
Under review as a conference paper at ICLR 2021

A PROOFS OF THE THEORETICAL RESULTS

A.1 PROOF OF THEOREM 1

Theorem. Under H1-H4. For any Kmax 2 N, let K be an independent discrete r.v. drawn uniformly
from {0, ...,Kmax � 1} and define the following quantity:

�(Kmax) := 2nLE[ eL(0)(✓(0))� eL(Kmax)(✓(Kmax))] + 4LCrM (k) .

Then we have following non-asymptotic bounds:
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Furthermore, we recall that
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Due to H2, we have
krbe(k)(✓(k))k2  2Lbe(k)(✓(k)) . (18)

To prove the first bound in (16), using the optimality of ✓(k+1), one has
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Let Fk be the filtration of random variables up to iteration k, i.e., {i`�1, {z
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We observe that the conditional expectation evaluates to

Eik

⇥
E
⇥ eLik(✓

(k);✓(k)
, {z

(k)
ik,m

}
M(k)

m=1)|Fk, ik

⇤
|Fk

⇤

= L(✓(k)) + Eik

⇥
E
⇥ 1

M(k)

M(k)X

m=1

rik(✓
(k);✓(k)

, z
(k)
ik,m

)� bLik(✓
(k);✓(k))|Fk, ik

⇤
|Fk

⇤

 L(✓(k)) +
Crp
M(k)

,

where the last inequality is due to H4. Moreover,
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Taking the conditional expectations on both sides of (19) and re-arranging terms give:
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Proceeding from (20), we observe the following lower bound for the left hand side
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where (a) is due to be(k)(✓(k)) = 0 [cf. H1], (b) is due to (18) and we have defined the summation in
the last equality as ��(k)(✓(k)). Substituting the above into (20) yields
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Observe the following upper bound on the total expectations:
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which is due to H4. It yields
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Finally, for any Kmax 2 N, we let K be a discrete r.v. that is uniformly drawn from {0, 1, ...,Kmax�

1}. Using H4 and taking total expectations lead to
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For all i 2 J1, nK, the index i is selected with a probability equal to 1
n when conditioned indepen-

dently on the past. We observe:
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where the last inequality is due to upper bounding the geometric series. Plugging this back into (22)
yields
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This concludes our proof for the first inequality in (16).

To prove the second inequality of (16), we define the shorthand notations g(k) := g(✓(k)), g(k)� :=

�min{0, g(k)}, g(k)+ := max{0, g(k)}. We observe that
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where the inequality is due to the optimality of ✓(k) and the convexity of eL(k)(✓) [cf. H3]. Denoting
a scaled version of the above term as:
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and concludes the proof of the theorem.
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A.2 PROOF OF THEOREM 2

Theorem. Under H1-H4. In addition, assume that {M(k)}k�0 is a non-decreasing sequence of
integers which satisfies
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Proof We apply the following auxiliary lemma which proof can be found in Appendix A.3 for the
readability of the current proof:
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Let (Xk)k�0 a non negative sequence of random variables and (Ek)k�0 be a sequence of random
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Our idea is to apply Lemma 1. Under H1, the finite sum of surrogate functions bL(k)(✓), defined in
(15), is lower bounded by a constant ck > �1 for any ✓. To this end, we observe that
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Note that from the definitions (28), (29), (30), we have Vk+1  Vk �Xk + Ek for any k � 1.
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Using (24) and the assumption on the sequence {M(k)}k�0, we obtain that
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Therefore, the conclusions in Lemma 1 hold. Precisely, we have
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Since be(k)(✓(k)) � 0, the above implies
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k!1

be(k)(✓(k)) = 0 a.s. (31)

and subsequently applying (18), we have limk!1 kbe(k)(✓(k))k = 0 almost surely. Finally, it follows
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where the last equality holds almost surely due to the fact that
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This concludes the asymptotic convergence of the MISSO method.

Finally, we prove that L(✓(k)) converges almost surely. As a consequence of Lemma 1, it is clear that
{Vk}k�0 converges almost surely and so is { bL(k)(✓(k))}k�0, i.e., we have limk!1 bL(k)(✓(k)) = L.
Applying (31) implies that
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This shows that L(✓(k)) converges almost surely to L.

A.3 PROOF OF LEMMA 1

Lemma. Let (Vk)k�0 be a non negative sequence of random variables such that E[V0] < 1.
Let (Xk)k�0 a non negative sequence of random variables and (Ek)k�0 be a sequence of random
variables such that

P1
k=0 E[|Ek|] <1. If for any k � 1:

Vk  Vk�1 �Xk�1 + Ek�1

then:

(i) for all k � 0, E[Vk] <1 and the sequence (Vk)k�0 converges a.s. to a finite limit V1.

(ii) the sequence (E[Vk])k�0 converges and lim
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(iii) the series
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Proof We first show that for all k � 0, E[Vk] <1. Note indeed that:
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showing that the random variable W1 is integrable.

In the sequel, set Uk , W0 �Wk. By construction we have for all k � 0, Uk � 0, Uk  Uk+1 and
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lim
k!1

E[Uk] = E[ lim
k!1

Uk] . (37)

Finally, we have:
lim
k!1

E[Uk] = E[W0]� w1 and E[ lim
k!1

Uk] = E[W0]� E[W1] . (38)
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an concludes the proof of the lemma.

B PRACTICAL DETAILS FOR THE BINARY LOGISTIC REGRESSION ON THE
TRAUMABASE

B.1 TRAUMABASE DATASET QUANTITATIVE VARIABLES

The list of the 16 quantitative variables we use in our experiments are as follows — age, weight,
height, BMI (Body Mass Index), the Glasgow Coma Scale, the Glasgow Coma Scale motor com-
ponent, the minimum systolic blood pressure, the minimum diastolic blood pressure, the maximum
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number of heart rate (or pulse) per unit time (usually a minute), the systolic blood pressure at ar-
rival of ambulance, the diastolic blood pressure at arrival of ambulance, the heart rate at arrival
of ambulance, the capillary Hemoglobin concentration, the oxygen saturation, the fluid expansion
colloids, the fluid expansion cristalloids, the pulse pressure for the minimum value of diastolic and
systolic blood pressure, the pulse pressure at arrival of ambulance.

B.2 METROPOLIS-HASTINGS ALGORITHM

During the simulation step of the MISSO method, the sampling from the target distribution
⇡(zi,mis;✓) := p(zi,mis|zi,obs, yi;✓) is performed using a Metropolis-Hastings (MH) algo-
rithm (Meyn & Tweedie, 2012) with proposal distribution q(zi,mis; �) := p(zi,mis|zi,obs; �) where
✓ = (�,⌦) and � = (⇠,⌃). The parameters of the Gaussian conditional distribution of zi,mis|zi,obs

read:

⇠ = �miss + ⌦mis,obs⌦
�1
obs,obs(zi,obs � �obs) ,

⌃ = ⌦mis,mis + ⌦mis,obs⌦
�1
obs,obs⌦obs,mis ,

where we have used the Schur Complement of ⌦obs,obs in ⌦ and noted �mis (resp. �obs) the missing
(resp. observed) elements of �. The MH algorithm is summarized in Algorithm 3.

Algorithm 3 MH aglorithm
1: Input: initialization zi,mis,0 ⇠ q(zi,mis; �)
2: for m = 1, · · · ,M do
3: Sample zi,mis,m ⇠ q(zi,mis; �)
4: Sample u ⇠ U(J0, 1K)
5: Calculate the ratio r = ⇡(zi,mis,m;✓)/q(zi,mis,m);�)

⇡(zi,mis,m�1;✓)/q(zi,mis,m�1);�)

6: if u < r then
7: Accept zi,mis,m

8: else
9: zi,mis,m  zi,mis,m�1

10: end if
11: end for
12: Output: zi,mis,M

B.3 MISSO UPDATE

Choice of surrogate function for MISO: We recall the MISO deterministic surrogate defined in
(7):

bLi(✓;✓) =

Z

Z
log

�
pi(zi,mis,✓)/fi(zi,mis,✓)

�
pi(zi,mis,✓)µi(dzi) .

where ✓ = (�,�,⌦) and ✓ = (�̄, �̄, ⌦̄). We adapt it to our missing covariates problem and decom-
pose the surrogate function defined above into an observed and a missing part.

Surrogate function decomposition We adapt it to our missing covariates problem and decompose
the term depending on ✓, while ✓̄ is fixed, in two following parts leading to

bLi(✓;✓)

=�

Z

Z
log fi(zi,mis, zi,obs,✓)pi(zi,mis,✓)µi(dzi,mis)

=�

Z

Z
log [pi(yi|zi,mis, zi,obs, �)pi(zi,mis,�,⌦)] pi(zi,✓)µi(dzi,mis)

=�

Z

Z
log pi(yi|zi,mis, zi,obs, �)pi(zi,✓)µi(dzi,mis)

| {z }
=L̂(1)

i (�,✓)

�

Z

Z
log pi(zi,mis,�,⌦)pi(zi,✓)µi(dzi,mis)

| {z }
=L̂(2)

i (�,⌦,✓)

.

(40)
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The mean � and the covariance ⌦ of the latent structure can be estimated minimizing the sum of
MISSO surrogates L̃(2)

i (�,⌦,✓, {zm}
M
m=1), defined as MC approximation of L̂(2)

i (�,⌦,✓), for all
i 2 JnK, in closed-form expression.

We thus keep the surrogate L̂(2)
i (�,⌦,✓) as it is, and consider the following quadratic approximation

of L̂(1)
i (�,✓) to estimate the vector of logistic parameters �:

L̂
(1)
i (�̄,✓)�

Z

Z
r log pi(yi|zi,mis, zi,obs, �)

��
�=�̄

pi(zi,mis,✓)µi(dzi,mis)(� � �̄)

� (� � �̄)/2

Z

Z
r

2 log pi(yi|zi,mis, zi,obs, �)pi(zi,mis,✓)pi(zi,mis,✓)µi(dzi,mis)(� � �̄)>.

Recall that:
r log pi(yi|zi,mis, zi,obs, �) = zi

�
yi � S(�>zi)

�
,

r
2 log pi(yi|zi,mis, zi,obs, �) = �ziz

>
i Ṡ(�>zi) ,

where Ṡ(u) is the derivative of S(u). Note that Ṡ(u)  1/4 and since, for all i 2 JnK, the p ⇥ p

matrix ziz
>
i is semi-definite positive we can assume that:

L1. For all i 2 JnK and ✏ > 0, there exist, for all zi 2 Z, a positive definite matrix Hi(zi) :=
1
4 (ziz

>
i + ✏Id) such that for all � 2 Rp, �ziz>i Ṡ(�>zi)  Hi(zi).

Then, we use, for all i 2 JnK, the following surrogate function to estimate �:

L̄
(1)
i (�,✓) = L̂

(1)
i (�̄,✓)�D

>
i (� � �̄) +

1

2
(� � �̄)Hi(� � �̄)> , (41)

where:

Di =

Z

Z
r log pi(yi|zi,mis, zi,obs, �)

��
�=�̄

pi(zi,mis,✓)µi(dzi,mis) ,

Hi =

Z

Z
Hi(zi,mis)pi(zi,mis,✓)µi(dzi,mis) .

Finally, at iteration k, the total surrogate is:

L̃
(k)(✓) =

1

n

nX

i=1

L̃i(✓, ✓
(⌧k

i )
, {zi,m}

M
(⌧k

i )

m=1 )

=
1

n

nX

i=1

L̃
(2)
i (�,⌦, ✓(⌧

k
i )
, {zi,m}

M
(⌧k

i )

m=1 )�
1

n

nX

i=1

D̃
(⌧k

i )
i (� � �

(⌧k
i ))

+
1

2n

nX

i=1

(� � �
(⌧k

i ))
n
H̃

(⌧k
i )

i

o
(� � �

(⌧k
i ))> ,

(42)

where for all i 2 JnK:

D̃
(⌧k

i )
i =

1

M(⌧k
i )

M
(⌧k

i )X

m=1

z
(⌧k

i )
i,m

✓
yi � S(

⇣
�
(⌧k

i )
⌘>

zi,m(⌧ki ))

◆
,

H̃
(⌧k

i )
i =

1

4M(⌧k
i )

M
(⌧k

i )X

m=1

z
(⌧k

i )
i,m (z

(⌧k
i )

i,m )> .

Minimizing the total surrogate (42) boils down to performing a quasi-Newton step. It is perhaps sen-
sible to apply some diagonal loading which is perfectly compatible with the surrogate interpretation
we just gave.

The logistic parameters are estimated as follows:

�(k) = argmin
�2⇥

1

n

nX

i=1

L̃
(1)
i (�, ✓(⌧

k
i )
, {zi,m}

M
(⌧k

i )

m=1 ) ,
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where L̃
(1)
i (�, ✓(⌧

k
i )
, {zi,m}

M
(⌧k

i )

m=1 ) is the MC approximation of the MISO surrogate defined in (41)
and which leads to the following quasi-Newton step:

�(k) =
1

n

nX

i=1

�(⌧
k
i )
� (H̃(k))�1

D̃
(k)

,

with D̃
(k) = 1

n

Pn
i=1 D̃

(⌧k
i )

i and H̃
(k) = 1

n

Pn
i=1 H̃

(⌧k
i )

i .

MISSO updates: At the k-th iteration, and after the initialization, for all i 2 JnK, of the latent
variables (z(0)i ), the MISSO algorithm consists in picking an index ik uniformly on JnK, complet-
ing the observations by sampling a Monte Carlo batch {z

(k)
ik,mis,m}

M(k)

m=1 of missing values from the
conditional distribution p(zik,mis|zik,obs, yik ;✓

(k�1)) using an MCMC sampler and computing the
estimated parameters as follows:

�(k) = argmin
�2⇥

1

n

nX

i=1

L̃
(2)
i (�,⌦(k)

, ✓
(⌧k

i )
, {zi,m}

M
(⌧k

i )

m=1 ) =
1

n

nX

i=1

1

M(⌧k
i )

M
(⌧k

i )X

m=1

z
(k)
i,m ,

⌦(k) = arg min
⌦2⇥

1

n

nX

i=1

L̃
(2)
i (�(k)

,⌦, ✓(⌧
k
i )
, {zi,m}

M
(⌧k

i )

m=1 ) =
1

n

nX

i=1

1

M(⌧k
i )

M
(⌧k

i )X

m=1

w
(k)
i,m ,

�(k) =
1

n

nX

i=1

�(⌧
k
i )
� (H̃(k))�1

D̃
(k)

.

(43)

where z
(k)
i,m = (z(k)i,mis,m, zi,obs) is composed of a simulated and an observed part, D̃

(k) =
1
n

Pn
i=1 D̃

(⌧k
i )

i , H̃
(k) = 1

n

Pn
i=1 H̃

(⌧k
i )

i and w
(k)
i,m = z

(k)
i,m(z(k)i,m)> � �(k)(�(k))>. Be-

sides, L̃(1)
i (�,⌦,✓, {zm}

M
m=1) and L̃

(2)
i (�,⌦,✓, {zm}

M
m=1) are defined as MC approximation of

L̂
(1)
i (�,⌦,✓) and L̂

(2)
i (�,⌦,✓), for all i 2 JnK as components of the surrogate function (40).

C PRACTICAL DETAILS FOR THE INCREMENTAL VARIATIONAL INFERENCE

C.1 NEURAL NETWORKS ARCHITECTURE

Bayesian LeNet-5 Architecture: We describe in Table 1 the architecture of the Convolutional
Neural Network introduced in (LeCun et al., 1998) and trained on MNIST:

layer type width stride padding input shape nonlinearity
convolution (5⇥ 5) 6 1 0 1⇥ 32⇥ 32 ReLU
max-pooling (2⇥ 2) 2 0 6⇥ 28⇥ 28
convolution (5⇥ 5) 6 1 0 1⇥ 14⇥ 14 ReLU
max-pooling (2⇥ 2) 2 0 16⇥ 10⇥ 10
fully-connected 120 400 ReLU
fully-connected 84 120 ReLU
fully-connected 10 84

Table 1: LeNet-5 architecture

Bayesian ResNet-18 Architecture: We describe in Table 2 the architecture of the Resnet-18 we
train on CIFAR-10:
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layer type Output Size ResNet-18 nonlinearity
conv1 112⇥ 112⇥ 64 7⇥ 7, 64, stride 2 ReLU

conv2x 56⇥ 56⇥ 64

✓
3⇥ 3, 64
3⇥ 3, 64

◆
⇥ 2 ReLU

conv3x 28⇥ 28⇥ 128

✓
3⇥ 3, 128
3⇥ 3, 128

◆
⇥ 2 ReLU

conv4x 14⇥ 14⇥ 256

✓
3⇥ 3, 256
3⇥ 3, 256

◆
⇥ 2 ReLU

conv5x 7⇥ 7⇥ 512

✓
3⇥ 3, 512
3⇥ 3, 512

◆
⇥ 2 ReLU

average pool 1⇥ 1⇥ 512 7⇥ 7 average pool ReLU
fully connected 1000 512⇥ 1000 fully connections
softmax 1000

Table 2: ResNet-18 architecture

C.2 ALGORITHMS UPDATES

First, we initialize the means µ(0)
` for ` 2 JdK and variance estimates �(0). At iteration k, minimizing

the sum of stochastic surrogates defined as in (6) and (13) yields the following MISSO update —
step (i) pick a function index ik uniformly on JnK; step (ii) sample a Monte Carlo batch {z

(k)
m }

M(k)

m=1
from N (0, I); and step (iii) update the parameters as

µ
(k)
` =

1

n

nX

i=1

µ
(⌧k

i )
` �

�

n

nX

i=1

�̂(k)µ`,i
and �

(k) =
1

n

nX

i=1

�
(⌧k

i )
�

�

n

nX

i=1

�̂(k)�,i , (44)

where we define the following gradient terms for all i 2 J1, nK:

�̂(k)µ`,i
= �

1

M(k)

M(k)X

m=1

rw log p(yi|xi, w)
���
w=t(✓(k�1),z(k)

m )
+rµ`d(✓

(k�1)) ,

�̂(k)�,i = �
1

M(k)

M(k)X

m=1

z
(k)
m rw log p(yi|xi, w)

���
w=t(✓(k�1),z(k)

m )
+r�d(✓

(k�1)) .

(45)

Note that our analysis in the main text does require the parameter to be in a compact set. For the
current estimation problem considered, this can be enforced in practice by restricting the parameters
in a ball. In our simulation for the BNNs example, we did not implement the algorithms that stick
closely to the compactness requirement for illustrative purposes. However, we observe empirically
that the parameters are always bounded. The update rules can be easily modified to respect the
requirement. For the considered VI problem, we recall the surrogate functions (11) are quadratic
and indeed a simple projection step suffices to ensure boundedness of the iterates.

For all benchmark algorithms, we pick, at iteration k, a function index ik uniformly on JnK and
sample a Monte Carlo batch {z

(k)
m }

M(k)

m=1 from the standard Gaussian distribution. The updates of the
parameters µ` for all ` 2 JdK and � break down as follows:

Monte Carlo SAG update: Set

µ
(k)
` = µ

(k�1)
` �

�

n

nX

i=1

�̂(k)µ`,i
and �

(k) = �
(k�1)

�
�

n

nX

i=1

�̂(k)�,i ,

where �̂(k)µ`,i
= �̂(k�1)

µ`,i
and �̂(k)�,i = �̂(k�1)

�,i for i 6= ik and are defined by (45) for i = ik. The learning
rate is set to � = 10�3.

Bayes By Backprop update: Set

µ
(k)
` = µ

(k�1)
` �

�

n
�̂(k)µ`,ik

and �
(k) = �

(k�1)
�

�

n
�̂(k)�,ik

,
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where the learning rate � = 10�3.

Monte Carlo Momentum update: Set

µ
(k)
` = µ

(k�1)
` + v̂(k)

µ`
and �

(k) = �
(k�1) + v̂(k)

� ,

where
v̂(k)
µ`,i

= ↵v̂(k�1)
µ`

�
�

n
�̂(k)µ`,ik

and v̂(k)
� = ↵v̂(k�1)

� �
�

n
�̂(k)�,ik

,

where ↵ and �, respectively the momentum and the learning rates, are set to 10�3.

Monte Carlo ADAM update: Set

µ
(k)
` = µ

(k�1)
` �

�

n
m̂(k)

µ`
/(

q
m̂(k)

µ` + ✏) and �
(k) = �

(k�1)
�

�

n
m̂(k)

� /(

q
m̂(k)

� + ✏) ,

where

m̂(k)
µ`

= m(k�1)
µ`

/(1� ⇢
k
1) with m(k)

µ`
= ⇢1m

(k�1)
µ`

+ (1� ⇢1)�̂
(k)
µ`,ik

,

v̂(k)
µ`

= v(k�1)
µ`

/(1� ⇢
k
2) with v(k)

µ`
= ⇢2v

(k�1)
µ`

+ (1� ⇢1)
�
�̂(k)�,ik

�2

and

m̂(k)
� = m(k�1)

� /(1� ⇢
k
1) with m(k)

� = ⇢1m
(k�1)
� + (1� ⇢1)�̂

(k)
�,ik

,

v̂(k)
� = v(k�1)

� /(1� ⇢
k
2) with v(k)

� = ⇢2v
(k�1)
� + (1� ⇢1)

�
�̂(k)�,ik

�2
.

The hyperparameters are set as follows: � = 10�3
, ⇢1 = 0.9, ⇢2 = 0.999, ✏ = 10�8.
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