Table 4: Comparison of ObjectNav methods. Open-world methods are not limited to a closed set
of object categories. Zero-shot methods do not use ObjectNav annotations for training.

Method Open-World Zero-Shot
Fully-Supervised Methods [10-13, 16] X X
EmbCLIP [25] v X
ZER [18] X v
CoW [21] v v
ZSON (ours) v v

A Extended Discussion of Related Work

In Table 4, we compare object-goal navigation (0bjectNav) methods along two dimensions: open-
world and zero-shot. Open-world methods are not restricted to object categories from a closed prede-
termined vocabulary (e.g., “chair”, “bed”, “sofa”, etc.). Zero-shot methods do not use ObjectNav
annotations (e.g., labeled environments or large-scale human demonstrations [0]) for training.

Traditional, fully-supervised ObjectNav methods [10-13, 16] rely on a closed-world assumption
and task-specific training data — i.e., they are neither open-world nor zero-shot. EmbCLIP [25]
can be used for open-world ObjectNav because it pre-processes object-goals (e.g., “chair”) with
a CLIP [19] text encoder CLIP;. Thus, the EmbCLIP interface allows describing objects using
the open-vocabulary supported by CLIP;. However, EmbCLIP is trained directly with ObjectNav
annotations based on labeled 3D environments. Consequently, EmbCLIP is not a zero-shot method.

The method proposed in [| 8] (ZER) is zero-shot because it uses the image-goal navigation (ImageNav)
task for training. However, ZER cannot perform open-world ObjectNav because it relies on a map-
ping from a closed-set of object categories into the image-goal embedding space for transfer to object-
goal navigation. CoW [21] is a zero-shot method that does not require training a navigation policy. In-
stead, CoW uses a heuristically defined policy that has no ability to learn about indoor layouts of home
environments (e.g., the fact that “stroves” are found in “kitchens” as illustrated in Fig. 3). However,
CoW is able to perform open-world ObjectNav through the use of CLIP visual and text encoders.

By contrast, our approach (ZSON) uses CLIP to project image-goals and object-goals into a common
semantic-goal embedding space, which converts ImageNav and ObjectNav into semantic-goal
navigation (SemanticNav). This enables training with semantic-goals derived from images, followed
by zero-shot transfer to open-world ObjectNav.

An interesting direction for future work might be to train SemanticNav agents with multi-task
training using semantic-goals derived from both image- and object-goals. Such a solution would not
be zero-shot. However, it might combined the advantages of large-scale training with image-goals (as
used in our approach) with the advantages of smaller-scale task-specific training with object-goals
(as used in EmbCLIP). We present initial results in this direction in Appendix B.

Table 5: Results of finetuning with ObjectNav annotations. *indicates reproduced results

Method Dataset SPL SR

1 OVRL [16] MP3D 7.0% 25.3%
2 ZSON (ours) MP3D 4.8% 15.3%
3 ZSON finetuned 25M steps (ours) MP3D 9.2% 22.9%
4 OVRL [16] HM3D 12.3%* 32.8%*
5 ZSON (ours) HM3D 12.6% 25.5%

6 ZSON finetuned 100M steps (ours) HM3D 27.0% 49.6 %

14

B Results of ObjectNav Finetuning

In this section, we study the benefits of additional task-specific training by finetuning ZSON agents
using ObjectNav annotations — i.e., manually labeled training environments. Specifically, we
initialize with a SemanticNav agent trained for 500M steps of experience in HM3D environments
using image-goals. Then, we finetune for ObjectNav in either MP3D [8] or HM3D [20] annotated
environments using reinforcement learning (RL) with the finetuning approach from [37].

In Table 5, we find that finetuning ZSON agents results in 7.6% - 24.1% absolute improvements in
ObjectNav success rates (SR). Specifically, in row 3 we finetune for 25M steps in MP3D environ-
ments. This leads to a 7.6% absolute improvement in SR (15.3% — 22.9%) and a 4.4% absolute
improvement in SPL (4.8% — 9.2%). This 9.2% SPL surpasses the state-of-the-art in the RGB-only
setting of 7.0% SPL, which was set by OVRL [16] (row 1) using direct supervision from 40k human
demonstrations in MP3D environments. Similarly, in row 6, we finetune for 100M steps in HM3D
environments. This results in a 24.1% absolute improvement in SR (25.5% — 49.6%) and a 14.4%
absolute improvement in SPL (12.6% — 27.0%). These results exceed the OVRL [16] baseline
presented in row 4 (which was trained in MP3D environments and is identical to the agent in row 1)
by 16.8% absolute in SR (32.8% vs. 49.6%) and 14.7% absolute in SPL (12.3% vs. 27.0%).

Table 6: Additional ablations of the visual encoders used for training our SemanticNav agents.

ImageNav ObjectNav
(Gibson) (Gibson)
Encoder Dataset SPL SR SPL SR

1 ResNet-9 (scratchy HM3D 234% 31.1% 9.5% 20.9%
2 ResNet-50 (scratch) HM3D 22.4% 282% 6.9% 16.6%

3 ResNet-50 (OVRL) HM3D 28.0% 36.9% 12.0% 31.3%

C Additional Ablation Experiments

Table 3 contains ablations of the visual encoder used to process RGB observations within our
agent. In Table 6, we provide additional ablations that compare the ResNet-9 and ResNet-50
architectures with and without pretraining — i.e., from scratch vs. using OVRL [16]. We find that
without pretraining, switching to the larger ResNet-50 encoder leads to a 2.9% drop in ImageNav
SR and a 4.3% drop in ObjectNav SR (rows 1 vs. 2). By contrast, using OVRL pretraining,
performance improves on all tasks across all metrics. For instance, ImageNav SR improves by 5.8%
and ObjectNav SR improves by 10.4% (rows 1 vs. 3).

D Additional Training Details

Table 7 details the default hyperparameters used in all of our training runs. For ablation experi-
ments in Gibson [4] environments we reduce the “number of environments per GPU” to 28 for
ResNet-9 experiments and 20 for ResNet-50 due to GPU memory constraints. We use the ResNet-9
implementation from [18] and ResNet-50 implementation from [2].

E Additional Qualitative Results

In Figs. 4 to 11, we provide additional qualitative results. Figs. 4 to 6 show successful navigation to
“stairs”, “table”, and “television” (respectively), highlighting the versatility of our ZSON agent.

Figs. 7 to 11 illustrate various failure modes of the learned policy. In Fig. 7, the agent successfully
finds a “refrigerator” in 4 out of 5 trials. However, in one case the agent stops before entering the
kitchen, despite having a view of the “refrigerator”. In this case, the failure mode is stopping short.

In Fig. 8, the agent successfully finds a “bathfub” when it enters the bathroom nearest to the starting
position. However, in 2 of 5 trials it fails to find that bathroom, thus does not find a “bathtub.” In this
case, the failures are due to poor exploration. Similarly, in Fig. 9 the agent does find a seating area

15

Table 7: Hyperparameters used to train SemanticNav agents.

Parameter Value
Number of GPUs 8
Number of environments per GPU 32
Rollout length 64
PPO epochs 2
Number of mini-batches per epoch 2
Optimizer Adam

Learning rate 2.25 x 1074

Weight decay 1.0 x 1076

Epsilon 1.0 x 1075
PPO clip 0.2
Generalized advantage estimation True

vy 0.99

T 0.95
Value loss coefficient 0.5
Max gradient norm 0.2
DDPPO sync fraction 0.6

that resembles a “sofa” in 3 of 5 trials. However, it stops in the dining area in 2 trials. Furthermore, it
never enters the room to the right, which contains two sofas — again, demonstrating poor exploration.

In Fig. 10 the agent never enters the room to the bottom right, which contains a “desk,” thus failing
in all five runs. In 3 of 5 trials it stops near a table that does not appear to be functioning as a desk
(e.g., there is no chair nearby). In these examples, the agent might be confusing objects that can have
a similar appearance. Finally, in Fig. 11, we start the agent from two different positions (A and B)
and provide the instruction “Find a dresser.” When the agent is initialized near the bedroom (A) it is
able to find the dresser in 4 out of 5 trials. However, from position B the agent navigates into the
kitchen and stops near the cabinets. Again, these failures may be due to similarities in the appearance
of dressers and cabinets.

16

“Find the stairs.”

Figure 4: Qualitative example of successful navigation to the “stairs.” The number of steps taken by
our agent over five trials ranges from 80 to 102.

“Find a table.”

Figure 5: Qualitative example of successful navigation to a “fable.” The number of steps taken by
our agent over five trials ranges from 60 to 98.

17

“Find a television.”

Figure 6: Qualitative example of successful navigation to a “television.” The number of steps taken
by our agent over five trials ranges from 78 to 148.

[“Find a refrigerator.”]

Refrigerator

Figure 7: Qualitative example of “Find a refrigerator.” The agent succeeds in 4 of 5 trials (green)
from the same starting position. In the failure (red) the agent stop short of fridge. The number of
steps ranges from 83 to 99.

18

“Find a bathtub.”

Bathtub

Figure 8: Qualitative example of “Find a bathtub.” The agent succeeds in 3 of 5 trials (green) from
the same starting position. In the two failures (red) the agent never enters the bathroom. The number
of steps ranges from 58 to 114.

Figure 9: Qualitative example of “Find a sofa.” The agent succeeds in 3 of 5 trials (green) from the
same starting position. In the two failures (red) the agent stops in the dining area (center). The agent
never enters the room to the right with two “sofas”. The number of steps ranges from 174 to 501.

19

“Find a desk.”

Figure 10: Qualitative example of “Find a desk.” The agent fails in all five trials (red), stopping at a
table in 3 of 5 runs. The agent never enters the room in the bottom right that contains a “desk”. The
number of steps ranges from 49 to 114.

Dresser

Start B

Start A

Figure 11: Qualitative example of “Find a dresser.” We run five trails from two starting positions (A
and B). From Start A the agent is able to find a dresser in 4 of 5 trials (green). However, when the
starting location is shifted further from the bedroom (Start B) the agent enters the kitchen and fails in
all five runs (red), stopping near the kitchen cabinets. These failures might be due to the similarity in
appearance between cabinets and dressers. The number of steps ranges from 29 to 109.

20

	Extended Discussion of Related Work
	Results of ObjectNav Finetuning
	Additional Ablation Experiments
	Additional Training Details
	Additional Qualitative Results

