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ABSTRACT

Image super-resolution (ISR) is a classic and challenging problem in low-level vi-
sion because the data collection process often introduces complex and unknown
degradation patterns. Leveraging powerful generative priors, diffusion-based al-
gorithms have recently established new state-of-the-art ISR performance. Despite
the promise, current diffusion-based ISR methods mostly focus on the spatial do-
main. To bridge this gap, we first experimentally validate that the key to solving
the ISR problem lies in addressing the degradation of image amplitude informa-
tion and high-frequency details. Based on this, we propose a novel training-free
frequency-aware enhancement framework (FedSR) for diffusion-based ISR meth-
ods, which consists of two critical components. Firstly, we design the Amplitude
Enhancement Module (AEM), which selectively enhances crucial amplitude chan-
nels through weighted optimization. Secondly, we introduce the High-Frequency
Enhancement Module (HEM) that adaptively masks the skip features to perform
high-pass filtering. Through extensive evaluations on both synthetic datasets and
real-world image collections, our method demonstrates outstanding performance
in reproducing realistic image details without additional tuning. For instance,
FedSR improves StableSR across three datasets by +10.53% on MUSIQ metric.

1 INTRODUCTION

Image super-resolution (ISR) is a fundamental task in low-level vision that aims to reconstruct high-
resolution (HR) images from their low-resolution (LR) counterparts. It has widespread applications
in areas such as medical imaging (Li et al., 2024; Mao et al., 2023b), satellite imagery (Shermeyer &
Etten, 2019; Cornebise et al., 2022), and surveillance systems (Liu et al., 2017; Liang, 2021), where
obtaining high-quality images can naturally be subject to hardware limitations and transmission
losses. Early ISR algorithms (Dong et al., 2016a; Tai et al., 2017; Chen et al., 2021) attempt to
construct synthetic image pairs through simple handcrafted degradation operations (e.g., bicubic
downsampling). However, they fail to generalize well in realistic scenarios since real-world LR
images typically involve more complex and unknown degradation patterns.

To address this problem, some work (Zhang et al., 2021; Wang et al., 2021) resorts to Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014) to enhance visual perception generated by
using the adversarial training loss. However, these methods tend to introduce unpleasant visual ar-
tifacts because of the instability of adversarial training. Recently, a series of studies (Wang et al.,
2023c; Lin et al., 2023; Yu et al., 2024; Wu et al., 2023; Yang et al., 2023) have discovered that incor-
porating diffusion priors (Rombach et al., 2022) can result in realistic restoration results, achieving
state-of-the-art (SOTA) ISR performance. For example, StableSR (Wang et al., 2023c) trains a time-
aware encoder to guide Stable Diffusion (Rombach et al., 2022) to achieve promising restoration
results; DiffBIR (Lin et al., 2023) employs an IRControlNet trained based on condition images to
generate realistic details. Despite the promising results, current diffusion-based ISR methods oper-
ate solely in the spatial domain and lack a deep understanding of the frequency domain.

To explore the opportunity to improve diffusion-based ISR models from a frequency perspective,
we refer to the following well-established observations: (1) Loss of High-Frequency Details: Im-
age degradation often leads to the loss of high-frequency details. (2) Degradation of Amplitude:
Inspired by tasks such as dehazing (Yu et al., 2022) and deraining (Guo et al., 2022), image degrada-
tion can also result in the loss of amplitude information. To systematically validate these phenomena
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𝓛𝐋𝑹 +ℋHR =

ℒHR +𝓗𝐋𝑹 =

𝓐𝐋𝑹 + 𝒫HR =

𝒜HR +𝓟𝐋𝑹 =

Amplitude 𝒜

Phase 𝒫

High-frequency ℋ

Low-frequency ℒ

HR images

LR images

Figure 1: The impact of the real-world degradation on each component. Top: We replace the
amplitude and phase components of the original HR image (AHR and PHR) with the corresponding
components from the degraded LR image (ALR and PLR). Bottom: Similarly, the original low- and
high-frequency components LHR and HHR are replaced with LLR and HLR.

and facilitate readers’ understanding, we conducted additional experiments (see Figure 1 and Ap-
pendix B). From a technical perspective, researchers have explored various frequency-based ISR
algorithms. However, early efforts focus on improving traditional model architectures like ResNet
(He et al., 2016) and GANs (Goodfellow et al., 2014). Though several recent works (Luo et al., 2023;
Wang et al., 2024b; Zhao et al., 2024; Moser et al., 2024) also explore improving diffusion-based
ISR, they rely on heavy training processes and handcrafted network structure modifications.

In this paper, we propose a generic and training-free Frequency-aware Enhancement framework
for Diffusion-based Super-Resolution (dubbed FedSR). Specifically, FedSR encapsulates two key
components. (1) Amplitude Enhancement Module: To enhance the lost amplitude components,
we develop an amplitude enhancement module (AEM) that utilizes a channel-aware mechanism to
enhance the amplitude components which convey crucial details. (2) High-Frequency Enhance-
ment Module: We further design a high-frequency enhancement module (HEM) that operates on
the skip connection features, which employs a spectral modulation method to adaptively enhance
the prominent high-frequency information in the skip features. The two modules can be simultane-
ously integrated into current diffusion-based ISR models, without requiring any further fine-tuning.
Through extensive experiments, our FedSR significantly improves state-of-the-art diffusion-based
ISR algorithms StableSR, PASD by +10.53%, +10.67% on MUSIQ metric, respectively. These
results clearly validate the superiority of our FedSR algorithm in enhancing the amplitude and high-
frequency details from a frequency perspective.

The main contributions of our work are as follows: (A General framework) We present a general
framework that is able to improve most diffusion-based SR algorithms without extra training costs.
(Technical Novelty) Motivated by our empirical findings, we propose a novel channel selection
mechanism for enhancing the amplitude information. Also, we develop a new semantic-aware high-
pass filtering algorithm that adaptively determines the thresholds by feature inputs. Again, we note
that the two modules are totally training-free. (Experiments) We conduct extensive experiments
on three benchmarks, demonstrating that FedSR improves 5 SOTA diffusion-based SR methods,
verifying its generality. Moreover, we have no extra training cost, maintaining almost the same
complexity parameters.

2 RELATED WORK

Image Super-Resolution (ISR). Although deep learning-based ISR techniques have gained
widespread adoption, most CNN-based methods (Dong et al., 2016a; Lim et al., 2017; Kim et al.,
2016; Dong et al., 2016b; Shi et al., 2016) still suffer from the issue of excessive detail smoothing.
To address this problem and better enhance visual perception, recent advances (Zhang et al., 2021;
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Wang et al., 2021; Liang et al., 2021; Chen et al., 2022; Liang et al., 2022; Wang et al., 2024a) using
the GAN-based models in the field of Real-ISR have explored more complex degradation models for
adversarial training. For instance, BSRGAN (Zhang et al., 2021) synthesizes more realistic degrada-
tion by using a random shuffling strategy, and RealESRGAN (Wang et al., 2021) employs high-order
degradation modeling techniques. While these methods have made progress in generating more per-
ceptually realistic details, GAN-based ISR methods often suffer from unstable adversarial training,
frequently introducing unnatural visual artifacts. In recent years, the powerful Stable Diffusion (SD)
(Rombach et al., 2022) model has been applied to ISR tasks (Wang et al., 2023c; Lin et al., 2023; Yu
et al., 2024; Wu et al., 2023; Yang et al., 2023; Wang et al., 2023d; Cui et al., 2024). For instance,
PASD (Yang et al., 2023) utilizes pixel-aware cross attention to perceive image local structures.
SUPIR (Yu et al., 2024) develops a trimmed ControlNet (Zhang et al., 2023) and ZeroSFT to reduce
the model size. Although these methods demonstrate excellent performance in real-world ISR tasks,
they are limited to operations in the spatial domain and do not thoroughly explore the characteristics
of the frequency domain. In contrast, we discuss the degradation processes of various frequency
components and design a training-free method to enhance these degraded components.

Frequency-based Super-Resolution. Frequency analysis of image processing has been widely
used in computer vision (Yu et al., 2022; Huang et al., 2024; Yang & Soatto, 2020; Cai et al., 2021;
Si et al., 2023; Yu et al., 2022; Ji et al., 2021). For super-resolution tasks, many studies improve
images reconstruction quality by applying frequency domain transformations to comprehensively
extract feature information from low-resolution images (Guan et al., 2024; Li et al., 2023a; Xu et al.,
2024; Xie et al., 2021). Some methods enhance performance by constructing frequency domain loss
functions that focus on recovering frequency information through heavy network training (Zhu et al.,
2023; Fuoli et al., 2021; Dong et al., 2023; Ji et al., 2021; Wang et al., 2024c; Li et al., 2023b). For
example, Fuoli et al. (2021) designs Fourier space supervision losses to enhance perceptual quality in
image super-resolution. Additionally, some methods improve reconstruction quality by separating
specific components (such as high-frequency components) in the frequency domain (Guan et al.,
2024; Li et al., 2023a; Xu et al., 2024; Xie et al., 2021; Dai et al., 2024; Yang et al., 2022a; Jiang
et al., 2023). Appendix A.1 lists the effects of different frequency components on image quality
for other computer vision tasks. Although these existing frequency domain-based ISR methods
significantly improve performance, they have two main drawbacks: first, they rely on frequency
domain loss functions to achieve realistic outcomes with heavy training; second, they typically focus
only on certain specific components in the frequency domain. In contrast, our training-free FedSR
systematically analyzes the degradation process from the perspective of image modeling and then
enhances these degraded components.

3 BACKGROUND AND PRELIMINARIES

3.1 DIFFUSION MODELS FOR IMAGE SUPER-RESOLUTION

Diffusion models, such as DDPM (Ho et al., 2020) and LDM (Rombach et al., 2022), are a class of
latent variable models, which primarily consist of a diffusion process and a denoising process. In the
diffusion process, Gaussian noise is gradually added at each time step t according to a predefined
variance schedule denoted as β1, ..., βt, via a Markov chain. It eventually results in a random noise
distribution, which is defined as,

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
. (1)

In the denoising process, given the noisy input xt, the model outputs the clean data xt−1 before
noise is added, which is represented as,

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (2)
Here, µθ and Σθ are determined by the denoising model. Current diffusion-based generative models
(Ho et al., 2020; Rombach et al., 2022) are implemented using a U-Net (Ronneberger et al., 2015)
architecture to remove noise from data samples, which consists of a contracting path for downsam-
pling and an expansive path for upsampling. Each upsampling block concats both the backbone and
skip features in the skip connections.

To ensure that diffusion-based generative models meet the requirements for image quality and fi-
delity in ISR tasks, existing methods typically utilize LR images to guide model generation. First,
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the LR image is used as a conditional input and transformed into an embedding through the image
encoder. Then, these embeddings are fused with the U-Net using a cross-attention mechanism or a
custom control module to guide the generation of HR images. Through iterative diffusion and re-
verse processes, these models effectively capture complex image features, enhancing the capability
to recover realistic details.

3.2 FOURIER FREQUENCY DOMAIN TRANSFORMATION

The Fast Fourier Transform (FFT) is widely applied in low-level vision tasks, transforming images
from the spatial domain to the Fourier domain, denoted as,

F(x)(u, v) =

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v). (3)

Its inverse function (IFFT) is formulated as,

G(f)(h,w) = 1

UV
·
U−1∑
u=0

V−1∑
v=0

f(u, v)e−j2π( u
U h+ v

V w), (4)

where j is the imaginary unit; e is Euler’s number, which can be formulated as ejθ = cos θ +
j sin θ. F(·) and G(·) are 2D Fourier transform and inverse 2D Fourier transform, respectively. The
frequency features F(x) in Eq. (3) and f in Eq. (4) are both tensors in complex domain, expressed
as F(x) = R(x)+jI(x), where R(x) and I(x) are the real parts and imaginary parts, respectively.

In this paper, we explore two decomposition methods in the frequency domain, and the related anal-
ysis refers to Appendix A. The first is composition-based decomposition, which separates frequency
into the amplitude A and phase P , represented as,

A(x)(u, v) =
√

R2(x)(u, v) + I2(x)(u, v),

P(x)(u, v) = arctan[
I(x)(u, v)
R(x)(u, v)

].
(5)

The other method is distance-based decomposition, where we divide the frequency information into
high-frequency and low-frequency parts based on their distance from the frequency center.

Combine
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Figure 2: The overview of FedSR, which has two modules, (a) AEM: a channel-aware amplitude
enhancement module which selectively enhances crucial amplitude channels through reweighting
strategy; (b) HEM: a high-frequency enhancement module which utilizes adaptive masking.
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4 THE PROPOSED FRAMEWORK

In this section, we describe our novel FedSR framework in detail. Essentially, FedSR comprises
two key components: an amplitude modulation module that operates on the backbone features (Sec-
tion 4.1), and a spectral modulation module designed for adaptive enhancement of high-frequency
components (Section 4.2). Importantly, both modules are post-hoc adjustments to diffusion models,
requiring no additional heavy tuning. Notably, FedSR can be seamlessly integrated as plugins into
any off-the-shelf diffusion-based ISR models. The overall architecture is shown in Figure 2.

4.1 CHANNEL-AWARE AMPLITUDE ENHANCEMENT

In our preliminary experiments, we demonstrate the phenomenon of amplitude degradation in LR
images. Thus, during the training process, the ISR model would actively learn the amplitude signal
features from HR images. However, due to the black-box nature of DNNs, enhancing amplitude
features cannot be directly achieved by simply following traditional image processing conclusions
and requires further exploration; see Appendix D.1 for further discussion.

Analysis of Amplitude Channels. Inspired by some studies (Hu et al., 2018; Zhao et al., 2019),
which enhance model performance by adjusting the importance of different channel features in con-
volutional neural networks (CNNs), we hypothesize that the amplitude features of various channels
in the U-Net backbone network which contains convolutional layers, may also convey information
of varying significance. To validate this hypothesis, we transform the image features generated by
Stable Diffusion (Rombach et al., 2022) into the frequency domain and then select the channels
according to their amplitude values. Figure 3 (a) illustrates the reconstructed images using different
channels at different sampling steps. Our observations reveal that amplitude channels with lower
amplitude values convey crucial details of the image, while channels with higher amplitude values
result in disorganized and chaotic images, indicating that these channels have learned meaningless
signals. This underscores the importance of emphasizing significant amplitude features during the
sampling of ISR models to enhance image quality.

Based on this finding, we develop a simple yet effective channel-aware Amplitude Enhancement
Module (AEM) aimed at selectively modulating the amplitude information in the backbone network
by identifying channels with rich information, thereby improving the overall visual quality of the
images. Technically, the AEM first transforms the U-Net backbone features before the concatenation
of skip connections in upsampling blocks into the frequency domain. Then it extracts the amplitude
components with Eq. (5) as the optimization target. Subsequently, we design the aforementioned
channel-aware strategy, which consists of the following four steps.

DDPM Steps

C
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ve
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lit
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e

(a) Channel-wise Visualization

Input

w Amplitude
Modulation

w/o Amplitude
Modulation

(b) Effects of Amplitude Modulation

Figure 3: Average amplitude on features and effect of amplitude modulation. (a) During the genera-
tion process of the diffusion model, lower average amplitude in the channel leads to clearer generated
images. (b) The application of our amplitude modulation further enhances feature clarity.
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a) Channel Separation. Inspired by SENet’s (Hu et al., 2018) different processing of features
across varying channels, we split the amplitude component along the channel dimension and then
obtain the amplitude set with all channels, denoted as SA = {A(xbone)i}Ci=1, to separate various
pieces of information, where xbone is the backbone features; C is the number of amplitude channels.

b) Average Amplitude Value Ranking. Recall that channels with lower average amplitude gen-
erally exhibit clearer details in Figure 3 (a). Therefore, we compute the average value of the am-
plitude component for each channel, formulated as ai = 1

HW

∑H
h=1

∑W
w=1 A(xbone)i

(h,w), where
A(xbone)i = (A(xbone)i

(h,w)
)H×W with H as the height of the feature and W as the width of the

feature. Then we rank the amplitude of each channel A(xbone)i in SA in ascending order based on
the average value ai, to identify channels with richer detailed information.

c) Channel Selection. Based on the ranking results, we select channels with lower ampli-
tude values that contain abundant information and then combine them into a subset SS =
{A(xbone)i|ai ≤ amin + Ps × (amax − amin)} for subsequent amplitude modulation. Here, Ps is the
selection thresholds. To achieve better results of AEM, we design a supplementary experiment ex-
haustively testing Ps between 0 and 1 on the validation set, shown in Section 5.3.

d) Amplitude Modulation. To amplify the impact of these selected amplitude channels, we apply
amplitude reweight at the final step of sampling. Specifically, to align the amplitude components
with their size characteristics, we first compute the average amplitude A = 1

C

∑C
i=1 A(xbone)i

along the channels, followed by linear normalization to construct a factor map

Mbone = 1− Pa ·
A−Amin

Amax −Amin
, (6)

where Amin and Amax means the minimum and maximum of A; Pa is a positive linearization pa-
rameter. We then multiply the factor map Mbone with the channel features in the subset SS one by
one, formulated as follows,

A(xbone)
′
i =

{
A(xbone)i ⊙Mbone, if i ∈ SS ;
A(xbone)i, otherwise. (7)

To apply the enhanced amplitude, we use the modulated amplitude and the original phase compo-
nents to combine into the frequency domain by F(xbone)

′ = R(xbone)
′ + jI(xbone)

′, and further
transfer to the spatial domain by the inverse Fourier transformation x′

bone = G(F(xbone)
′).

There is a subtle point worth deeper discussion. At first glance, it might seem counterintuitive that
reducing the amplitude values in Eq. (6) and Eq. (7) would enhance image super-resolution (ISR).
However, our further experiments (see Appendix D.1) indicate that the logic behind traditional image
processing may differ from that of diffusion networks. Increasing the amplitude of the original
image signal typically affects image contrast and brightness. In contrast, within FedSR, reducing the
amplitude of the deep feature signals results in clearer detail. We speculate the reason might be that
diffusion models are prone to highlight channels with smaller amplitude values. Further exploration
of this behavior requires deeper theoretical insights from diffusion models in the frequency domain,
which we leave for future work.

4.2 ADAPTIVE MASKING FOR HIGH-FREQUENCY ENHANCEMENT

Next, we discuss our modification to diffusion models to enhance ISR performance from the per-
spective of high-frequency details. Inspired by FreeU (Si et al., 2023), we know that the skip connec-
tions in U-Net blocks can transmit high-frequency, information-rich features to deeper layers of the
network, thereby preserving more comprehensive image information. Note that FreeU is designed
for text-to-image tasks which only applies two constant scaling transformations to low-frequency
features on all layers to achieve high-pass filtering. However, for the diffusion-based ISR problems,
the features on different U-Net layers convey various semantic information. Therefore, considering
the varying richness of information, we propose a high-frequency enhancement module (HEM) with
adaptive masking, which can be divided into the following two steps; see Figure 2 (b).
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Table 1: Quantitative comparison with SOTA methods on the synthetic benchmark DIV2K-Val
(Agustsson & Timofte, 2017). Bold and ∆ represent the improvement and the performance boost
brought by FedSR, respectively. Red and blue colors represent the best and second-best perfor-
mance. ↓ represents the smaller the better, while ↑ represents the opposite.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ MANIQA↑
StableSR (IJCV2024) 23.26 0.5644 0.3119 0.6771 65.91 4.742 0.4208

FedSR+StableSR 22.59 0.553 0.3711 0.7275 71.48 4.112 0.4914
∆StableSR -0.67 -0.0114 +0.0592 +0.0504 +5.57 -0.63 +0.0706

SUPIR (CVPR2024) 22.14 0.5180 0.3930 0.7130 63.60 5.705 0.5533
FedSR+SUPIR 20.98 0.4847 0.4125 0.7368 66.57 5.437 0.5841

∆SUPIR -1.16 -0.0333 +0.0195 +0.0238 +2.97 -0.268 +0.0308
SeeSR (CVPR2024) 23.67 0.5978 0.3200 0.6940 68.72 4.806 0.5044

FedSR+SeeSR 23.56 0.6101 0.3401 0.6893 70.21 4.598 0.5184
∆SeeSR -0.11 +0.0123 +0.0201 -0.0047 +1.49 -0.208 +0.0140

PASD (ECCV2024) 24.16 0.6099 0.3705 0.5848 61.85 5.169 0.4028
FedSR+PASD 24.25 0.6213 0.3644 0.5948 65.72 4.904 0.4223

∆PASD +0.09 +0.0114 -0.0061 +0.0100 +3.87 -0.265 +0.0195
DiffBIR (Arxiv2023) 23.14 0.5370 0.3667 0.7301 69.90 4.991 0.5675

FedSR+DiffBIR 22.38 0.5222 0.4236 0.7382 73.04 4.729 0.5838
∆DiffBIR -0.76 -0.0148 +0.0569 +0.0081 +3.14 -0.262 +0.0163

a) Adaptive Mask Construction. To accurately filter and dynamically enhance the high-
frequency components in the skip features, we construct an adaptive high-frequency mask Mskip.
Considering that lower-level and smaller-scale features often contain less image detailed informa-
tion, the mask adjusts the enhancement factor based on scale adaptively, to better adapt to the fre-
quency structure of features at different levels, formulated as,

Mskip(r) =

{
1 + ( S−Smin

Smax−Smin
+ 0.5) · Pb

2 , if r > rthresh ;
1, otherwise.

(8)

Here S is the scale of skip features, and Pb is the enhancement factor; r and rthresh are the radius and
the radius threshold, respectively. Thus, the high-frequency components are split through masking.

b) High-Frequency Component Enhancement. We then multiply the adaptive mask Mskip
element-wise with the skip features xskip in the frequency domain to amplify and enhance the high-
frequency components, represented as,

F(xskip)
′ = F(xskip)⊙Mskip, (9)

where ⊙ denotes element-wise multiplication. Finally, the inverse Fourier transformation, which is
denoted as x′

skip = G(F(xskip)
′), transfers the enhanced skip features to the spatial feature domain.

Remark. In practical applications, the AEM and HEM modules can actually be integrated into
any layer of the diffusion U-Net blocks. However, our experimental validation shows that the better
setup is to apply the AEM to the backbone features and the HEM to the skip features, as this configu-
ration consistently yields superior performance; we may refer the readers to Appendix D.2 for more
discussion. Empirically, both modules can be simultaneously incorporated into diffusion-based ISR
models without the need for additional fine-tuning or adjustments. On various ISR benchmarks,
FedSR achieves significant performance gains, effectively offering a free lunch for ISR.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Baselines. We employ the test datasets from StableSR (Wang et al., 2023c) and
evaluate our approach on both synthetic and real-world datasets. (1) For the synthetic dataset, we

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Base +Ours

SeeSR

SUPIR

DiffBIR

PASD

StableSR

Base +Ours Base +Ours Base +Ours

LR HR LR HR LR HR LR HR

Original

Figure 4: Qualitative comparisons of diffusion model-based ISR methods before and after incorpo-
rating our FedSR. It shows that FedSR can reconstruct more realistic HR images.

use 3,000 generated pairs of LR-HR images from the DIV2K validation set (Agustsson & Timofte,
2017), where the LR images have a resolution of 128 × 128, and the HR images have a resolution
of 512 × 512. (2) For the real-world datasets, we utilize the DRealSR (Wei et al., 2020) and RealSR
(Cai et al., 2019) datasets center-cropping the LR images to 128 × 128.

We select five state-of-the-art (SOTA) diffusion-based ISR models, namely StableSR (Wang et al.,
2023c), SUPIR (Yu et al., 2024), SeeSR (Wu et al., 2023), PASD (Yang et al., 2023), and DiffBIR
(Lin et al., 2023). And we incorporate our FedSR into these frameworks to evaluate effectiveness.

Evaluation Metrics. We adopt a series of full-reference and no-reference metrics to assess the
performance of different methods. The full-reference metrics includes PSNR, SSIM (evaluated on
the Y channel in the YCbCr color space), and LPIPS (Zhang et al., 2018). For quality evaluation,
we employ no-reference image quality assessment (IQA) metrics: CLIP-IQA (Wang et al., 2023b),
MUSIQ (Ke et al., 2021), NIQE (Zhang et al., 2015), and MANIQA (Yang et al., 2022b).

Implementation Details. To obtain the validation set of LR-HR pairs, we employ the degradation
process of BSRGAN (Zhang et al., 2021) on the small random subset of size 100 from the DIV2K
training set. Then we adjust the hyper-parameters in FedSR. Based on the default settings (i.e.,
Pa = 0.5, Pb1 = 1, and Pb2 = 1) as default, for further tuning. To determine the selection threshold
Ps, we experiment with Ps ∈ [0, 1] (see Figure 6) on a validation set created also by randomly
selecting from DIV2K. We find that as the channel selection threshold increases, various metrics
gradually stabilize, and set Ps as 0.3 for better performance, further indicating larger amplitude
channels contribute less. Detailed hyper-parameter settings can be found in the Appendix D.

5.2 COMPARISON BEFORE AND AFTER FEDSR APPLICATION

Quantitative Comparisons. As shown in Table 1, we apply our method to five SOTA diffusion-
based ISR frameworks, and the results on DIV2K-Valid indicate that almost all no-reference metrics

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Quantitative results on the real-world benchmark DRealSR with our FedSR.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ MANIQA↑
StableSR (IJCV2024) 27.93 0.7442 0.3280 0.6272 58.28 6.475 0.3890

FedSR+StableSR 26.68 0.7206 0.3903 0.6690 67.27 5.373 0.4810
∆StableSR -1.25 -0.0236 +0.0623 +0.0418 +8.99 -1.102 +0.0920

SUPIR (CVPR2024) 24.80 0.6333 0.4323 0.6880 59.73 7.420 0.5040
FedSR+SUPIR 23.18 0.5777 0.4622 0.7232 64.09 6.810 0.5584

∆SUPIR -1.62 -0.0556 +0.0299 +0.0352 +4.36 -0.610 +0.0544
SeeSR (CVPR2024) 28.04 0.7661 0.3188 0.6924 65.08 6.389 0.5134

FedSR+SeeSR 27.33 0.7671 0.3422 0.6944 67.46 6.052 0.5300
∆SeeSR -0.71 +0.0010 +0.0234 +0.0020 +2.38 -0.337 +0.0166

PASD (ECCV2024) 28.96 0.7919 0.3142 0.5122 52.29 6.929 0.3672
FedSR+PASD 28.28 0.7860 0.3203 0.5790 62.16 6.420 0.4232

∆PASD -0.68 -0.0059 +0.0061 +0.0668 +9.87 -0.509 +0.0560
DiffBIR (Arxiv2023) 25.90 0.6220 0.4715 0.7076 66.22 6.309 0.5568

FedSR+DiffBIR 24.53 0.6014 0.5024 0.7167 71.90 5.833 0.5902
∆DiffBIR -1.37 -0.0206 +0.0309 +0.0091 +5.68 -0.476 +0.0334

improved. It suggests that our FedSR can further enhance image quality within these existing frame-
works. Table 2 and Table 3 present the results on real-world datasets. For example, on the DIV2K-
Val dataset, FedSR improves the original StableSR by +7.44% on CLIP-IQA metric. Additionally,
on the real-world datasets DRealSR and RealSR, our method improves PASD by +18.88% and
+6.88% on MUSIQ metric, respectively, thus demonstrating the effectiveness of FedSR. Although
our method does not show significant improvements in full-reference metrics (PSNR, SSIM, and
LPIPS), these metrics only capture certain aspects of performance (Blau & Michaeli, 2018; Ledig
et al., 2017). Moreover, Figure 5 shows that solely pursuing improvements in these traditional met-
rics does not necessarily lead to better visual effects. Our FedSR, while maintaining reasonable
PSNR/SSIM, significantly enhances no-reference metrics (largely improved MUSIQ +10.53%).

LR BSRGAN FedSR + DiffBIR

PSNR:
29.09
SSIM: 
0.8218
LPIPS:
0.2378

PSNR: 
26.67
SSIM: 
0.6623
LPIPS:
0.2898

PSNR:
20.65
SSIM:
0.6321
LPIPS:
0.1934

PSNR: 
19.56
SSIM: 
0.5923
LPIPS: 
0.2002

Figure 5: Ours (FedSR+DiffBIR) generates images
with better image quality but obtains lower metrics
in PSNR, SSIM, and LPIPS, which shows the bias
between metric evaluation and image quality.

Selection threshold 𝑃𝑠
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Figure 6: Selection thresholds and perfor-
mance on our validation set (a random subset
DIV2K training data). The gray column rep-
resents the best selection threshold Ps.

Qualitative Comparisons. To demonstrate the effectiveness of FedSR, Figure 4 presents a com-
parison before and after incorporating FedSR. It can be observed that our method significantly
enhances the quality of the image generated by diffusion-based ISR methods, particularly in de-
tailed textures and general visual effects. An interesting observation is that there occurs pseudo-
textures in some images (e.g., squirrels) when applying FedSR to baselines like SeeSR. However,
a closer inspection shows that the original baselines already demonstrate pseudo textures (though
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Table 3: Quantitative results on the real-world benchmark RealSR with our FedSR.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ MANIQA↑
StableSR (IJCV2024) 24.66 0.7003 0.3101 0.6169 65.24 5.924 0.4302

FedSR+StableSR 23.77 0.6832 0.3502 0.6683 70.27 5.094 0.5186
∆StableSR -0.89 -0.0171 +0.0401 +0.0514 +5.03 -0.830 +0.0884

SUPIR (CVPR2024) 23.64 0.6603 0.3511 0.6316 61.34 6.299 0.4952
FedSR+SUPIR 22.25 0.6173 0.3727 0.6807 65.57 5.685 0.5625

∆SUPIR -1.39 -0.043 +0.0216 +0.0491 +4.23 -0.614 +0.0673
SeeSR (CVPR2024) 25.14 0.7182 0.2996 0.6697 69.86 5.419 0.5437

FedSR+SeeSR 24.73 0.7258 0.2982 0.6612 70.93 5.280 0.5591
∆SeeSR -0.41 +0.0076 -0.0014 -0.0085 +1.07 -0.139 +0.0154

PASD (ECCV2024) 26.53 0.7597 0.2783 0.5030 60.61 6.018 0.3894
FedSR+PASD 26.15 0.7596 0.2751 0.5191 64.78 5.744 0.4199

∆PASD -0.38 -0.0001 -0.0032 +0.0161 +4.17 -0.274 +0.0305
DiffBIR (Arxiv2023) 24.83 0.6473 0.3678 0.7017 69.22 5.812 0.5584

FedSR+DiffBIR 23.97 0.6405 0.3667 0.7090 72.83 5.068 0.5812
∆DiffBIR -0.86 -0.0068 -0.0011 +0.0073 +3.61 -0.744 +0.0228

being blurry). Since FedSR does not modify the original parameters of the models, these erroneous
textures are inadvertently amplified. However, for models such as PASD and SUPIR, we success-
fully preserve the natural fur texture while simultaneously enhancing the quality of other fine details.
In summary, with better baselines, FedSR is able to output much more realistic details. And one may
also regard our FedSR as a detector to verify the true ISR ability of baseline models.

5.3 ABLATION STUDY

In this section, we present our ablation results on StableSR to show the effectiveness of FedSR.
First, we validate the effectiveness of the AEM in ISR tasks. Compared to the default settings,
removing the AEM results in poorer no-reference metrics (see Row 3 of Table 4), while adding it
leads to a noticeable improvement in no-reference metrics. For more visual results, please refer to
the Appendix E. Next, to validate the effectiveness of the HEM, we removed this module and it
results in worse no-reference metrics compared to the default settings (see Row 2 of Table 4). In
contrast, simply adding the HEM leads to a noticeable improvement in no-reference metrics.

Table 4: Ablation studies of FedSR on DRealSR and RealSR benchmarks.

Variants DRealSR/RealSR
AEM HEM PSNR↑ SSIM↓ LPIPS↓ CLIPIQA↑ MUSIQ↑ NIQE↓ MANIQA↑

27.93 / 24.66 0.7442 / 0.7003 0.3280 / 0.3101 0.6272 / 0.6169 58.28 / 65.24 6.475 / 5.924 0.3890 / 0.4302
✓ 27.36 / 24.27 0.7322 / 0.6890 0.3635 / 0.3389 0.6760 / 0.6760 65.23 / 69.59 5.707 / 5.241 0.4681 / 0.5087

✓ 26.91 / 23.85 0.7230 / 0.6859 0.3655 / 0.3351 0.6749 / 0.6522 64.56 / 68.55 5.768 / 5.386 0.4447 / 0.4738
✓ ✓ 26.68 / 23.77 0.7206 / 0.6832 0.3903 / 0.3502 0.6690 / 0.6683 67.27 / 70.27 5.373 / 5.094 0.4810 / 0.5186

6 CONCLUSION

In this work, we propose a generic and training-free framework FedSR for enhancing diffusion-
based ISR models from a frequency perspective. To achieve this, we first propose a novel channel
selection mechanism for enhancing the amplitude information (AEM). Also, we develop a new
semantic-aware high-pass filtering algorithm that adaptively determines the thresholds by feature
inputs (HEM). As shown in the extensive experimental evaluation, we demonstrate the effectiveness
of the FedSR as a plug-in for most diffusion-based ISR models. Additionally, our analysis of the
degradation on the frequency domain may also inspire other ISR models, e.g. GAN-based ISR
models (see Appendix C.2). We also hope our work will draw more attention from the community
toward a broader view of addressing low-level vision tasks like ISR from a frequency perspective.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICAL STATEMENT

Although our proposed method does not strictly fall under generative AI, it can serve as a plug-and-
play framework integrated into diffusion-based ISR algorithms developed by Wang et al. (2023c).
As diffusion models evolve toward aligning with human preferences, concerns regarding their po-
tential misuse and malicious purposes (such as generative discrimination or inappropriate content)
become increasingly prominent. Regarding other potential societal consequences of our work, none
of which we feel must be specifically highlighted here.

REPRODUCIBILITY STATEMENT

We provide our implementation details, including the main algorithm and parameters, which can be
found in Section 5 and Appendix D. Additionally, our source code is available in the supplementary
materials. This information provides the necessary resources for reproducing our results.
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A IMAGE PROCESS IN FREQUENCY DOMAIN

A.1 STUDIES ON IMAGE FREQUENCY DOMAIN ANALYSIS

Applications of frequency components. In recent years, frequency-domain information has
widely applied in various computer vision tasks, with many studies exploring the impact of dif-
ferent components on image quality through various frequency decomposition methods (Yang &
Soatto, 2020; Yu et al., 2022; Wang et al., 2023a; Si et al., 2023; Huang et al., 2024; Cai et al., 2021;
Mao et al., 2023a). (1) Decomposition based on composition: Frequency-domain information can
be divided into amplitude and phase spectra. FDA (Yang & Soatto, 2020) reduces the distribution
discrepancy between the source and target domains by swapping their amplitude spectra. FSDGN
(Yu et al., 2022) addresses the dehazing problem by investigating the correlation between amplitude
and phase spectra in the frequency domain under foggy degradation. (2) Decomposition based on
distance with the frequency center: The frequency domain can also be divided into high-frequency
and low-frequency components. FreeU (Si et al., 2023) suppresses low-frequency features in the
frequency domain to prevent Stable Diffusion from generating overly smooth images. FouriScale
(Huang et al., 2024) applies low-pass filtering in the frequency domain to alleviate repetitive pat-
terns and structural distortions in the generation of high-resolution images by pre-trained diffusion
models. (3) Decomposition based on properties: The frequency domain can be separated into real
and imaginary components. DeepRFT (Mao et al., 2023a) applies ReLU networks to the real and
imaginary parts of the frequency domain separately to achieve effective image deblurring.

Table 5: Classification and Comparison of Frequency-Domain-Based Super-Resolution Methods.

Domain Method Amplitude and
Phase Separate

High- and Low-
Frequency Separate Frequency Loss Training-Free

ISR

FSN × ✓ × ×
FDC × ✓ ✓ ×

ARFFT × × ✓ ×
FADN × ✓ ✓ ×

CRAFT × ✓ × ×

VSR
DFVSR × ✓ ✓ ×
FTVSR × ✓ × ×

VideoGigaGAN × ✓ × ×
MFPI × × × ×

FSR SFMNet ✓ × ✓ ×
ISR Ours ✓ ✓ × ✓

Other methods of frequency-based super-resolution. The main paper summarizes existing
methods that apply frequency transform to super-resolution tasks. Table 5 integrates and categorizes
frequency-based super-resolution methods from multiple perspectives. It can be observed that other
methods fail to consider degradation systematically. In contrast, our training-free method addresses
degradation by modulating degraded amplitude and high-frequency components.

A.2 IMAGE MODELING IN THE FREQUENCY DOMAIN

To better understand the semantic information represented by various frequency-domain compo-
nents, we perform a visual modeling of them, shown in Figure 7. First, the image is transformed
into the frequency domain, and then three types of decomposition are applied: (1) based on compo-
sition: amplitude and phase components; (2) based on distance: high- and low-frequency compo-
nents; and (3) based on properties: real and imaginary components. Afterward, these components
are transformed back into the spatial domain directly. The experimental results demonstrate that the
amplitude and phase components, as well as the high- and low-frequency components, can convey
the semantic information of the image. Specifically, the amplitude component primarily reflects the
style characteristics of the image, such as color and contrast, while the phase component reveals
the contour information. The low-frequency component captures the overall structure of the image,
whereas the high-frequency component highlights the edges and texture details.
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Amplitude                   Phase             Real-part       Imaginary-part            Low-freq                High-freq

FFT

iFFT

Spatial Domain

Frequency Domain

(a) Decomposition 

based on composition

(b) Decomposition

based on properties

(c) Decomposition

based on distance

Figure 7: Image modeling methods in the frequency domain. We present the results of three de-
composition approaches: (a) decomposition based on composition, (b) decomposition based on
properties, and (c) decomposition based on distance. Compared to (b), the method (a) and (c) offer
better separation of the intrinsic properties of the image.

B QUANTITATIVE RESULTS OF THE IMPACT OF ISR DEGRADATION

In the main paper, the impact of the ISR degradation process on various components is visualized.
Detailed quantitative results from testing on RealSR (Cai et al., 2019) are presented in Table 6. The
first two rows of Table 6 show the results of replacing the amplitude and phase components of HR
images with their corresponding LR counterparts. Following the replacement of the amplitude com-
ponent, the resulting image quality metrics are poor, indicating that the information loss is primarily
concentrated in the amplitude component. The last two rows of Table 6 display the outcomes of re-
placing the high- and low-frequency components of HR images with their LR counterparts. After the
replacement of the high-frequency component, the image quality metrics also remained low, further
confirming that the information loss is primarily concentrated in the high-frequency component.

Table 6: Quantitative results of the impact of ISR degradation on amplitude and phase components,
high- and low-frequency components.

Method CLIPIQA↑ MUSIQ↑ NIQE↓ MANIQA↑
ALR+PHR 0.2320 25.44 6.849 0.1906
AHR+PLR 0.3060 28.78 6.410 0.2373
HLR+LHR 0.2731 25.54 9.99 0.2447
HHR+LLR 0.4447 56.98 6.035 0.3227

To further validate our argument regarding the impact of the ISR degradation, we performed the
degradation process on phase and low-frequency components that have a minimal influence on the
ISR task. Figure 9 demonstrates that the degradation of the phase component directly results in the
loss of image structural information, and the degradation of the low-frequency leads to the disap-
pearance of color information, rendering the issue no longer within the scope of ISR research.

C COMPARE WITH GAN-BASED METHODS

C.1 QUANTITATIVE AND QUALITATIVE COMPARISONS ON GAN-BASED MODELS

GAN-based ISR Methods. Based on the results in Table 1, 2, and 3, we further demonstrate
the effectiveness of applying our method to DiffBIR and compare its superiority with GAN-based
approaches, including BSRGAN (Zhang et al., 2021), Real-ESRGAN (Wang et al., 2021), FeMaSR
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DASRReal-ESRGAN FeMaSR SwinIR-GANBSRGAN FedSR+DiffBIRLR HR

Figure 8: Qualitative comparisons of GAN-based methods and our FedSR applied to DiffBIR (Lin
et al., 2023) on real-world examples.

(Chen et al., 2022), DASR (Liang et al., 2022), and SwinIR-GAN (Liang et al., 2021). We conduct
the tests using publicly available codes and models from the comparison methods.

Quantitative Comparisons. Compared to GAN-based methods, our approach demonstrates su-
perior performance in no-reference metrics across three datasets, as shown in Table 7. We also find
that GAN-based methods generally perform better in PSNR and SSIM scores. This is because diffu-
sion models generate more realistic details that may not perfectly match the ground truth (GT), thus
leading to lower full-reference metrics compared to GAN-based methods.

Qualitative Comparisons. To validate the effectiveness of our method, we present a comparison
between our approach and GAN-based methods in Figure 8. Our method has a significant advantage
in detail generation. Specifically, the DiffBIR (Lin et al., 2023) model combined with our FedSR
can produce sharp contours and realistic details, as shown in the second-to-last column of Figure 8,
whereas other methods tend to generate blurred results.

C.2 DISCUSSION ON THE FEDSR APPLICATION EFFECTIVENESS OF GAN

According to Li et al. (2023c), in the training process of most GAN models, the discriminator
tends to overemphasize high-frequency components, which weakens the generator’s ability to fit
low-frequency components. As a result, while GANs can generate sharper images compared to
Diffusion models, these images often exhibit unnatural details or artifacts. To explore the model’s
generalizability, we applied the proposed method to the classic GAN-based ISR model BSRGAN
(Zhang et al., 2021), by modulating its high-frequency and amplitude components to enhance the
generated results and achieve fine control over each component. Specifically, we introduce the AEM
module into the RRDB backbone network to adjust the amplitude components. We also incorporate
the HEM module into the residual connections to reduce the impact of high-frequency components.
Figure 11 presents the visual results, and the quantitative comparisons are detailed in Table 8.

D IMPLEMENTATION DETAILS

D.1 DISCUSSIONS OF OUR AMPLITUDE MODULATION

The relationship between low amplitude and high-frequency components. Although physics
indicates that, under the same energy (power), the amplitude of high-frequency waves is usually
smaller than that of low-frequency waves, there is currently no evidence in frequency domain analy-
sis of image processing to suggest a one-to-one correspondence between low-amplitude components
and high-frequency details, especially in the feature maps of black-box deep learning models. For
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Table 7: Quantitative comparison with other GAN-based methods on both synthetic and real-world
benchmarks. The bold and underline represent the best and second-best performance, respectively.

DIV2K-Val
Methods PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ MANIQA↑
BSRGAN 24.57 0.6232 0.3354 0.5255 61.23 4.751 0.3561

Real-ESRGAN 24.29 0.6328 0.3115 0.5283 61.11 4.674 0.3823
FeMaSR 23.05 0.5816 0.3125 0.5997 60.82 4.746 0.3457
DASR 24.46 0.6267 0.3542 0.5036 55.20 5.033 0.3186

SwinIR-GAN 23.92 0.6235 0.3159 0.5340 60.22 4.706 0.3656
DiffBIR+Ours 22.38 0.5222 0.4236 0.7382 73.04 4.729 0.5838

DrealSR
Methods PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ MANIQA↑
BSRGAN 28.68 0.8021 0.2885 0.5104 57.25 6.518 0.3407

Real-ESRGAN 28.61 0.8044 0.2848 0.4525 54.26 6.701 0.3422
FeMaSR 26.87 0.7557 0.3179 0.5534 53.32 5.775 0.3121
DASR 29.74 0.8257 0.3143 0.3807 42.43 7.522 0.2822

SwinIR-GAN 28.46 0.8036 0.2801 0.4389 52.65 6.388 0.3265
DiffBIR+Ours 24.53 0.6014 0.5024 0.7167 71.90 5.833 0.5902

RealSR
Methods PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ MANIQA↑
BSRGAN 26.37 0.7643 0.2652 0.5105 63.19 5.690 0.3800

Real-ESRGAN 25.65 0.7592 0.2720 0.4491 60.49 5.910 0.3769
FeMaSR 25.06 0.7342 0.2896 0.5450 59.20 5.807 0.3648
DASR 27.01 0.7702 0.3047 0.3135 40.95 6.682 0.2459

SwinIR-GAN 26.30 0.7719 0.2479 0.4367 58.83 5.800 0.3455
DiffBIR+Ours 23.97 0.6405 0.3667 0.7090 72.83 5.068 0.5812

Table 8: Quantitative results of BSRGAN (Zhang et al., 2021) method on the RealSR with FedSR.
Method PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑ NIQE↓ MANIQA↑

BSRGAN 26.37 0.7643 0.2652 0.5105 63.19 5.690 0.3800
BSRGAN+ours 25.33 0.7541 0.2711 0.5327 64.66 5.522 0.4141
∆ BSRGAN -1.04 -0.0102 +0.0059 +0.0222 +1.47 -0.168 +0.0341

instance, in images containing abundant details, textures, and sharp edges, the amplitude of high-
frequency components may be large, such as in a dense forest with lush leaves; likewise, the ampli-
tude of high-frequency components increases in the presence of high-frequency noise. In contrast,
low-frequency components may have relatively small amplitudes in patterns primarily composed
of high-frequency information, such as fine lines or repetitive textures. Therefore, our research
attempts to enhance both amplitude and high-frequency components. Our supplementary experi-
ments in Appendix D.2 also indicate that enhancing low-amplitude channels in the backbone is not
equivalent to enhancing high-frequency components. This further illustrates the differences between
low-amplitude components and high-frequency details.

The illustrations of reweighting of the AEM Due to the obscurity of DNN’s features, our motiva-
tion for optimizing ISR primarily stems from the visible aspects of image space. However, insights
derived from image space do not fully apply to the feature space due to the differences between the
two. Although the effect of applying amplitude reweighting in AEM is not obvious in the image
space (see Figure 10), this operation can effectively enhance the quality of ISR reconstruction in
the feature space. This method of reducing amplitude values seems contrary to the conventional ap-
proach of increasing values to enhance results, and it is even somewhat counterintuitive. However,
Row 2 and 3 in Table 9 indicate that increasing amplitude values actually leads to a deterioration
in performance metrics. To explain this phenomenon, we first investigate the denoising process
in diffusion models. In the previous paragraph, we detail the differences between low-amplitude

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025
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Figure 9: Visualization of degradation in
phase and low-frequency components. Phase
and low-frequency component degradation is
denoted as poor P , and poor L.
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Figure 10: Visual comparison between origi-
nal images and after amplitude A reweighting
on real-world LR images. It shows that the ef-
fect is not obvious in image space.

and high-frequency components. Since noise typically belongs to high-frequency components, we
cannot establish a direct connection between optimizing denoising and reducing amplitude values.
Regrettably, to our knowledge, there is currently no relevant literature evidence suggesting that mod-
ulating feature amplitudes to smaller values can improve image quality. Considering the internal
structure of U-Net, we hypothesize that the attention modules within U-Net may prefer lower ampli-
tude channel information. Therefore, further reducing the already information-rich low-amplitude
channels may assist U-Net in better understanding and representing features, thereby enhancing
super-resolution quality. Please note that the preference of deep networks for feature space exceeds
the scope of this study, and we will explore this in greater depth in future work. Meanwhile, we
encourage researchers in the community to provide more reasonable explanations.

D.2 DISCUSSION ON THE MODULE CONFIGURATION

To demonstrate the effectiveness of our module configuration, we conduct supplementary exper-
iments on AEM and HEM by replacing the positions of their effects. Specifically, we apply the
AEM to the skip features and observe that its performance metrics are inferior to those obtained
with the default settings for skip features (see Row 1, 2 of Table 9). Similarly, when applying HEM
to the backbone features, the generated results were very poor (see Row 3, 5 of Table 9). This in-
dicates that enhancing high-frequency components in the backbone does not equate to enhancing
lower-amplitude components, further confirming the differences between high-frequency and low-
amplitude components. Furthermore, we note that FreeU (Si et al., 2023) also includes frequency-
related operations. To validate the effectiveness of our adaptive masking for high-frequency com-
ponents, we replace HEM with the operations of skip features in FreeU, resulting in a significant
decrease in no-reference metrics, specifically MUSIQ and MANIQA (see Row 5, 6 of Table 9).

Table 9: Supplementary experiments of the AEM and HEM on DRealSR and RealSR benchmarks.
Strategy DRealSR/RealSR

Module Place PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑ NIQE↓ MANIQA↑
AEM Skip 27.32 / 24.09 0.7236 / 0.6805 0.3508 / 0.3275 0.6683 / 0.6554 62.51 / 67.88 6.275 / 5.642 0.4154 / 0.4504
AEM Backbone (A↑) 28.12 / 24.80 0.7456 / 0.6886 0.3709 / 0.3404 0.4806 / 0.4703 45.91 / 55.26 6.561 / 6.284 0.2944 / 0.3218
AEM Backbone (A↓) 27.36 / 24.27 0.7322 / 0.6890 0.3635 / 0.3389 0.6760 / 0.6760 65.23 / 69.59 5.707 / 5.241 0.4681 / 0.5087
HEM Backbone 18.67 / 15.98 0.4093 / 0.2961 0.7266 / 0.7455 0.2011 / 0.1907 33.92 / 35.64 9.410 / 9.612 0.2840 / 0.2691
HEM Skip (FreeU) 27.46 / 24.44 0.7241 / 0.6867 0.3520 / 0.3196 0.6732 / 0.6563 61.10 / 66.29 5.613 / 5.294 0.3972 / 0.4245
HEM Skip 26.91 / 23.85 0.7230 / 0.6859 0.3655 / 0.3351 0.6749 / 0.6522 64.56 / 68.55 5.768 / 5.386 0.4447 / 0.4738

D.3 THE ALGORITHM AND PARAMTERS

As stated in the main paper, the AEM and the HEM are two key modules embedded in the skip
connections of the U-Net within the Diffusion model. Each module contains its respective enhance-
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Algorithm 1 FedSR Algorithm
1: for each t ∈ [1,Sampling Steps] do
2: Initialize the backbone features xbone and the skip features xskip in the skip connection;
3: fbone = F(xbone), fskip = F(xskip)
4: // (1) Amplitude Enhancement Module
5: A(xbone),P(xbone) = FFTSplit(fbone);
6: // a) Channel Split;
7: Split A(xbone) by channel, then obtain SA = {A(xbone)i}Ci=1;
8: // b) Average & Order;
9: for each i ∈ [1, n] do

10: Average amplitude value ai =
1

HW

∑H
h=1

∑W
w=1 A(xbone)

(h,w)
i ;

11: end for
12: Order(SA) by ai
13: // c) Channel Selection;
14: SS = {A(xbone)i|ai ≤ amin + Ps × (amax − amin)};
15: // d) Amplitude Modulation;
16: if A(xbone)i ∈ SS then
17: Mbone = 1− Pa · (A−Amin)/(Amax −Amin),A(xbone)

′
i = A(xbone)i ⊙Mbone;

18: end if
19: f ′

bone = FFTCombine(A(xbone)
′,P(xbone)), x′

bone = G(f ′
bone)

20: // (2) High-frequency Enhancement Module
21: for r ∈ [0, S/2] do
22: Mskip(r) = 1 + (r > rthresh) · [(S − Smin)/(Smax − Smin) + 0.5] · Pb/2
23: end for
24: f ′

skip = fskip ⊙Mskip, x′
skip = G(f ′

skip);
25: end for

ment parameters, as detailed in Table 10. The detailed algorithmic process for these two modules is
shown in Algorithm D.2.

Table 10: The parameters and their definitions for the AEM and HEM, which are set within five
state-of-the-art diffusion-based ISR models.

Module Parameter Definition StableSR DiffBIR SUPIR SeeSR PASD

AEM
Pa The linearization param in Eq. (6) 0.3 0.3 0.05 0.3 0.3
Ps The selection threshold of Figure 6 0.3 0.3 0.3 0.3 0.3

HEM
Pb1 The scaling factor in Eq. (8) 0.9 0.9 0.3 0.1 0.1
Pb2 The scaling factor in Eq. (8) 0.2 0.2 0.2 0.4 0.2

D.4 DISCUSSION ON THE METRICS

We show the DISTS metrics on the RealSR dataset (see Table 11). In the literature, the trade-off
between fidelity and visual quality remains a long-standing challenge in the field of SR, and there is
currently no definitive optimal evaluation metric. As noted by (Blau & Michaeli, 2018), this trade-off
implies that solely optimizing distortion metrics may not only be ineffective but could also degrade
visual quality. Meanwhile, we find recent Diffusion-based SR methods tends to emphasizing more
on perceptual metrics such as MUSIQ and CLIP-IQA. (Wang et al., 2023c; Yu et al., 2024). Notably,
our fluctuations on metrics like PNSR/SSIM are deems acceptable, much lower than the gap between
SOTA diffusion-based methods themselves (e.g. SUPIR and StableSR differ by 0.1109 in SSIM,
while DiffBIR and StableSR differ by 2.03 points in PSNR).

D.5 DISCUSSION ON THE TIMESTEP

Our FedSR is a highly flexible framework which can be adapted to specific timesteps. We conduct a
preliminary experiment and observe that our FedSR demonstrates a greater impact during the early
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BSRGAN FedSR+BSRGAN

Figure 11: Visual comparisons of BSR-
GAN. After applying our method, BSRGAN
(Zhang et al., 2021) presents the results with
more natural image details and contrast.

StableSR StableSR
+AEM

StableSR
+FedSR

StableSR
+HEM

Figure 12: Visual effects of AEM and HEM.
The results show that AEM primarily en-
hances the overall appearance, while HEM
improves the clarity of details.

Table 11: Quantitative results of DISTS metrics on RealSR dataset.
Matrics StableSR DiffBIR SeeSR PASD SUPIR
Baseline 0.2202 0.2401 0.2227 0.1989 0.2494
FedSR+ 0.2422 0.2562 0.2294 0.2029 0.2632

denoising stages (see last row of Table 12). Additionally, incorporating FedSR in segments proves
less effective than applying it as a whole.

Table 12: Quantitative results on specific timesteps on the RealSR dataset.
Matrics PSNR SSIM LIPIPS MUSIQ CLIP-IQA NIQE MANIQA

StableSR 24.66 0.7003 0.3101 65.24 0.6169 5.924 0.4302
StableSR+FedSR(totally 1-200) 23.77 0.6832 0.3502 70.27 0.6683 5.094 0.5186

StableSR+FedSR (1-100) 24.04 0.6860 0.3302 68.62 0.6489 5.343 0.4681
StableSR+FedSR (101-200) 24.35 0.6966 0.3272 68.65 0.6628 5.511 0.5031

D.6 COMPLEXITY ANALYSIS

In this section, we evaluate the complexity of the FedSR method using StableSR and DiffBIR as
examples. We list the parameters and FLOPs of the denoising models in each framework below,
which demonstrate almost the same statistics after integrating FedSR.

Table 13: Parameters and FLOPS of denoising models before and after integrating FedSR.
Matrics StableSR FedSR+StableSR DiffBIR FedSR+DiffBIR

Param (M) 918.93 918.93 1666.75 1666.75
FLOPs (G) 375.55 375.59 61.45 61.49
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E ADDITIONAL VISUAL RESULT

In this section, we present additional experimental results. Figure 12 illustrates the visual effects
of AEM and HEM when applied individually and in combination. The results show that AEM
primarily enhances the overall image appearance, such as contrast, while HEM mainly improves the
clarity of high-frequency details.

F LIMITATIONS AND FUTURE WORK

Although our proposed FedSR achieves significant results, there are still some limitations. Similar
to other ISR studies on natural scenes, this work focuses only on existing natural image datasets and
synthetic datasets for ISR tasks. Applying ISR on a larger scale to AI-generated datasets remains
an interesting avenue for further exploration. Additionally, we only employ a training-free imple-
mentation, without delving into model training and fine-tuning. In future work, we will explore
how to leverage the network’s preference for frequency domain components to fine-tune the model
architecture, thereby further enhancing ISR quality.
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