).

Querying 0 gives us an estimate for each additive term:

âi0
b0

= q̂i(0)

which sum to 1 over all items (and we will take b̂0 = 1). We now describe our strategy for computing
higher-order coefficients in terms of lower-order coefficients under the assumption of exact queries,
after which we conduct error propagation analysis. For a monomial m of degree j, let x(h,m) be
the point where x(h,m),i = hZ if an item i belongs to m and 0 otherwise, with higher degree terms
satisfying the basis constraints (i.e. (hZ)3 for a degree-3 subset of m, and (hZ)j for m), which also
results in the term for a monomial containing any item not in m being set to zero. Query x(h,m) for
2j + 1 distinct values h in {±1, . . . ,±(j + 1)}. For Z = α/(2d(d+ 1)) all queries lie in the α-ball,
as the ℓ1 norm of the positive coefficients, as well as the negative offset for item n, are both bounded
by α/2 in the original simplex basis. Suppose all coefficients up to degree j − 1 are known. The
result of such a query (with z = hZ) is equivalent to:

q(x(h,m)) =
amz

j + fa(z)

bmzj + fb(z)

where fa and fb are (j − 1)-degree univariate polynomials, where each coefficient of some degree
k ≤ j − 1 is expressed by summing the coefficients for degree-k monomials which are subsets of m,
for a and b respectively. Rearranging, we have:

am = qi(x(h,m)) · bm +
q(x(h,m)) · fb(z)− fa(z)

zj
.

This gives us a linear relationship between am and bm in terms of known quantities after just one
query where z ̸= 0. Suppose we could make exact queries; if we observe two distinct linear
relationships, we can solve for am and bm. If each query gives us the same linear relationship,
i.e. qi(x(h,m)) = qi(x(h′,m)) for every query pair (h, h′), then equality also holds for each of the
(qi(x(h,m)) · fb(z)− fa(z))/zj terms. If the latter term is truly a constant function c:

qi(x(h,m)) · fb(z)− fa(z)
zj

= c

19

then we also have:

(amz
j + fa(z)) · fb(z)− (bmz

j + fb(z)) · fa(z) = czj(bmz
j + fb(z)).

Each side is a polynomial with degree at most 2j, and thus cannot agree on 2j + 1 points unless
equality holds. However, if equality does hold, we have that either c = 0 or bm = 0, as the left side
has degree at most 2j − 1, and both zj and bmzj + fb(z) are bounded away from 0 for any z ̸= 0. If
c ̸= 0, then we have that bm = 0 and am = c. If c = 0, then we have

amz
jfa(z)fb(z)− bmzjfa(z)fb(z) = 0,

which implies am = bm, as fa(z)fb(z) cannot be equal to 0 everywhere due to each ai0 and b0 being
positive. Our answer to q(x(h,m)) will be bounded above 0 and below 1, allowing for us to solve for
both am and bm as

am = bm =
qi(x(h,m)) · fb(z)− fa(z)

(1− qi(x(h,m)))zj
.

To summarize, if given exact query answers for 2j + 1 distinct points, we must be in one of the
following cases:

• We observe at least two distinct linear relationships between am and bm from differing query
answers;

• We observe a non-zero constant qi(x(h,m))·fb(z)−fa(z)

zj = c for each query, and have am = c;

• We observe qi(x(h,m))·fb(z)−fa(z)

zj = 0 for each query, and can solve for am = bm.

To begin our error analysis for perturbed queries, we first show a bound on the size of the coefficients
for a polynomial which is bounded over a range.

Lemma 10. Each degree-d′ coefficient of f∗i is at most d′2d
′
.

Proof. First note that the constant coefficient and the coefficient for each linear term have magnitude
at most 1, as the function is bounded in [λ, 1] over the domain (which includes 0). For a degree-d′
monomial m, consider the univariate polynomial corresponding to moving each of its variables in
synchrony while holding the remaining variables at 0, whose degree-d′ coefficient is equal to am.
Consider the Lagrange polynomial representation of this polynomial

Ld′,j(x) =

d′∏
k ̸=j

x− xk
xj − xk

;

f̂i(x) =

d′∑
j=0

ŷjLn,j .

for d′ + 1 evenly spaced points in the range [−1/n, 1/d′ − 1/n], which are all feasible under the
simplex constraints (corresponding to vi ∈ [0, 1/d′] in the original basis, for each i ∈ m). Each pair
of points is separated by a distance of at least 1/(d′2), and so the leading coefficient of each Lagrange
term is at most d′2(d

′−1). Each ŷj is in [λ, 1] and so we have

am ≤ (d′ + 1)d′
2(d′−1)

≤ d′2d
′

for each d′ > 1.

As we estimate coefficients for monomials of increasing degree, we will maintain the invariant
that each degree-j coefficient of a and b is estimated up to additive error ϵj , with respect to the
normalization where b0 = 1. Immediately we have ϵ0 = β for the estimates â0 from our query to the
0 vector. We will also let βj denote the error of a polynomial f̂a restricted to terms for subsets of a
j-degree monomial m

20

For a monomial m, suppose we receive 2 queries q̂i(x(h,m)) and q̂i(x(h′,m)) for some h and h′ where∣∣q̂i(x(h,m))− q̂i(x(h′,m))
∣∣ ≥ Fj

for some quantity Fj . Then we have:

âm = q̂i(x(h,m))b̂m +
q̂i(x(h,m)) · f̂b(hZ)− f̂a(hZ)

(hZ)j

= q̂i(x(h′,m))b̂m +
q̂i(x(h,′m)) · f̂b(h′Z)− f̂a(h′Z)

(h′Z)j

b̂m =
âm

q̂i(x(h,m))
+

f̂a(hZ)
q̂i(x(h,m))

− f̂b(hZ)
(hZ)j

;

=
âm

q̂i(x(h′,m))
+

f̂a(h
′Z)

q̂i(x(h′,m))
− f̂b(h′Z)

(h′Z)j
;

âm
q̂i(x(h′,m))

− âm
q̂i(x(h,m))

=

f̂a(hZ)
q̂i(x(h,m))

− f̂b(hZ)
(hZ)j

−
f̂a(h

′Z)
q̂i(x(h′,m))

− f̂b(h′Z)

(h′Z)j
;

âm =

q̂i(x(h′,m))f̂a(hZ)

q̂i(x(h,m))
− q̂i(x(h′,m))f̂b(hZ)(

1− q̂i(x(h′,m))

q̂i(x(h,m))

)
· (hZ)j

−
f̂a(h

′Z)− f̂b(h
′Z)

q̂i(x(h′,m))(
1− q̂i(x(h′,m))

q̂i(x(h,m))

)
· (h′Z)j

;

b̂m =

q̂i(x(h,m))·f̂b(hZ)−f̂a(hZ)

(hZ)j − q̂i(x(h,′m))·f̂b(h
′Z)−f̂a(h

′Z)

(h′Z)j

q̂i(x(h′,m))− q̂i(x(h′,m))
;

where f̂a and f̂b are the univariate polynomials from summing the lower-order coefficient estimates
for each degree up to j − 1. The additive error to each f̂a(hZ) and f̂a(hZ) can be bounded by:

β +

j−1∑
k=1

(
n

k

)
(hZ)kk2kϵk = β +

j−1∑
k=1

(
n− 1

k

)
(k2hZ)kϵk.

Further, the magnitude of each f̂a(hZ) and f̂b(hZ) is at most 1 +
∑j−1

k=1

(
n−1
k

)
(k2hZ)k. We can

bound the error of other terms as follows:

• Each q̂i(x(h′,m))− q̂i(x(h′,m)) has magnitude at least Fj and at most 1, and additive error
at most 2β;

• Each q̂i(x(h′,m)) has value at least λ
n and at most 1, and additive error at most β;

• Each
q̂i(x(h′,m))

q̂i(x(h,m))
term is either greater than 1

1−Fj
or at most 1− Fj ; the true ratio between

the numerator and denominator is at least λ/n most n/λ, with additive error up to β in both.

• Each 1− q̂i(x(h′,m))

q̂i(x(h,m))
term, is either greater than Fj or at most 1− 1

1−Fj
;

• Each (hZ)j has magnitude at least Zj ;

The error in the numerator of âm, and the fractional terms in the numerator of b̂m is dominated by
multiplying the functions of q̂i with the polynomials themselves. As such, we can bound the error to

21

am and bm by ϵj if we have that:

ϵj ≥ O

(
nβ

λFjZj
·

(
1 +

j−1∑
k=1

(
n− 1

k

)
(k2hZ)k

))

= O

(
nβ

λFjZj
·

(
1 +

j−1∑
k=1

(
n− 1

k

)
(hα)k

))

= O

(
nd2jβ

λαjFj

)
for any α < 1/(nd). Now suppose all pairs of query answers we see are separated by less than Fj ;
the additive error to each estimate of the quantity

ĉ(h,m) =
q̂i(x(h,m)) · f̂b(z)− fa(z)

(hZ)j

is Ej = O
(

β
Zj ·

(
1 +

∑j−1
k=1

(
n
k

)
(k2hZ)k

))
= O

(
β · nd2j/αj

)
. If each such quantity has value

at most Ej , we assume this quantity is zero and solve for am = bm. If some are larger, we must
be in the case where b̂m ≈ 0 and so we set am = ĉ(h,m) for any query result. By taking each
Fj = O(

√
β poly(n, dj , 1/αj)) we can obtain a bound of ϵj = O(

√
β poly(n, dj , 1/αj)) to each

coefficient regardless of which case we are in; after summing the error contribution across coefficients
and accounting for renormalization, recalling that λ = Ω(1/n), we obtain a bound of ϵ on score
vector errors (for any desired norm) provided that ϵ ≥

√
β poly(n, dd, 1/αd).

Next, we prove the local learnability result for normalized multivariate polynomials.
Lemma 11. MBMNP is O(nd)-locally learnable by an algorithm ABMNP with β ≤ ϵ

αdF (n,d)
,

where F (n, d) is some function depending only on n and d which is finite for all n, d ∈ Z.

Proof. Our approach will be to construct a set of O(nd) queries which results in a data matrix which
is nonsingular in the space of d-degree multivariate polynomials, solve for the coefficients of each fi
as a linear function over this basis, and show that the basis is sufficiently well-conditioned such that
our approximation error is bounded.

Consider the set of polynomials where each vn term is reparameterized as 1 −
∑n−1

i=1 vi, then
translated so that the uniform vector appears at the origin (i.e. with vn = −

∑n−1
i=1 vi). Our approach

will be to learn a representation of each polynomial directly, as they are already normalized to sum to
a constant (which must be in the range [1, n]). Let f∗i be the representation of fi in this translation.
Let B be the N =

∑d
j=0(n− 1)j-dimensional basis where each variable in a vector x corresponds

to a monomial of variables in v with degree at most d, with the domain constrained to ensure mutual
consistency between monomials, e.g.:

B = {1, v1, . . . , vn−1, v
2
1 , v1v2, . . . , v

d
n−1}.

Observe that f∗i is a linear function in this basis, with f∗i (x) = ⟨a, x⟩ and
∑n

i=1 f
∗
i (x) = ⟨b, x⟩ for

any x represented in B.

There is a large literature on constructing explicit query sets for multivariate polynomial interpolation,
which ensure that the resulting data matrix is nonsingular; see [14] for an overview. The set must
have at least N points to ensure uniqueness of interpolation, and this is sufficient when points are
appropriately chosen. Let S∗ be any such set such that each point ∥w∥1 ≤ 1/2 for each w ∈ S∗,
and let Cn,d be the ℓ∞ condition number of the resulting matrix Y (which will be positive due to
nonsingularity) given by:

Y =



y
(1)
1 · · · y

(1)
N

...
...

y
(j)
1 · · · y

(j)
N

...
...

y
(N)
1 · · · y

(N)
N



22

where y(j) is the representation of s(j) in the basis B. We show that for any α, we can construct a
matrix X from a query set Sα of size N where ∥v∥1 ≤ α/2 for each v ∈ Sα. For each s(j), let
v(j) = αs(j), which results in ∥v∥1 ≤ α/2 for the parameterization over n− 1 items, and so radius
of α holds when including all n items. This results in a matrix X given by

X =



x
(1)
1 · · · x

(1)
N

...
...

x
(j)
1 · · · x

(j)
N

...
...

x
(N)
1 · · · x

(N)
N


We then have

X = Y D,

where D is a diagonal matrix with the jth diagonal entry νj equal to αdj , where dj is degree of the
jth monomial in B, as our scaling by α is amplified for each column in correspondence with the
associated degree; the values of D will range from αd to 1. We can then bound the condition number
of X as:

cond(X) = cond(Y D)

= ∥Y D∥
∥∥(DY)−1

∥∥
≤ ∥Y ∥ ∥D∥

∥∥D−1
∥∥∥∥Y −1

∥∥
= cond(Y) · cond(D)

≤ Cn,d
maxj νj
minj νk

=
Cn,d

αd
.

Let q denote the vector of exact answers to each query in x from fi, equal to aẋ and let q̂ be the
answers we observe for item i from querying each x. As X is nonstationary, we have that Xa = q,
and by standard results in perturbation theory for linear systems, for â such that Xâ = q̂ we have
that:

∥â− a∥
∥a∥

≤ cond(X)
∥q̂ − q∥
∥q∥

≤ βnCn,d

k2αd

as each entry in q is at least λ ≥ k2/n. Further note that the maximum coefficient of a degree-d
multivariate polynomial which takes maximum value 1 over the unit ball (and hence the simplex)
can be shown to be bounded by a finite function of n and d (see [19]); when accounting for this
factor in relative error across all terms and items, as well as the condition number, we have that for
β ≤ ϵ

αdF (n,d)
for some function F (n, d), the scores generated by the functions f̂i using our estimated

coefficients â result in score vector estimates bounded by ϵ.

C.3 Proof of SFR Local Learnability

We now prove that functions with local sparse Fourier transformation are locally learnable. Recall
that a function f(x) has a ℓ-sparse Fourier transform if it can be written as

f(x) =
ℓ∑

i=1

ξie
2πiηix ,

where ηi is the i-th frequency, ξi is the corresponding magnitude, and i =
√
−1.

We will use the following result about learning sparse Fourier transforms [25].

23

Theorem 6 ([25]). Consider any function f(x) : R→ R of the form

f(x) = f∗(x) + g(x) ,

where f∗(x) =
∑ℓ

i=1 ξie
2πiηix with frequencies ηi ∈ [−F, F] and frequency separation α̂ =

mini ̸=j |ηi − ηj |, and g(x) is the arbitrary noise function. For some parameter δ > 0, we define the
noise-level over an interval I = [a, b] ⊆ R as

N 2 =
1

|I|

∫
I

|g(x)|2dx+ δ

ℓ∑
i=1

|ξi|2 .

There exists an algorithm that takes samples from the interval I with length |I| > O(log(ℓ/δ)α̂)
and returns a set of ℓ pairs {(ξ′i, η′i)} such that for any |ξi| = Ω(N) we have for an appropriate
permutation of the indices

|ηi − η′i| = O
(N
|I||ξi|

)
, |ξi − ξ′i| = O(N),∀i ∈ [ℓ] .

The algorithm takes O(ℓ log(F |I|) log(ℓδ) log(ℓ)) samples and O(ℓ log(F |I|) log(F |I|
δ) log(ℓ)) and

succeeds with probability at least 1− 1/kc for any arbitrary constant c.

Furthermore, the algorithm used in the above theorem uses samples of the form x0, x0 + σ · · ·x0 +
ℓ log(ℓ/δ)σ for randomly chosen x0 and σ = O(|I|/ℓ log(ℓ/δ)).
We will use the above theorem to learn the sparse Fourier representation of the preference model.
Recall that for a memory vector v and item i ∈ [n], M(v)i = fi(vi).

Proof. Let vunif denote the uniform memory vector. We will learn each function fi separately.
Fix i ∈ [n]. We will set the interval I to be [1/n − Z, 1/n + Z] for some sufficiently small
log(ℓ/δ)

α̂ ≤ Z ≤ α/2 where α̂ is the frequency separation, where α = Ω̃(1/α̂) so that Z is defined.

Let S = {xj}Õ(ℓ)
j=1 for xj ∈ [−Z,Z] be a set of points such that the Fourier learning algorithm queries

1/n+ x for each x ∈ S. For each point x ∈ S, we define the memory vector vx = vunif + xei − xej
where j is a fixed randomly chosen other index. All such vectors lie in Vα, as 2(α/2)2 ≤ α2. We
query all vectors vx for x ∈ S, along with vunif. Recall that ŝv is the empirical score vector at a
memory vector v. For each vector v, let Rv be the sum of all scores of all the n− 2 items held at 1

n ,
divided by the sum of those same items’ scores in the uniform vector vunif. For each vector vx we
multiply the score ŝvx,i of item i by Rvx to obtain a noisy sample of fi(1/n+ x). For i ∈ Õ(ℓ), let
the i-th sample be denoted by ŷi and the true value fi(1/n+ xi) be denoted by yi. We then pass all
these samples to the Fourier learning algorithm in Theorem 6 in order to get an estimate f̂ of f .

We now analyze the error in the samples. Let R∗
v be the corresponding ratio of these sums of scores

under {fi}; each sum is within [λ3 , 1] at each vector, and the sums of observed scores have additive
error at most 2nβ. As such, Rv has additive error at most 2nβ

λ from R∗
v. For each vector vx we

have that ŝvx,i/(
∑

j ŝvx,j) is within a β error from svx,i/(
∑

j svx,j). Hence, the total error in each
sample is bounded as:

|ŷi − yi| ≤
7nβ

λ
.

Using this we can bound the total noise term by N = 8nβ/λ using our choice of δ =

(βn)/(λ
∑ℓ

i=1 |ξi|). The algorithm will return a set of {(η̂i, ξ̂i)} such that

|ηi − η′i| = O
(1
α

)
, |ξi − ξ′i| = O(

βn

λ
),∀i ∈ [ℓ] .

24

So for function f̂i(x) we can bound its distance from fi(x) by:∣∣∣fi(x)− f̂i(x)∣∣∣ =
∣∣∣∣∣∣

ℓ∑
i=1

ξie
2πiηix −

∑
i∈[ℓ]

ξ̂ie
2πiη̂ix

∣∣∣∣∣∣
≤
∑
i∈[ℓ]

∣∣∣ξie2πiηix − ξ̂ie2πiη̂ix
∣∣∣

≤
∑
i∈[ℓ]

∣∣∣ξi − ξ̂i∣∣∣ |ηi − η̂i|
≤ O(

ℓnβ

λα
),

since we normalize the above estimates to get a score estimate, the total bound on the score estimates
can be bounded as: ∣∣∣∣∣ f̂i(x)∑x

j=1 f̂j(x)
− fi(x)∑

j=1 fj(x)

∣∣∣∣∣ ≤ O(
ℓβn

αλ
).

Taking β ≤ ϵλα√
nℓ

gives us an error of at most ϵ
√
n, satisfying a Euclidean bound of ϵ from any true

score vector M(w)/M∗
w for our hypothesis model M̂(v) = {f̂i(vi) : i ∈ [n]}.

D Omitted Proofs for Section 3

D.1 Proof of Theorem 1

Proof. First observe that yt ∈ Kt every round, as

For x∗ = arg minx∈KT

∑T
t=1 ft(x), let x∗δ,ϵ = ΠKT,δ,ϵ

(x∗). By linearity and properties of projection,

we also have that x∗δ,ϵ = arg minx∈KT,δ,ϵ

∑T
t=1 ft(x), and that

∥∥∥x∗δ,ϵ − x∗∥∥∥ ≤ (δ + ϵ)Dr . For G-
Lipschitz losses {ft} we have

T∑
t=1

E[ϕt]−
T∑

t=1

ft(x
∗) =

T∑
t=1

E[ft(yt)]−
T∑

t=1

ft(x
∗)

≤
T∑

t=1

E[ft(yt)]−
T∑

t=1

ft(x
∗
δ,ϵ) + δTG

D

r
+ ϵTG

D

r
.

Let f̂t(x) = Eu∼B[f(x+ δu+ ξt)] = ft(x+ ξt) by linearity. Then we can bound the regret by:
T∑

t=1

E[ϕt]−
T∑

t=1

ft(x
∗) ≤

T∑
t=1

E[ft(yt)]−
T∑

t=1

ft(x
∗
δ,ϵ) +

δTGD

r
+
ϵTGD

r

=

T∑
t=1

E[f̂t(xt)]−
T∑

t=1

ft(x
∗
δ,ϵ) +

δTGD

r
+
ϵTGD

r

≤
T∑

t=1

E[f̂t(xt)]−
T∑

t=1

f̂t(x
∗
δ,ϵ) +

δTGD

r
+ ϵTG

(
D

r
+ 1

)

≤
T∑

t=1

E[f̂t(xt)]−
T∑

t=1

f̂t(x
∗
δ,ϵ) +

δTGD

r
+

2ϵTGD

r

Next, we prove a series of lemmas — an analysis of online gradient descent for contracting decision
sets, and a corresponding bandit-to-full-information reduction — which allow us to view the remain-
ing summation terms involving {xt} as the expected regret of stochastic online gradient descent for
the loss function sequence {f̂t} with respect to KT,δ,ϵ.

25

When modifying online gradient descent to project into smaller sets each round, the analysis is
essentially unchanged.

Algorithm 3 Contracting Online Gradient Descent.

Input: sequence of contracting convex decision sets K1, . . .KT , x1 ∈ K1, step size η
Set x1 = 0
for t = 1 to T do

Play xt and observe cost ft(xt)
Update and project:

yt+1 = xt − η∇ℓt(xt)
xt+1 = ΠKt+1

(yt+1)

end for

Lemma 12. For a sequence of contracting convex decision sets K1, . . .KT , x1 ∈ K1 each with
diameter at most D, a sequence of G-Lipschitz losses ℓ1, . . . , ℓT , and η = D

G
√
T

, the regret of
Algorithm 3 with respect to Kt is bounded by

T∑
t=1

ℓt(xt)− min
x∗∈KT

T∑
t=1

ℓt(x
∗) ≤ GD

√
T .

Proof. Let x∗ = arg minx∈KT

∑T
t=1 ℓt(x), and let∇t = ∇ℓt(xt). First, note that

ℓt(xt)− ℓt(x∗) ≤ ∇⊤
t (xt − x∗)

by convexity; we can then upper-bound each point’s distance from x∗ by:

∥xt+1 − x∗∥ =
∥∥ΠKt+1

(xt − η∇ℓt(xt))
∥∥ ≤ ∥xt − η∇t − x∗∥ ,

using projection properties for convex bodies. Then we have

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 + η2 ∥∇t∥2 − 2η∇⊤
t (xt − x∗)

and

∇⊤
t (xt − x∗) ≤

∥xt − x∗∥2 − ∥xt+1 − x∗∥2

2η
+
η ∥∇t∥2

2
.

We can then conclude:
T∑

t=1

ℓt(xt)−
T∑

t=1

ℓt(x
∗) ≤

T∑
t=1

∇⊤
t (xt − x∗)

≤
T∑

t=1

∥xt − x∗∥2 − ∥xt+1 − x∗∥2

2η
+
η

2

T∑
t=1

∥∇t∥2

≤ ∥xT − x
∗∥2

2η
+
η

2
∥∇t∥2

≤ D2

2η
+
η

2

T∑
t=1

∥∇t∥2

= GD
√
T (when η =

D

G
√
T
)

The bandit-to-full-information reduction is fairly standard as well, with a proof equivalent to that of
e.g. Lemma 6.5 in [17], modified for a full-information algorithm A for over contracting sets.

26

Lemma 13. Let u be a fixed point in KT , let {ℓt : Kt → R | t ∈ [T]} be a sequence of differentiable
loss functions, and letA be a first-order online algorithm that ensures a regret bound RegretKT

(A) ≤
BA(∇ℓ1(x1), . . . ,∇ℓT (xT)) in the full-information setting for contracting sets K1, . . . ,KT . Define
the points {xt} as x1 ← A(∅), xt ← A(g1, . . . , gt−1), where gt is a random vector satisfying

E[gt|x1, ℓ1, . . . , xt, ℓt] = ∇ℓt(xt).
Then for all u ∈ KT :

E[
T∑

t=1

ℓt(xt)]−
T∑

t=1

ℓt(u) ≤ E[BA(g1, . . . , gT)] (1)

Proof. Let ht : Kt → R be given by:

ht(x) = ℓt(x) + ψ⊤
t x, where ψt = gt −∇ℓt(xt).

Note that ∇ht(xt) = gt, and so deterministically applying a first order algorithm A on {ht} is
equivalent to applying A on stochastic first order approximations of {ft}. Thus,

T∑
t=1

ht(xt)−
T∑

t=1

ht(u) = ≤ BA(g1, . . . , gT).

Using the fact that the expectation of each ψt is 0 conditioned on history, and expanding, we get that

E[ht(xt)] = E[ℓt(xt)] + E[ψ⊤
t xt]

= E[ℓt(xt)] + E[E[ψ⊤
t xt|x1, ℓ1, . . . , xt, ℓt]]

= E[ℓt(xt)] + E[E[ψt|x1, ℓ1, . . . , xt, ℓt]⊤xt]
= E[ℓt(xt)],

and we can conclude by taking the expectation of Equation 1 for any point u ∈ KT .

The key remaining step is to observe that each gt is an unbiased estimator of∇f̂t(xt):

E[gt|x1, f̂1, . . . , xt, f̂t] =
n

δ
E[ϕtut|xt, f̂t]

=
n

δ
E[E[ϕt|xt, f̂t, ut] · ut|xt, f̂t]

= E[ft(xt + δut + ξt)ut|xt, f̂t]
= E[f̂t(xt + δut)ut]

= ∇f̂t(xt),
where the final line makes use the sphere sampling estimator for linear functions (as in e.g. Lemma
6.7 in [17]). This allows us to apply Lemma 13 to Algorithm 3:

T∑
t=1

E[ϕt]−
T∑

t=1

ft(x
∗) ≤

T∑
t=1

E[f̂t(xt)]−
T∑

t=1

f̂t(x
∗
δ,ϵ) +

δTGD

r
+

2ϵTGD

r

≤ RegretCOGD

(
g1, . . . , gT |{f̂t}

)
+
δTGD

r
+

2ϵTGD

r

≤ D2

2η
+
η

2

T∑
t=1

∥gt∥2 +
δTGD

r
+

2ϵTGD

r

≤ D2

2η
+ η

n2

2δ2
T +

δTGD

r
+

2ϵTGD

r
(def. of gt, ϕ ≤ 1)

≤ nGDT 3/4 +
GDT 3/4

r
+

2ϵTGD

r
(η =

D

nT 3/4
, δ =

1

T 1/4
).

27

E Omitted Proofs for Section 4

E.1 Proof of Lemma 4

Proof. Consider any memory vector v ∈ ∆(n). We can show constructively that there is some
distribution of menus zU which induces the all- 1

n vector.

We construct zU in 1
τ + 1 stages for some τ > 0, through a process where we continuously add

weight azj to a sequence of distributions {zj |j ≥ 1} over menus until the total weight
∑

j azj sums
to 1. The uniform-inducing menu distribution zU will then be defined by taking the mixture of the
menu distributions zj where each is weighted by azj .

Consider the uniform distribution over all menus; continuously add weight to this distribution until
some item (the one with the largest score in M) has selection weight τ/n (its selection probability
under M at memory vector v in each distribution of menus zj considered thus far, weighted by azj).
While there are at least k items with selection weight τ/n, continuously add weight to the uniform
distribution over all menus containing only items with weight below τ/n.

Once there are fewer than k items with selection weight at most τ/n, we terminate stage 1. In general,
for stage i, we always include every item with weight below τi/n in the menu, with all others chosen
uniformly at random.

Inductively, we can see that every item starts stage i with at least weight τ(i − 1)/n and at most
τi/n, with at most k − 1 items having weight less than τ(i− 1)/n. Crucially, any item with weight
less than τi/n at the start of stage i will reach weight τi/n before any item starting at weight τi/n
reaches weight τ(i+ 1)/n. Such an item is included in every menu until this occurs, resulting in a
selection probability of at least λ

k in each menu distribution considered, whereas any other item is
only included in the menu with probability at most k

n , which bounds its selection probability in the
menu distribution. As λ

k ≥
k
n , the selection weight of items beginning stage i below τi/n reaches

τi/n no later than when the stage terminates.

After stage 1
τ , every item has weight at most 1

n and at least 1
n −

τ
n . We continue for one final stage

until the sum of weights is 1, at which point every item has a final weight pzU ∈ [1n −
τ
n ,

1
n + τ

n].
Taking the limit of τ to zero gives us that xU is in IRD(v,M) for any v, and hence xU is in EIRD(M)
as well.

Further, there is a distribution of menus zbi where i has probability pbi,i = k/n and every other item
j has probability

pbi,j =
1

n
− k − 1

n(n− 1)

Here, we include i in every menu and run the previous approach over the remaining n − 1 items
for menus of size k − 1, which we then augment with i. The required bound on λ still holds for
any λ < 1, as k2

n ≥
(k−1)2

n−1 (for any k ≤
√
n, which holds as λ < 1). The selection probability of i

will be at least λ
k ≥

k
n ; we can take a mixture of this menu distribution with zU such that pbi,i =

k
n

exactly.

The convex hull of each pbi is thus contained in EIRD(M), as any point p ∈ convhull{pbi |i ∈ [n]}
can be generated by taking the corresponding convex combination of menu distributions zbi . Any
point x ∈ ∆(n) where ∥xU − x∥∞ ≤

k−1
n(n−1) can then be induced by taking mixtures of the zbi

menu distributions.

E.2 Subset-Uniform Distributions in EIRD

Lemma 14. For any λ-dispersed M where λ ≥ Ck2

n , EIRD(M) contains the uniform distribution
over any n

C items.

Proof. The proof of Lemma 4 carries through directly for a universe with only n
C items.

28

E.3 Implementing Near-Uniform Vectors

Lemma 15. For any λ-dispersed M where λ ≥ k2

n , for any point x ∈ ∆(N) satisfying

∥x− xU∥∞ ≤
k − 1

n(n− 1)
,

there is an adaptive strategy for selecting a sequence of menus over t∗ rounds, resulting in a
t∗-round empirical distribution x̂ such that ∥x− x̂∥∞ ≤ γt∗ + O(n) with probability at least
1− 2n exp(−γ2t∗/8), for any γ.

Proof. Our strategy will essentially correspond to the construction in Lemma 4, which shows that
our vector is indeed in EIRD(M). For each item i, let Vi = t∗ · xi be the target number of rounds
where i is selected over the window. For any t ≤ t∗ let V̂t,i be the number of additional rounds an
item must be selected before reaching its target, with V̂1,i = Vi. In each round t, construct a menu
for the Agent by choosing the k items with largest remaining counts V̂t,i, breaking ties uniformly at
random, and decrement by 1 the count of the item selected in that round. Our approach will be to
show that each item’s final count under this process is close to its target in expectation after t∗ rounds,
and use the sequence of expectations as rounds progress to define a martingale which will be close to
its final expectation with high probability.

Let V̂t,⊥ denote the minimum value of V̂t,i across items. Observe that our procedure maintains the
invariant that V̂t,⊥ can only decrease in a round where at most k − 1 items have remaining counts
V̂t,i > V̂t,⊥. We will consider each round in which V̂t,⊥ decreases as the beginning of a “trial”, and
we will track the expectations of V̂t,i over sequences of trials across two cases:

• Case 1: For every round t at the start of a trial, we have had V̂t,i − V̂t,⊥ > 2;

• Case 2: There has been some round t at the start of a trial where V̂t,i − V̂t,⊥ ≤ 2.

When the first trial begins, we have at most k − 1 items in Case 1, and items can never enter Case 1
after being in Case 2. We assume without loss of generality that we begin in a state where the first
trial has just begun, as no prior rounds can increase the distance of any item from the minimum.

Case 1. Note that the probability of an item in the menu being selected in a given round is at least
λ/k ≥ k/n. We can upper-bound the expected distance of some count V̂t,i from V̂t,⊥ by analyzing a
“pessimistic” process where we assume that this minimum selection probability is tight, where every
selection of an item other than item i corresponds to the beginning of an “event”, where the number
of selections of i in each event is geometrically distributed with parameter p = 1− k

n . While these
counts are not truly geometrically distributed, as the maximum number of selections is bounded, we
will only need to analyze the probabilities of sums corresponding to items remaining in Case 1, in
which case truncation does not affect the resulting distribution. Not every event corresponds to a
new trial; there are deterministically at least n− k events per trial, as every item begins a trial with a
strictly higher count than V̂t,⊥, and so at least n− k − 1 selections of items other than i must occur
before an item with minimum count can enter the menu (conditioned on V̂t,i remaining above V̂t,⊥).

Under this process, after z events, the distribution of V̂t,i is given by subtracting the sum of z of the
aforementioned geometric variables from V̂1,i, which is distributed according to a negative binomial:

Pr
[
V̂1,i − V̂t,i = y

]
=

(
z + y − 1

z − 1

)(
k

n

)y (
1− k

n

)z

with mean z(k/n)
1−k/n = zk

n−k = E[y] and variance zk/n
(1−k/n2) . After z events, V̂1,⊥ has dropped by at

most z
n−k . As such, by the time V̂t,⊥ reaches 0, we would also have that the expectation of V̂i,t would

reach 0 if we were to keep item i in the menu at every round and allowed its count to drop below V̂t,⊥
without replacing it (and become negative); however, our process truncates (and enters Case 2) upon
reaching 2 from the minimum, and so we can simply show that the contribution of the left tail of this
distribution is small. Note that at the beginning of our process, we have V̂1,i − V̂1,⊥ ≤ t∗(k−1)

n(n−1) , and

29

so the expected difference from the minimum upon reaching V̂t,⊥ = 0 while remaining in Case 1 is
at most:

E[(V̂t∗,i − V̂t∗,⊥) · I(Case 1)] ≤ 2 +

V̂1,i−2∑
y=0

(2 + V̂1,i − y)
(

t∗ − 1

t∗ − y − 1

)(
k

n

)y (
1− k

n

)t∗−y

≤ 2 +

V̂1,i−2∑
y=0

(2 + V̂1,i − y)t∗

t∗ − V̂1,i

(
t∗

t∗ − y

)(
k

n

)y (
1− k

n

)t∗−y

.

For any y in this range we have going from y − 1 to y:(
t∗

t∗−y

) (
k
n

)y (
1− k

n

)t∗−y(
t∗

t∗−y−1

) (
k
n

)y−1 (
1− k

n

)t∗−y−1 =
t∗ − y − 1

y
·

k
n

1− k
n

≥ t∗

V̂1,i
· k
n

≥ t∗

1/n+ k/n2
· k
n

≥ k

1 + k/n

which is greater than 1 for any k ≥ 2. As such, we can bound the tail summation by:

E[(V̂t∗,i − V̂t,⊥) · I(Case 1)] ≤ 2 +
t∗

t∗ − V̂1,i
·

∞∑
y=0

(
1 + k/n

k

)y

≤ 2 +
t∗

t∗ − V̂1,i
· k

k − 1− k/n
≤ 5

for k ≥ 2 and sufficiently large n.

Case 2. Here we show that once an item has reached Case 2, its expected distance from V̂t,⊥ in any
future round is at most a constant. Separating this analysis is necessitated by the fact that there exist
edge cases where an item’s expected distance from the minimum can be increasing (e.g. if all items
start a trial at one above the minimum, an item can only have a decreasing distance if it becomes
the next minimum, and can have a higher likelihood of remaining in the menu when the next trial
begins). Our approach will be to show by induction that, beginning from the first trial in Case 2,
the distribution of item i’s distance from the minimum, where py is the probability of distance y,
satisfies:

py+1 ≤ py/2k/2−1

for y ≥ 2. This holds at the first trial in Case 2, as we have py+1 = 0 for each y ≥ 2. An item can
only have a distance increase of 1 in a given trial (if it is not picked in any of the at least n−k rounds),
which occurs with probability at most 1

(1+k/n)

n−k ≤ e−k/2 ≤ 1
2k/2 , using that n− k > n/2 (which

holds given that k ≥ 2 and n ≥ k2). Further, using the same negative binomial process as in Case
1 to describe the number of selections of item i in a given trial, we can see that 1/2 upper bounds
its density function after n− k events for any valid setting of our parameters, and so the probability
that an item is selected j times, for j such that it remains in every menu, is at most 1/2. Letting p∗
describe the distribution after another trial, we can solve for:

p∗y = py−1/2
k/2 +

∞∑
j=0

py+j · Pr[drops j + 1]

≤ py−1/2
k/2 + py/2;

p∗y+1 = zpy/2
k/2−1;

30

using the induction hypothesis on p. As such, in any future trial, the expected distance from minimum
can be given by:

E[V̂t∗,i − V̂t,⊥|Case 2] ≤ 2 +

∞∑
y=3

py

≤ 2 +

∞∑
y=3

2y(k/2−1)

≤ 3.21

for any k ≥ 3. One can strengthen this to yield a constant sum for k = 2 via a more delicate analysis
on the upper bound of the negative binomial density function, which we omit.

Concentration Analysis. We now have that in either case, the expectation E[(V̂t∗,i − V̂t∗,⊥)] is a
constant, for every item i. Given any current empirical counts counts {V̂t,i : i ∈ [n]} and scores
for every item at any time t (which we as the Recommender need not know), the distribution over
subsequent items chosen is fully defined. Let Xt,i = Pr[i chosen | {V̂t−1,i : i ∈ [n]}, {fi(vt)}].
For this process, we can now view each quantity Yt,i = (V̂t−1,i − V̂t,i) as a Bernoulli random
variable with mean Xt,i. Then we can define Zt,i =

∑t
h=1 Yh,i − Xh,i as a martingale, where

E[Zt,i] = Zt−1,i and |Zt,i − Zt−1,i| ≤ 2. Note that E[Zt∗,i] is equal to Vi up to a small constant ci.
We can then apply Azuma’s inequality to get:

Pr
[∣∣∣Ẑt∗,i − Vi − ci

∣∣∣ ≥ γt∗] ≤ 2 exp

(
−γ2t∗

8

)
.

These constants are independent of t∗, and will vanish when t∗ is sufficiently large.

E.4 Proof of Theorem 5

Proof. Let:

• FLL = fLL(λ, α, n,M) s.t. AM with β/FLL results in ϵLL = ϵλk
n ;

• FQ = 8L
√
nk

λ FLL;

• tquery = 2n
k−1

(
FLL

β

)2
log
(

2nkS
(k−1)δquery

)
= Θ̃(1/ϵ2);

• tpad = max
(

2FQtquery

β ,
32n2F 2

Q log(2/δpad)

β2

)
= Θ̃(1/ϵ3);

• tmove = max
(

n(n−1)tquery

k−1 ,
32n2F 2

Q log(4S/δmove)

(1−4k/n)β2 , tpad

)
= Θ̃(1/ϵ3);

• t0 = tpad + S(2 · tmove + tquery) = Θ̃(1/ϵ3).

After running UniformPad via the first Lemma 15 construction for tpad steps, our empirical memory
vector is within ℓ∞ distance β

nFQ
of xU with probability at least 1− δpad. We maintain the invariant

that when calling MoveTo(x) to reach some non-uniform vector x from xU , the ℓ∞ distance between
x and xU is at most α, and that after calling Query(x) the current vector x′ (accounting for drift
during sampling) has ℓ∞ distance at most α from xU .

At any time t < t0 when MoveTo is called, the proportion of steps which the current invocation will
contribute to the total history is at least:

Rmove =
tmove

tpad + S(tmove + tquery)
= O(1/S)

Let α = k−1
2n(n−1) ·Rmove denote the radius of the ℓ2 ball around xU in which we permit queries for

local learning. Any point x within the α-ball around the uniform vector can reach (or be reached

31

from) the uniform vector with one call to MoveTo(x), as their ℓ∞ distance is at most α, so some
difference vector exists with mass Rmove and which satisfies the required norm bound. For each input
x, called from xt, MoveTo(x) applies the construction from Lemma 15 for the mass tmove vector
y = x · (tmove) − xt · t. This results in a total error of at most β

2nFQ
· tmove + 1 ≤ β

nFQ
· tmove per

item count with probability at least 1− δmove, as

tmove ≥
32n2F 2

Q log(4S/δmove)

(1− 4k/n)β2
.

This yields a total variation distance within β
2FQ

for the entire memory vector when appended to the
current history.

To run Query(x), consider a set of n
k−1 menus, where item 1 appears in every menu and every other

item appears in exactly one. Over the following tquery rounds, play each menu tquery · k−1
n times and

note the proportion of each item observed relative to item 1 when its menu was played. Each scoring
function fi ∈M is L-Lipschitz; we run Query(x) for tquery rounds, which can introduce a drift of at
most β/(2FQ) in total variation distance given the bound on tquery in terms of tpad. This drift results
in a vector which remains within ℓ∞ distance 2α from xU , and so xU can still be reached again in a
single MoveTo(xU) call.

The empirical average memory vector over all menu queries (for any item) is within β/FQ total
variation distance from x, and so the expected distribution of items differs from that at x by at most
β/FQ · 4L

√
nk

λ = β/(2FLL) in ℓ∞ distance. Each point’s observed frequency differs from that
expectation by at most β/(2FLL) with high probability. For an item i in the menu at a given round,
we view whether or not it was chosen as a Bernoulli random variable, with mean equal to its relative
score among items in the menu. Let s̄v,K,i be the expected frequency of observing an item when the
menu K containing it is played, given the empirical sequence of memory vectors during those rounds
tquery · k−1

n , and let ŝv,K,i be the true observed frequency. We then have:

Pr

[
|s̄v,K,i − ŝv,K,i| ≥

β

2FLL

]
≤ 2e(−2(β/2FLL)2tquery(k−1)/n)

= 2e(−(β/FLL)2tquery(k−1)/(2n))

≤
δquery(k − 1)

nkS
,

given that

tquery ≥
2n

k − 1

(
FLL

β

)2

log

(
2nkS

(k − 1)δquery

)
.

For item 1 take the average over all menus, and rescale such that all scores sum to 1 (using the
frequency of item i relative to the frequency of item 1 when both were in the menu). Each score, and
its error bound, will only shrink under the rescaling. This gives us score vector estimates ŝx for each
x ∈ S with additive error at most β

FLL
relative to the true frequency of item 1, and thus overall, where

FLL = fLL(λ, α, n,M). This holds for every query simultaneously with probability 1− δquery.

By the local learnability guarantee forM, running AM our results in a hypothesis M̂ which has ℓ2
error at most ϵLL = ϵλk

n for any x ∈ ∆(n). In each round, the model and memory vector defines a
space of feasible item distributions. This allows us to run RC-FKM for perturbations up to ϵ. We can
represent each set IRD(vt, M̂) explicitly as the convex hull of normalized score estimates for every
menu.

We implement PlayDist(x) using current score estimates M̂(vt) to generate a menu distribution
which approximately induces the instantaneous item distribution x. Taking the convex hull over every
menu’s score vector under M̂ yields a polytope representation of IRD(vt, M̂), which will contain our
chosen action at each step.

Lemma 16. Let x be a point in IRD(v,M), and let z ∈ ∆(
(
n
k

)
) be a non-negative vector such

that
∑

j∈(nk)
zj · pKj ,v = x, where Kj is the jth menu in lexicographic order. If the Recommender

randomly selects a menu K to show the Agent with probability according to z, then the Agent’s item
selection distribution is x.

32

Proof. The probability that the Agent selects item i is obtained by first sampling a menu, then
selecting an item proportionally to its score:

Pr[Agent selects i] =
∑
j∈(nk)

zj · pKj ,v,i = xi.

Lemma 17. Given M̂ satisfying eλk
n -accuracy and a target vector xt ∈ IRD(vt, M̂) generated by

RC-FKM, there is a linear program for computing a menu distribution zt such that the induced item
distribution pzt satisfies

∥pzt − xt∥ ≤ ϵ.

Proof. We can define a linear program to solve for z with:

• variables for zj ∈ [0, 1], where
∑

j∈(nk)
zj = 1,

• estimated induced distributions for each menu p̂Kj
, and

• a constraint for each i ∈ [n]:

(nk)∑
j=1

zj · p̂Kj ,i = xt,i.

If
∥∥∥M̂(x)/M̂∗ −M(x)/M∗

x

∥∥∥ ≤ ϵλk
n , then for any menu distribution z, we have that:

∥pz,v − p̂z,v∥ ≤ ϵ.

Consider some menu K. The ℓ2 distance of score vectors restricted to the menu is at most ϵλk
n , and

each vector has mass at least kλ
n by dispersion. Rescaling vectors to have mass 1 yields a bound of ϵ,

which is preserved under mixture (which is the induced distribution by Lemma 16), as well as when
projecting into the n− 1 dimensional space for RC-FKM, and so there is some perturbation vector
ξt with norm at most ϵ such that z induces xt + ξt.

Note that the losses for RC-FKM can be 2G-Lipschitz after the reparameterization where xt,n =

1 −
∑n−1

i=1 xt,i. Any point satisfying within radius r = k−1
n(n−1) from the uniform distribution in n

dimensions, feasible by Lemma 4, is within distance r under the reparameterization as well, as we
simply drop the term for xn. The required radius surrounding 0 for RC-FKM of r is thus satisfied,
and we have that ϵ+ δ ≤ r/T 1/4 ≤ r. Further, the diameter of the simplex is bounded by D = 2.
We can directly apply the regret bound of RC-FKM for these quantities, which holds with respect to
Hc ∩ EIRD(M̂). By Lemma 17, for any point x ∈ EIRD(M̂), there is a point x′ ∈ EIRD(M) such
that ∥x− x′∥ ≤ ϵ. Projecting both points into Hc cannot increase their distance by convexity, and so
the optimality gap between the two sets is at most ϵGT . Our total regret is at most the sum of:

• Maximal regret for the learning runtime G · t0;

• The regret of RC-FKM over T − t0 rounds;

• The gap between EIRD(M̂) and EIRD(M); and

• The union bound of each event’s failure probability.

We can bound this by:

RegretC∩EIRD(M)(T) ≤ G · t0 + 4nGT 3/4 +
4(δ + 2ϵ)GT

r
+ ϵGT + (δpad + δmove + δquery)T

= Õ(T 3/4)

when taking each of {δpad, δmove, δquery} = 1
T 1/4 . We can also bound the empirical distance from Hc.

33

Lemma 18. The diversity constraint isO(ϵ)-satisfied by the empirical distribution vT with probability
1−O(T−1/4).

Proof. Note that after t0, the empirical distribution vt0 is within total variation distance β
2FQ

from
xU (which is necessarily in Hc). Further, each vector xt played by RC-FKM results in a per-round
expected item distribution yt which lies in Hc by the robustness guarantee. We can apply a similar
martingale analysis as in Lemma 15 to the sequence of realizations of any item versus its cumulative
expectation

∑
t>t∗ yt to get a bound of (much less than) β

2FQ
in total variation distance as well, which

is preserved under mixture. For any locally learnable class, β = O(ϵ). Note that for all the classes
we consider, we have β/(2FQ) ≪ ϵ. Both events hold with probability 1 − O(T−1/4), as we can
apply the same failure probabilities used for the learning stage for each.

Note that for a constraint Hc where c is sufficiently bounded away from log(n) and for large enough
T , this will in fact yield an empirical distribution which exactly satisfies Hc, as the weight Õ(T 3/4)
uniform window will “draw” the empirical distribution back towards the center of Hc, as it dominates
the total Õ(T 1/2) total error bound (for the unnormalized empirical histogram T · vT) obtainable
with a martingale analysis over the entire RC-FKM window.

This completes the proof of the theorem.

34

