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CHANGE-POINT LOCALIZATION

Algorithm 1 Online C1ipped-SGD Change Point Detection and Localization

1: Input: (1:)¢>1, A > 0,60 € ©,9 € (0,1) FPR guarantee
20«1
3t Oy p—1 < Op, forallt > 1.
4: Set 71(,0) ~—0
5: Set Num-change-points < 0
6: foreachtimet =1,2,--- ,do
7:  Receive sample X;
8: é\s,t — Hg(ag7t_1 — ne_sclip(X; — /H\M_l, A)), forevery r < s < t.
9: if 3s € (r,t) such that |0, — 0s41.4]|3 > B (s -, m) +B (t —s—1, m) (B(.,-) is
defined in Equation (3]} then
10: Set Restart; <— 1 {Change point detected}
11: Set Num—-change-points <-Num-change-points +1 {Increment number of change-points detected}
12: Output time interval [inf{s € (r,t) s.t. B(r, s,t,0) = 1},sup{s € (r,t) s.t. B(r,s,t,0) = 1}] as the location of
the change-point {5() defined in Equation (8]}
13: r<—t+1
14:  else
15: Set Restart; < 0
16:  end if
17: end for
B PROOF FOR ROBUST ESTIMATION IN THEOREM 3.1

We follow the same proof architecture as that of Proof of [Tsai et al.| 2022].

Fix a time ¢ € N. We define a sequence of random variable (¢;);>1 as follows.

W = clip((X; — 0,-1),A) = (0" = 6;1),

Consider any time ¢. We have

165 — 613 = || [T @1 — meclip(X: — i1, A) — 6|13 ()
(€]

(a) . ~ *
S ||9t71 — ntchp(Xt — Qt,h )\) —0 ||§7 (2)
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= 61 — me (e + (0" — B,21)) — 67|,

=01 — O[3+ 02w + (0" — Or_1)[13 — 200 (Br—1 — 0%, b0 + (0" — B,_1)),

()~ ~ -~ —~
< N10r—1 = 0713 + 207 [ 13 + 202 (0% = Oe—1)l13 — 20e(0e—1 — 0%, + (0" = Oe—1)), A)

Step (a) follows since © is a convex set, |Peo(0;) — 6| < ||6; — 67|, since 8% € ©. In step (b), we use the fact that
lla + 0|13 < 2||al|3 + 2||b]|3, for all a,b € RY. Substituting Equation (35) into (3), we get that
16" — 0113 < 11611 — 07113 + 20 [[v2el13 — 27 (Br—1 — 67,301
+ 20 (M +m){(0" = 0u-1), Bor = 0) = mM|Gir = 0°3) = 200 (0" = 1), 011 — 07).

Re-arranging the equation above yields

16* — 6:]13 < (1 — 202mM)[|0i—y — 0713 + 207 |[0e]13 — 200 (Be—1 — 07, )
= 2nt(L —=ne (M +m)) (0" — 04—1),0;—1 — 0%).

Further substituting Equation (34) into the display above yields that

6% — )12 < (1 — 2nm + 202m?) (|81 — 67113 + 202 | el|3 — 200 (Be—1 — 67, 400),
< (1= nem)|[0e—1 — 0% (13 + 207 ||ve )13 — 200 (Bp—1 — 0%, 30),

where the inequality comes from the fact that if n;m < 1 == 2nm — 2n2m? > nm.
16" = 0113 < (1= mem) |01 — 07113 + 207 213 — 21 (Br1 — 07, 45). 4)

Unrolling the recursion yields,

t s
167 — 6,3 < H (1= num)||61 — 0%[13 + 207 Z T1C = newram)llvse—sall3
u=1 s=1u=1
t—1 s

—2n Z H (1= nt—ur1m)(Or—s — 0", bt s11).

s=1u=1

(t—s+v—3)(t—s+v—2)
(t+7)(t+v—1)

5 —2)(y = Dl6r — 6*|3
0* — 0 2 < (,-y 2

t—1
_ (t—s+7=3)t—s+7—=2)(0r—s — 0", th1—s41)
2 CT )ty —1) | (©)

Using the fact that []7_, (1 — ni—y11m) =

, we get that

®)

Denote by v, := 1/},@ + wt(”) where 1/1( = Egz, [¢¢|Fi—1] and wtv) =Yy — 1/1 . Using this in the display above and
using that fact that ||a + b[|3 < 2||a|3 + 2||b||2, we get

t—1

67— g3 < oD =01 oSS (st y = 8 sty = 2wl
e e [ ) — (t+7)(t+y-1)
B DR A Bt L S A ¥SY
— t+71)t+v-1)

Bt )l Gtk 1 U 0 )
" L t+nE+7-1) '



Further simplifying by adding and subtracting E 7, [H?/Jt(v) 13 |}"t_1] to be above display, we get

|0y_@%§(v(if%u?fizgwg+4f t—s+7t?ii;jj:jmm/ﬁﬂz o
+4mz (t—s+vy-3)(t —(::;V)(—ti)fz_t i;l[lwtvwll 31 Fe—s]
+4mZ (t=s+n- 3><t—s+v—(21<iz)p(tti+;||_2 -En wllBiFD)
_zmz (t=stv- 3)(ft_+ S&ZI?_WQS_Q* A0 )
—MZ (t=s+7=3)t =5 +7 =20 — 0", 6 ) o

t+7)E+vy-1)

Lemma B.1 (Lemma E.5 [Gorbunov et al.,[2020]]). If A > 2G, the following inequalities hold almost-surely for all times t.

[ < 2A1550 (10)
402
loi”ll2 < = (an

1052 (12)

IN

Ez, [l 131 Fi-1)

Simplifying Equation (9) using bounds in Lemma [B.T] along with the fact that for all 1 < s < ¢t and v > 1,
(t=s+y=3)(t=s+7=2)  t=s+y
(t+7) (t+y—1) = t+y

we get

1)y =216, — 0*]2 160202 Lt — e
(v =1y —2)I6s H2+ UN'E: s+7+4%ﬂ§: s+7

t+v t+

0* — 0,2 <
| tll2 < t+7)(t+y-1) A& bty bty
t—
2 (t_3+7)(||1/}t s+1||2 Ez,_ s+1[||wt s+1||2|-7:tfs+1])
+4m tr
) Y
(t—s+7))0i—s — 0 (= s+7)(0_s — 0,
4o, Z ’Y H t HHwt s+lH Z ’7 t 1/% s+1> (13)

Further applying the bound that ||¢t(b) I < %

-1
5 ~1)(y = 2)/I6: — 0|3 | [ 16330° —t-s+1
9*_92<(’Y 2 4 t9 4 4202
I tllz < t+NE+y—1) A 04 Z;t+y

Term 1

(t— s+ 113 = Bz [0 i1 31 Fimsa])
t+y

t 1

s:l

Term 2
802 o (t = s+ N6ims —07] . =5+ — 050
- . 14
R E: t+7 E: t+7y (19

s=1 s=1

Term 3 Term 4
B.1 PROBABILISTIC ANALYSIS

Definitions



For every t > 1, denote by the constant

3
102404 8A/In (%)
C; = max reZInvRvE 26 (15)
Denote by the deterministic constant &St) foru=1,---,tas
2 96/\21n<ﬁ)00+1
( &”)2 _ Ctha 02> 1 N 5 ) o )} 6
A 2m2(u+1) m(u+y)vVu+1
From the definition, the following in-equalities hold.
Proposition B.2. For all times u € {1,--- ,t},
u—1
Z(u— 5 +7)ED < 2(u+v)Vu+ 16D, (17)
s=1
u—1
DO(EP) < 2(u+ D lnu+ D(ED)? (18)
s=1
Proof. This follows from the following fact.
Proposition B.3. For all v € N and v > 0, we have
Z LY ot yVa L
Vu+1
O
For each time u € {1, - ,t}, denote by the random variable v by
* * Ciy?G?
S0 =0 007 < (L R
0 if otherwise
For every u € {1,--- ,t}, denote by the event &, () .1 to be the one in which the following inequality holds for all u €
{1, 1},
£ { 1§ DT~ B, (W 1811 )
pa— t+y
96)2 In (2t2<§+1)) o(o+1)
< } (19)
m(u+vy)vVu+1
and €(t2 as
u— v (t) 2t (t+1)
1 ’LL — S+ '7 Uu vai )s+1> “ ln (f) Cu’yQGQ
5 < + . (20)
t+ 10v/u + 1 4(u+1)

s=1

Denote by the event £(*) as

t

£0 =N (el ned).

u=1

21



Lemma B4. Forallt > 1,

0
PEW]>1 - ——.
£ = t(t+ 1)
We now prove by induction hypothesis that
Lemma B.5. For every t, under the event £, the following holds.

Cy 7

Wi 1P 1) + (D)2, (22)

16 — 6713 <
forallu e {1,--- t}.

Proof. Proof of Lemma[B.1] We will prove this lemma by induction on u by analyzing Equation (I4). The base-case of
uw = 1 holds trivially with probability 1 since C; > 1,V¢ > 1 and v > 2.

Now, assume that on the event £(*), the induction hypothesis in Equation holds for all times 1, --- ,u — 1. We prove
this by expanding Equation and bounding each of the terms.

Term 1

It is easy to verify that

16n202 5 o Slu—s+q 1602 5 u
Ty < 4 -
( Tt ) e S () s
(160 + 4o )
< — .
— 2m?(u+1)
The last inequality follows since 72 > 1.

Term 2

First notice that

Z (u—s+7) Wu s+1H2 Ez,_ 5+1[||1/1 s+1|| | Fu—st1])
t+y

<

an?,

4 u—
mZ(IIw D o1l = Bz 108 1 31 Fums41])

From the definition of event £*) in Equation , we get that

9632 In (2265 ) o0 +1)

Term 2 <

m(u+v)vu+1
Term 3
8% N (=5 +)0us =07 80% €0, 4 Oralzs )
A Z w4y m)\(u+’y)22 (w=s+mbu=s + CtG s+1)

s=1 s=1



ﬂ 1602/ (u + 1) (t) . 8/ Cio2¥2Gu

m(u+ ) mA(u+7)% "’
o/ (u+1 &(f) L 8/ Cioy2@

- m(uty) mA(u+7)

@ e L e

= 10varl o Awt1)
The last inequality follows since v > 320‘7 +1 = 802(“111)(1/:1:?(”“) < \/—, for all u < t and the fact that
Cy > 122420)\2
Term 4

con(g)
The definition of event £(*) in Equation (21) gives that Term 4 < WS + SEZ _s_%

Now, adding in the bounds together into Equation (T4)),

~ 22 (182 4 402 (1) 1600)\2 In (2240 5 (0 4 1)
16, — 072 < L2 4 )
“ 2wt 2m2(u+1) 10v/u +1 m(u+v)vVu+ 1

(t) 2t%(t+1)
gu In (76 ) Ct,YQGQ
10v/u+1 2(u+1)'

3
S

) (t)\2
— < (&7)?, we get that

Now using the fact that

2
16, — 67|13 < (1+ Ct) taSu (5 +40°) L (g0 96X () ot +1)
2= 2 Ju+1 ' 2m2(u+1) 5 mu+y)Vut+l
Substituting the definition of &St) from Equation , we get that
2
16— 072 < (1 . 0) por (5 +ar) 96V h (2 oo+ 1
“ 2= 2 ) lut+1  2m2(u+1) m(u—+v)vVu + 1 ’

C ’YZGQ
< (g2 2T T
< (@) + =12
8y /In( 22
The last inequality follows since C; = max 5233;;, 2<G ) = C, >2.
O
O
B.2 PROOF OF LEMMA [B.4|
We first reproduce an useful result.
Lemma B.6 (Freedman’s inequality[Victor, | 1999]). Suppose Y1, --- , Yr is a bounded martingale with respect to a filtration

(Fo)E o, with B[Y;|Fi—1] = 0and P||Y;| < B] = 1 forallt € {1,--- ,T}. Denote by V, := vy Var(Y,|Fn_1) be the

sum of conditional variances. Then, for every a,v > 0,

n —a?
P | 3n € [1,T] such that Y, >aandV, <v | <exp () . (23)
( ; ¢ ) 2(v + Ba)



Re-arranging the above inequality, we see that if

2
azBln(?>+\/(Bln<2§>> —&—211111(2;), 24)

then the RHS of Equation is bounded above by %.

Proof of Lemma Proof of Equation (19)

Fix a u € {1 -+ ,t}. For s € {1,---,u — 1}, denote by the random variable v = (ouer;v)(ku srllz =
Ez,_ 5+1[H¢u s+lH | Fu—s]). Thus,

(v) E (v) '3 u—1
— 1 —s u—s E
4nuz U S ’Y) ||1/’ s+1||2 - Zu7 s+ HW’ +1H | +1 34773 Ys(u)-

Observe that the sequence (Y( )) —[ is a martingale difference sequence with respect to the filtration (G,) Z}, where

Gs := Fu_s. 1,50 +4X%1,50 < 8X%21,+0. We can bound the
conditional variance as

u S+ v v
ZVar 16.) s ( 7) 2o [ I = B T, B Fa ) s

u—1
82 Z Ez, .|

< 8\ Z 2Ez.

I/\E

RN S N A |- WA [ [ VAN

81 1131 Fuzs],

g 1607202 (u — 1).
Now, putting B := 82 and v = 160\20%u, we get from Equation that with probability at-least 1 — 6 /(2t2(t + 1)),

u-l 2 2 2 2
> v <8x’In (W) 1,50 + \/<8A2 In (%(t;l)) 10>0> +160A202uIn (W)

s=1

@ 262(1 4+ 1
< 320%In (”’5;)) (o + 1)va + 1.

Step (a) follows from the fact that A > 1. Thus, we have with probability at-least 1 — m,

u— 1 (v) 2
— E u—s 2t°(t + 1
> (u =5+ DU 1 = Ea o 167 B1F ) gaggoen (220 ) oo+ 1T
u+y )

962 In (M) olc+1)vu+1
m?(u+7)?

_9¥In (22 oo+ 1)

- m2(u+v)vVu+1

Now taking an union bound over all u € {1,--- ,t} yields that with probability at-least 1 —

{1,... ,t},

<

)

%, for all time u €

- (0) () 96)2 In (m) oo +1)
477 Z t — s+ ’Y) |1z/}ufs+1||2 Ezu s+1 [”d) s+1|| |fu 9+1]) < 3
po t+y - m(u+y)vu+1



Proof of Equation (20)

u—1 (v) u—1
(U - s+ ’Y) <UU—S’ ¢u—e+1> 2
-2 u - < ou s 9*7
K 5:21 u—+y _m(u+7)2;< wu s+1>
Fixau € {1,--- ,t} and denote by v = (u— 8+ 7)(Oy_s — 6%, wu S+1> Since 6, is measurable with respect to

the sigma-algebra generated by F,,_s, the conditional expectatlon E[Y, ")|}'u s] = 0. Thus, (Y(“))“ ! is a martingale
difference sequence with respect to the filtration (Fy,_s)%_; . Furthermore, we have from Equation (10) that |YS(“ | <
2(u—s+7) <§(t) 4 ) A <2X(u + )& ® 4 2>\7G. We can now bound the sum of conditional variances as

(u+vy—1
u—1 u—1
S Var(YO Fums) <3 4w — s+ )2 (€ )2020% + 4N2G2,
s=1 s=1

g 1220262 (u +7)?(u 4 1) log(u + 1) (€)% + 4X242G?u.

Step (a) follows since nm < 1. Now applying the bound in Equation with B := 2\(u + ) ) 4+ 2)G and
v =12X%02(u + 7)?(u + 1) log(u + 1)( (t)) + 42292 G2%u, we get that with probability at-least 1 — §/(2t%(¢ + 1)),

ui(u = s N ¥l 0) <22 (w+)ED + By) In (%2%“)) + { (2)\ ((w+ 70 +G)n (QtQ(’;*”))z

+ (A2 7)2(u + 1) log(u + 1)(E)? + 4N2G2(w+1)) In (wtéﬂ)) ]

< 6(u-+2)VaF Thogu-+ D€ ol + Dt (D) ””Gv e o (F550).

Thus,

us : JiET 0 22(141)
oy Z‘j (1= 5+ 7) (Vusr B35 1) L evutl log(u+ 1)(&u")Ao(o + 1)In ( 5 ) L _OnG
b u+7y - (u+7) 10(u +1)’

s=1
(t) 2¢2(t4+1)
& In (75 )+ C,G
10vu+1 10(u+1)°

8xy/In(22)
The first inequality follows since C;y > — e The last inequality follows since for all times u < ¢, we have

12¢/u + 1log(u + 1)Ao(o + 1) In (%) In (@)
<
(u+7) - 10

as a consequence of y > 120Ao (o + 1).

C PROOFS FROM SECTION
C.1 PROOF OF THEOREM

We bound this probability using the result of [3.1|and a simple union bound argument. For any process 9)t, observe that

P3t € [r+1,7") st A = 1A, = 1] = P[U 1 Ay = 1A, = 1]



Te—1

< > PlA =14, =1]. (25)

t=r+1

We now examine the above Equation to bound it. For any fixed ¢t € (r, Tc(,r))

t—1
~ ~ 5 o
P =1 Tzl:P 97“5_05 : ZB — ST 1N Blt— —177 ’
e =114 = 1] S:LTJHH 2~ o (s " 2t(t+1))+ < ° 2t(t+1)>
t—1 R 5 R 5
< P ar's_acf ZB 571 0 1) P 95 -—967 ZB t— _]-7 ’
s;;( 1B =112 8 (5= gy ) |+ [ 1 =00l 2 B (01 gy ) |)
(@ A J 5
< + )
T A5 2+ 1)(s—r)(s—r+1)  2t(t+1)(t—s—1)(t—s)
5 t—1 1 t—1 1
_2t(t+1)< s Tesrr VD Dl e} d
s=r+1 s=r+1
S <t—1—r 1 . t—1—r 1 >
T2+1) \ o os(s+1) = os(s+1)
(®) 0
< 26
=t +1) (26)
Since for all ¢ < TC(T), the mean of the random variables X, 1, --- , X; are identical and equal to 6._; (see notation in
Section , Theorem [3.1 gives rise to inequality (a). Step (b) follows from the fact that ) ., ﬁ = 1. Now substituting
the bound from Equation (26) into Equation (23])), we get that N
Te—1 5
P[3t L) st A =14, =1] < -
[ G[T—f— )y Te )S At |'A ]— Z t(t-l—].)’
t=r+1
)
B P
it +1)
=0.

Since the above bound holds for all r and process 9, we have

supP[3t € [r+1, 7)) st d = 1A, = 1] < 6.
Mm,r

C.2 PROOF OF LEMMA
Recall from the definition that the rth detection is false if

X =1(Best e (119, 1)),

r—1%r

We will show that ]E[Xg,A)] < 4. This will then conclude the proof of the lemma.

E[xY] =P[Acs.t. 7, € (t(A) #A],

r—1"r

=E []P’[/Hc s.t. 78 e (s, t ]|t é)l = s} ,

tv(”é)l = 8:| 9

gEhwﬁHm@a¢“<ﬂ




¢ﬂ:4,

tffi)l = s} ,

<E [IP’[EIt €[s+1,7%), 4 = 1]

(@)

<E {P[Elt €ls+1,79), 4, = 1|4, = 1]

(b)
<.

Inequality (a) follows from the fact that on the event ti’f)l = s, As; = 1. Inequality (b) follows from Theorem

D PROOF OF LEMMA

The proof follows from a straightforward application of Theorem [3.1]as follows. Let n € N, A > 0 and §' € (0,1) be
arbitrary.

P[D(n, A, d) > d] = P[N"IHA(X1.s) = 0],

n-+d
SO 5 5
= .o — U . 2< —s—1
P[' | [161:5 9&+1‘"+d|2_B<S’2(n+d)(n+d+1)>+B(n+d 3 ’2(n+d)(n+d+1)>

s=1

~ ~ 1) 1)
<P |||01:0—1 — Oninsall2 < B n—1, B|d, )
= { tn=1 = Oninallz < (n 2(n+d)(n+d+1))jL ( 2(n+d)(n+d+1)>]
(27)
From triangle-inequality, we know that
||§1:n71 - é\n:n+d||§ 2 Hel - 92”% - Hé\lznfl - 91“% - Hé\n:n+d - 92”%7
=A% — 011 = 01115 = [10n:nra — 0213 (28)

Thus, substituting Equation (28]into Equation (27)), we get that

BD(n, A,5) > d] < P[A? Bt — O — [Bmra — 0l <

B(”_1’2(n+d)(i+d+1))+B<d’2(n+d)(i+d+1)”'

Denote by the events &; for i € {1,2} as

~ o’
&= {||91;n—1 - 91“% > B (n -1 2> } ’
. &
&y = {||9n:n+d —6:]5>B <d, 2) } )

Denote by € := &; U &. Theorem 3.1|gives that P[£;] < Wlﬂ))
gives that P[£] < ¢’. Let d’ € G be arbitrary, where

G = {deN:AQZB(n_l’Z) +B<d’§) ”3("’ 2(n+d+61)(n+d)) +B<d7 2(n+d+61><n+d>>}
@9)

’

< %/ and P[&] < % < %'. Thus, an union bound

Claim : If the event £€ holds, then D(n, A, J) < dforalld € G.
Suppose d € G and event £¢ holds. Then, we know by triangle inequality in Equation (28) that

9



Change-magnitude A=10

— 6=005
280 6=0.1
\ — 6=02
270
>
&
[
Q260
f=
S
3
1=
2250
j
[a]
240
230 =

1000 2000 3000 4000 5000
Number of samples before change

Figure 1: Plot of D(n, A, ") in Lemma {4.3|for fixed A = 10, = 0.1.

Hglznfl - é\n:nerHg > ”91 - 92”% - ”é\l:nfl - 91”% - ”an:ner - 92”%7

= A% — |[01:0-1 — 01113 = [0nnsa — 0213, (30)

(@) ' '

2A2B(n1,6)8<d,6), (31)
2 2

© B< g ) LB (d g ) (32)

="\ 2t d+ D(n+d 2n+d+)n+d))

Step (a) follows from the definition of event £ and on the assumption of the claim that event £° holds. Step (b) follows
from the fact that d € G is arbitrary (cf. Equation (29). The last step says from Line 8 of Algorithm T]that if no detection has
been made till time n + d, then under the event £¢, time step d is a detection time. Since event £¢ holds with probability
at-least 1 — ¢’ , this concludes the proof.

D.1 USEFUL CONVEXITY BASED INEQUALITIES

Let f : © — R be a strongly convex function with strong convexity parameters 0 < m < M < oco. Denote by
0* = argmingee f(#). Since f(-) is convex and O is convex and compact, the existence and uniqueness of 6* is

guaranteed. Strong convexity gives that for any 6,1 € O,
FO%) 2 Frr) + (VF(Br). 0" = i) + 107 = B3 (33)
Further since 0* = arg mingce f(6)., we have that
FOrr) = £(67) = 61— 03
Putting these two together, we see that
(Vf(Bi-1), 001 — 07) = m||f,_1 — 07|I3. (34)

Also, We further use the following lemma.

Lemma D.1 (Lemma 3.11 from [Bubeck, 2015]). Let g : R — R be a M smooth and m strongly convex function. Then
forall z,y € RY,

1
lz = ylI3 + -7 Va(z) = Vg(u)|3.

(Vg(x) = Vg(y),z —y) > M +m

m
M+m
By substituting x = 1,y = 07 and g(-) = f(-) and by leveraging the fact that V f (6*) = 0, we get the inequality that

mM 1
m+ M M+m

(Vf(0r-1),0,1 —0%) > [ IV £(B;_1)| 2



Re-arranging, we see that

IVF@e—)l3 < (M +m)(Vf(B—1), 01 — ") — mM |61 — 6% 3.

E ADDITIONAL SIMULATIONS

(35)

In Figure [2] we plot a sample path of observed data and mark out the true change-points and the detected time-instants
by Algorithm [} The plots indicate that although visually identifying the change in the means is hard, our change-point
detection algorithm is able to consistently across variety of distribution families.
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(c) Pareto with s = 2.01.
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(d) Alternate Pareto s = 2.01 and Gaussian. (e) Alternate Pareto s = 2.01 and Gaussian (f) Alternate Pareto s = 2.01 and Gaussian
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(g) Pareto s = 2.01,d =15,A =5
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(h) Pareto s = 2.01,d = 15,A =2

Figure 2: In all plots, we choose the change-point gap to be A = 0.1 and § = 0.05 except (g) and (h) where A = 5 and
2 respectively. In plots (g) and (h), we plot the norm of the observed random vector and thus the Y-axis is non-negative.
We see missed detection in Figures (e) and (h) with the last change-point on the right being missed. We do not observe
False-positives in these plots.
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