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(a) Gradient with respect to zi. (b) Gradient with respect to xi (or yi).

Figure 4: Ratio between the variance of the gradient and its norm as a function of the similarity between the viewing
directions zi and zj .

A. Gradient of Common-Line loss at co-planar poses

In this section, we show how the presence of images with co-planar poses affect our common-lines based loss and, more
specifically, its gradient.

Consider two images oi and oj and their predicted poses Ri = (xi,yi, zi) 2 R3⇥3 and Rj = (xj ,yj , zj) 2 R3⇥3. Note
we assume R⇤ 2 R3⇥3 rather than R⇤ 2 SO(3) since our loss depends on Ri, Rj parameterized as matrices in R3⇥3 and
the following arguments are independent of how our neural networks predict elements of SO(3) (although the particular
choice of parameterization can affect how this gradient is back-propagated through the model).

Note that the loss L(Ri, Rj) from Eq. 17 or Eq. 18 only depends on the coordinates in Eq. 16, i.e.:

xi = lT
ij
xi yi = lT

ij
yi xj = lT

ij
xj yj = lT

ij
yj

For convenience, define vi = (xi, yi)
T 2 R2 and vj = (xj , yj)

T 2 R2 and write Lij = L(Ri, Rj). Then, using the chain
rule:
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Hence, in this section, we can focus only on the partial derivatives @vi
@Ri

and @vj

@Ri
. We will study the partial derivatives with

respect to xi,yi and zi independently.

First, note that:
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Hence, we only need to consider the following quantities: @xi
@xi

, @vi
@zi

= (
@xi
@zi

,
@yi

@zi
) and @vj

@zi
= (

@xj

@zi
,
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).

To understand how the similarity of zi and zj , we study the variance of the gradients when Rj is perturbed by a small
amount of noise, as a function of the similarity |zT

i
zj |.
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To do so, we sample 300 random pairs of rotations Ri, Rj 2 SO(3) and compute their similarity |zT

i
zj |. Then, for each

pair, we generate 50 variations of Rj by perturbing it with a small Gaussian noise with standard deviation � = 0.04 in the
quaternion space, and compute each gradient @xi

@xi
, @vi
@zi

and @vj

@zi
.

For each pair, we compute the average norm of the gradients (Frobenious norm for the Jacobians) and the standard deviation
(over the 50 samples) of each partial derivative, which we average to obtain a single number. In Fig. 4, we plot the ratio
between the standard deviation and the average norm for each pair, as a function of the similarity |zT

i
zj |.

Whenever zi is close to ±zj , the variance of the gradient is very close to its average norm (the ratio approaches 1); this
is particularly true for the gradients of zi, see Fig. 4a but less severe for zi and yi. That result suggests that the training
process can be particularly unstable in this setting, especially since the gradient on zi is necessary to leave this situation but
it is also the most affected by that.

B. Common-Line Loss Landscape

In this section, we provide a simple study of the common-line loss landscape. To do so, we compute the common line loss
between two random images oi and oj , respectively at the poses RiR✓1 and RjR✓2 .

Ri = (xi,yi, zi) and Rj = (xj ,yj , zj) are the ground-truth poses of oi and oj .

R✓ =

2

4
cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

3

5 is a 2D rotation by ✓ 2 [0, 2⇡).

Hence, RiR✓ is the pose of oi rotated by ✓ around its projection axis zi and simply corresponds to rotating the common line
vi = (xT

i
lij ,yT

i
lij)T 2 R2 in the image oi by ✓. Note that if ✓1 = ✓2 = ⇡, the loss is unchanged since the common line

predicted is the same, only reflected.

In Fig. 5, we plot the common-line loss in Eq. 18 as a function of ✓1 and ✓2, for different random pairs (i, j). Note that any
possible predicted pair of common lines corresponds to a point in the figure (multiple choices of Ri, Rj 2 SO(3) lead to the
same common lines). This enables us to study the complete loss landscape for the simple case of N = 2 images. The right
column of Fig. 5 highlights the global minima of the loss.

First, we note the expected periodicity of the loss by ✓1 = ✓2 = ⇡ in all images.

In the first pair (first row), we also observe spurious global minima at ✓1 = 0 and ✓2 = ⇡ (and the opposite), which
corresponds to a reflection of the correct common line in only one of the two images. This is likely related to the spurious
planar symmetry described in Levy et al. (2022a) and in Sec. 4, which motivated the use of a ”symmetrized loss” in Levy
et al. (2022a).

We also note that the landscape can vary a lot over different pairs. While the first pair has a smooth landscape with two clear
global minima at expected locations (0, 0) and (⇡,⇡), other pairs show multiple global optima. In some cases, like the last
row, the two locations (0, 0) and (⇡,⇡) are close but not exactly global optima.

We also compare the original formulation of the loss in Eq. 17 with the modified version in Eq. 18 which we use in our
experiments. Fig. 6 shows similar plots obtained using Eq. 17 (pairs are randomly sampled and don’t necessary match those
in Fig. 5). When using the original loss in Eq. 17, the global optima often do not include the ground-truth (0, 0) and (⇡,⇡).

Finally, we emphasise that this study is limited to the case N = 2. However, during training, the loss is averaged over
multiple pairs.
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Figure 5: Common line loss using Eq. 18 between two random images oi and oj using the poses RiR✓1 and RjR✓2 , with
✓1, ✓2 2 [0, 2⇡). Each row is a different random pair (i, j). In the right column, areas where L < 0.4 are highlighted with a
darker color.
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Figure 6: Common line loss using Eq. 17 between two random images oi and oj using the poses RiR✓1 and RjR✓2 , with
✓1, ✓2 2 [0, 2⇡). Each row is a different random pair (i, j). In the right column, the points closer to global optima are
highlighted with a darker color.
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