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A PRELIMINARIES

A.1 ISOMETRIES

Definition A.1. Let (X, dX) and (Y, dY ) be metric spaces with metrics dX : X × X → R,
dY : Y × Y → R. An isometry φ : X → Y is a distance-preserving isomorphism if

dX(a, b) = dY (φ(a), φ(b)) (15)

for all a, b ∈ X .

A.2 INVARIANCE & EQUIVARIANCE

Definition A.2. Let ρV : G→ GL(K,V ) be a representation of group G, and let ρV (g) : V ∼−→ V
be an automorphism on V for g ∈ G. A function f : V → W is G-equivariant if there exists an
equivalent representation ρW : G→ GL(K,W ) with equivalent automorphism ρW (g) :W ∼−→W ,
such that

f(ρV (g)(v)) = ρW (g)(f(v)) (16)

for all v ∈ V and g ∈ G.

Definition A.3. Let ρ : G→ GL(K,V ) be a representation of group G and let ρ(g) : V ∼−→ V be
an automorphism for g ∈ G. A function f : V →W is G-invariant if

f(ρ(g)(v)) = f(v) (17)

for all v ∈ V and g ∈ G.

A.3 SPECIAL PROPERTY OF SO(n)

Since rotations are distance, angle, and orientation preserving, they are linear transformations. As
such, rotations can be represented as a matrix. Suppose x,y ∈ Rn andQ ∈ Rn×n is a rotation matrix.
Then if Q is an isometry, we require: x⊤y = (Qx)⊤(Qy) = x⊤(Q⊤Q)y or Q⊤Q = I = Q⊤Q.
Preservation of orientation (equivalently, handedness) means detQ > 0. We take the determinant of
the identity and find det(Q⊤Q) = (det(Q))2 = 1, which means detQ = ±1. Hence, detQ = +1
for SO(n).

A.4 PROOF OF E(n)-INVARIANCE FOR SCHNET CONTINUOUS FILTER

In SchNet, the representation of interactions of a particle i in the next layer l + 1 is given by the
convolution with neighboring particles:

h(l+1)
i := (H ∗W ) =

N∑
j=1

h(l)
j ◦Wθ

e1(xj − xi)
...

en(xj − xi)

 (18)

where ek(xj − xi) = exp(−γ(||xj − xi||2 − µk)
2).

Proof. Consider an isometry of E(n) defined by T : x 7→ Ax + b for A ∈ Rn×n an orthogonal
matrix rotation and b ∈ Rn a translation vector. Then the basis expansion becomes:

ek(T (xj)− T (xi)) = exp(−γ(||T (xj)− T (xi)||2 − µk)
2)

= exp(−γ(||Axj + b−Axi − b||2 − µk)
2)

= exp(−γ((xj − xi)⊤A⊤A(xj − xi)− µk)
2)

= exp(−γ(||xj − xi||2 − µk)
2).

(19)

It follows that the basis expansion is E(n)-invariant and, thus, so is the continuous convolution.

13
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B PROOF OF EQUIVARIANCES FOR TEMPORAL ATTENTION LAYER

B.1 POSITION COMPONENT: E(n)-EQUIVARIANCE

Proof. Consider an isometry of E(n) defined by ξ 7→ Aξ + b for A ∈ Rn×n an orthogonal rotation
matrix and b ∈ Rn a translation vector. Then

||ξi(t)− ξi(s)||2 = ||Aξi(t) + b−Aξi(s)− b||2

= ||A(ξi(t)− ξi(s))||2

= (ξi(t)− ξ(s))⊤A⊤A(ξi(t)− ξi(s))

= ||ξi(t)− ξi(s)||2,

(20)

where the last line follows by the orthogonality of A. Hence, Ψe(θi(t), θi(s), ||ξ(t) − ξ(s)||22) is
E(n)-invariant. Thus, applying the isometry to the layer

ξ̃i(t) = ξi(t) +
L∑

s=1
s̸=t

(ξi(t)− ξi(s))ϕinf(mi(t, s)) (21)

yields

Aξi(t) + b+

L∑
s=1
s̸=t

A(ξi(t)− ξi(s))ϕinf(mi(t, s))

= A

ξi(t) +

L∑
s=1
s̸=t

(ξi(t)− ξi(s))ϕinf(mi(t, s))

+ b

= Aξ̃i(t) + b.

(22)

It follows that the position component of ETAL is E(n)-equivariant.

B.2 VELOCITY COMPONENT: SO(n)-EQUIVARIANCE

Proof. Consider an orthogonal rotation matrix A ∈ Rn×n of SO(n) with action ω 7→ Aω. Clearly,

(Aωi(t))
⊤(Aωi(s)) = ωi(t)

⊤A⊤Aωi(s)

= ωi(t)
⊤ωi(s).

(23)

Thus, the coefficient βi(t, s) = ωi(t)
⊤ωi(s)/

∑L
s′=1 exp(ωi(t)

⊤ωi(s
′)) is invariant under rotations

of SO(n).

Applying the rotation to the attention layer

ω̃i(t) =

L∑
s=1

βi(t, s)ωi(s) (24)

yields:

L∑
s=1

βi(t, s)Aωi(s) = A

L∑
s=1

βi(t, s)ωi(s)

= Aω̃i(t),

(25)

as asserted. Hence, the velocity component of ETAL is SO(n)-equivariant.

14
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C TENSORIZATION OF EQUIVARIANT TEMPORAL ATTENTION LAYER (ETAL)

C.1 TEMPORAL ATTENTION FEATURE COMPONENT

Define the matrix of spatial graph representations for features across time:

θ
[1:L]
i =

θi(1)
⊤

...
θi(L)

⊤

 ∈ RL×d. (26)

We compute the value vectors v[1:L]
i = θ

[1:L]
i V ∈ RL×d, key vectors k[1:L]

i = θ
[1:L]
i K ∈ RL×d, and

query vectors q[1:L]
i = θ

[1:L]
i Q ∈ RL×d for V,K,Q ∈ Rd×d. Thus, to compute the attention layer

for the graph features in Equation 7, we first compute the weights:

αi = softmax

θ[1:L]
i QK⊤θ

[1:L]
i

⊤

√
d

 ∈ RL×L. (27)

Then we apply the weights as follows:

θ̃
[1:L]
i = αiv

[1:L]
i ∈ RL×d. (28)

We would like to tensorize this computation for all nodes i = 1, . . . , N . Let θ[1:L] =

(θ
[1:L]
1 , . . . , θ

[1:L]
N ) ∈ RN×L×d. Likewise, let k[1:L] = θ[1:L]K ∈ RN×L×d, q[1:L] = θ[1:L]Q ∈

RN×L×d, and v[1:L] = θ[1:L]V ∈ RN×L×d. In a slight abuse of notation,

α = softmax

(
q[1:L]k[1:L]⊤

√
d

)
∈ RN×L×L (29)

where the transpose k[1:L]⊤ ∈ RN×d×L interchanges the last two dimensions, the tensor multiplica-
tion q[1:L]k[1:L]⊤ is with respect to the last two dimensions, and the softmax is computed over the
last dimension. Then

θ̃[1:L] = αv[1:L] ∈ RN×L×d, (30)

where the tensor multiplication is over the last two dimensions.

C.2 TEMPORAL ATTENTION POSITION COMPONENT

Define the matrix of spatial graph representations for positions and its corresponding temporally-
transformed matrix, across time:

ξ
[1:L]
i =

ξi(1)
⊤

...
ξi(L)

⊤

 ∈ RL×n, ξ̃
[1:L]
i =

 ξ̃i(1)
⊤

...
ξ̃i(L)

⊤

 ∈ RL×n. (31)

Similarly, construct the h× L× L node-wise message-passing tensor:

M =

mi(1, 1) . . . mi(1, L)
...

. . .
...

mi(L, 1) . . . mi(L,L)

 , (32)

where mi(t, s) ∈ Rh is defined in Equation 9. Then we can write the update in Equation 9 as:

ξ̃
[1:L]
i = ξ

[1:L]
i + ξ

[1:L]
i ◦ S− T, (33)

15
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where ⊙ is the Hadamard product and we define:

S =

L∑
j=1

Sij ∈ RL

[S]ij = [ϕinf(M) ◦ (1L×L − IL×L)]ij ∈ R

(34)

where ϕinf(M) ∈ RL×L and

T =

L∑
j=1

Tij ∈ Rh

[T ]ij = [ϕinf(M) ◦ (1L×L − IL×L) ◦ ξ[1:L]]ij ∈ Rh

ξ[1:L] =

ξi(1) . . . ξi(L)
...

. . .
...

ξi(1) . . . ξi(L)

 ∈ RL×L×n.

(35)

Again, we seek to find a differentiable expression that tensorizes the attention layer for all nodes. We
stack ξ̃[1:L]

i for i = 1, . . . , N into a tensor:

ξ̃[1:L] :=

ξ̃
[1:L]
1

...
ξ̃
[1:L]
N

 =

ξ̃
[1:L]
1

...
ξ̃
[1:L]
N

+

ξ̃
[1:L]
1

...
ξ̃
[1:L]
N

 ◦ S− 1N ◦ T, (36)

which is a differentiable function with respect to the ξi(1), . . . , ξi(L) for i = 1, . . . , N , where
ξ̃[1:L] ∈ RN×L×n.

C.3 TEMPORAL ATTENTION VELOCITY COMPONENT

Define the matrix of spatial graph representations for velocities, across time:

ω
[1:L]
i =

ωi(1)
⊤

...
ωi(L)

⊤

 ∈ RL×n. (37)

We compute the weights as:

βi = softmax

ω[1:L]
i ω

[1:L]
i

⊤

√
n

 ∈ RL×L. (38)

Then we apply the weights to obtain the layer transform:

ω̃
[1:L]
i = βiω

[1:L]
i ∈ RL×n. (39)

We would like to find a tensorized expression that includes all nodes i = 1, . . . , N . Let ω[1:L] =

(ω
[1:L]
1 , . . . , ω

[1:L]
N ) ∈ RN×L×n. As before, in a slight abuse of notation,

β = softmax

(
ω[1:L]ω[1:L]⊤

√
n

)
∈ RN×L×L, (40)

where the transpose ω[1:L]⊤ ∈ RN×n×L interchanges the last two dimensions, the tensor multiplica-
tion ω[1:L]ω[1:L]⊤ is with respect to the last two dimensions, and the softmax is computed over the
last dimension. Hence,

ω̃[1:L] = βω[1:L] ∈ RN×L×n, (41)
where the tensor multiplication is over the last two dimensions.
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C.4 TEMPORAL ATTENTION ADJACENCY COMPONENT

Let A[1:L] = (A(1), . . . , A(L)) ∈ RL×N×N be the tensor of all adjacency matrices over time. Let
k[1:L] = A[1:L]K, q[1:L] = A[1:L]Q, v[1:L] = A[1:L]V where K,Q, V ∈ RN×N . With a slight abuse
of notation, let

π = softmax

(
q[1:L]k[1:L]⊤

√
N

)
∈ RL×N×N , (42)

where the transpose k[1:L]⊤ ∈ RL×N×N interchanges the last two dimensions, the tensor multiplica-
tion q[1:L]k[1:L]⊤ is with respect to the last two dimensions, and the softmax is computed over the
last dimension as usual.

Thus,

Ã[1:L] = πv[1:L] ∈ RL×N×N . (43)

D POSITIONAL ENCODING & LAYER NORMALIZATION

We use sinusoidal positional encodings, as defined in Vaswani et al. (2023). That is, we define
the positional encodings W [1:L] ∈ RL×N×d, X [1:L] ∈ RL×N×n, Y [1:L] ∈ RL×N×n, and Z [1:L] ∈
RL×N2

, used in Algorithm 1, as:

Wi,·,2j = sin

(
i

κ2j/d

)
,Wi,·,2i+1 = cos

(
i

κ2j/d

)
,

Xi,·,2j = sin

(
i

κ2j/n

)
, Xi,·,2i+1 = cos

(
i

κ2j/n

)
,

Yi,·,2j = sin

(
i

κ2j/n

)
, Yi,·,2i+1 = cos

(
i

κ2j/n

)
,

Zi,2j = sin

(
i

κ2j/N2

)
, Zi,2i+1 = cos

(
i

κ2j/N2

)
.

(44)

We compress the adjacency matrix positional encoding as Z [1:L] ∈ RL×N2

because we treat the
N2 entries of the adjacency matrix as belonging to a vectorspace, to which we apply a positional
encoding.

Layer normalization in Algorithm 1 is defined as follows:

µ̂[1:L] =


1
d

∑d
j=1 θ

[1:L]
1,j

...
1
d

∑d
j=1 θ

[1:L]
LN,j

 ∈ RL×N×1,

σ̂[1:L] =



√
1
d

∑d
j=1

(
θ
[1:L]
1,j − µ̂

[1:L]
1

)2
...√

1
d

∑d
j=1

(
θ
[1:L]
LN,j − µ̂

[1:L]
LN

)2

 ∈ RL×N×1,

LN(θ[1:L]) =
θ[1:L] − µ̂[1:L]

σ̂[1:L]
,

(45)
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so we broadcast µ̂, σ̂ across the second d dimensions of θ[1:L]. Likewise, for the adjacency matrix,
we define:

µ̂[1:L] =


1

N2

∑N2

j=1 θ
[1:L]
1,j

...
1

N2

∑N2

j=1 θ
[1:L]
L,j

 ∈ RL×1,

σ̂[1:L] =



√
1

N2

∑N2

j=1

(
θ
[1:L]
1,j − µ̂

[1:L]
1

)2
...√

1
N2

∑N2

j=1

(
θ
[1:L]
L,j − µ̂

[1:L]
L

)2

 ∈ RL×1,

LN(A[1:L]) =
A[1:L] − µ̂[1:L]

σ̂[1:L]
,

(46)

where we view A[1:L] ∈ RL×N2

.

E CHARGED N -BODY DATASET: HYPER-PARAMETER SETTINGS &
IMPLEMENTATION DETAILS

E.1 SET & SCALING RESULTS

After a hyper-parameter optimization for SET, we found the following optimal settings. Namely, we
used an Adam optimizer with an initial learning rate of 4.45× 10−5, a batch size of 100, dropout of
0.1, 2 EGNN layers with SiLU activations, 3 vertical stacking layers with ReLU activations, hidden
dimension of 128, spatial and temporal attention, and equivariance. The following hyper-parameters
were inactive: weight decay, temporal adjacency, positional encoding and causal attention. We chose
α = 1 in Equation 14 and B = 0.5 in Equation 9.

The results in tables 3 and 4 show the effects of scaling the dataset. SET is the best-performing model
across all datasets.

Model Params Test MSE

SET 796,058 5.72e-11

LSTM 1,269,833 1.02e-04

EGNN 100,612 5.34e-05

MLP 67,718 3.77e-06

Linear 3 4.48

Table 3: Performance metrics for optimized models with N = 20.
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Model Params Test MSE

SET 796,058 1.20e-10

LSTM 1,859,513 1.95e-07

EGNN 100,612 5.88e-05

MLP 67,718 3.99e-06

Linear 3 5.19

Table 4: Performance metrics for optimized models with N = 30.

E.2 EGNN, LSTM, MLP, LINEAR BASELINES

For the EGNN baseline, we apply the same methodology outlined in Algorithm 1, whereby we apply
MLPs ϕe, ϕv, ϕx, ϕh across the time dimension:

h(l+1)
i (1) = ϕh(h

(l)
i (1),mi(1)) ∈ Rd

...

h(l+1)
i (L) = ϕh(h

(l)
i (L),mi(L)) ∈ Rd,

(47)

for l = 1, . . . ,K. We used an Adam optimizer without weight decay and with an initial learning rate
of 3.98× 10−5, batch size of 32, hidden dimension of 64, 3 EGNN layers, and residual connections.

For the LSTM baseline, we found using only temporal attention was optimal. That is, we did not
pre-process the graph data with an EGNN; we simply applied a vanilla LSTM to the graph data. Each
token embedding z(t) ∈ RN×(d+2n+2N−2) comprises of the following data:

h1(t), . . . ,hN (t) ∈ RN×d

x1(t), . . . , xN (t) ∈ RN×n

v1(t), . . . , vN (t) ∈ RN×n

e0,1(t), . . . , e0,N (t), e1,0(t), . . . , e1,N (t),

. . . , eN,0(t), . . . , eN,N−1(t) ∈ R2.

(48)

We used Adam with an initial learning rate of 2.47 × 10−5, batch size of 32, hidden dimension
of 512, 2 EGNN layers, 3 temporal stacking layers, and dropout of 0.1. We omitted the use of
weight decay, temporal adjacency, and recurrence. The MLP uses 5 hidden layers with hidden
dimension 128. It only takes a tensor of positions x ∈ RL×N×n and velocities v ∈ RL×N×n as
inputs. It is trained using an Adam optimizer with a learning rate of 1.75× 10−5 and a batch size
of 100. The linear dynamics model simply predicts position x(t) = x(t − 1) + αv(t − 1) and
velocity v(t) = βv(t− 1) + γ, learning α, β, γ using an Adam optimizer with initial learning rate of
2.73× 10−5, weight decay of 1× 10−6, and batch size of 100.

F CLASSICAL N -BODY DATASET: HYPER-PARAMETER SETTINGS &
IMPLEMENTATION DETAILS

F.1 DATASET: GRAVITATIONAL MASSES

Masses exert gravitational forces on each other according to Newton’s universal law of gravitation.
The force Fi acting on mass mi in an N -body system is given by Trenti & Hut (2008):

Fi = −
∑
j ̸=i

Gmimj

|xi − xj |2
xi − xj
|xi − xj |

− ∇ · ϕ(xi) (49)
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where G is the universal gravitational constant and ϕ is an external scalar potential. Solving the
forward dynamics of the system involves a system of non-linear second order ordinary differential
equations:

∂2xi
∂t2

=
Fi

mi
. (50)

Hence, by the Picard-Lindelöf theorem, the initial value problem with specified initial positions
xi(0) and initial velocities vi(0) = ∂xi

∂t (0) has a unique solution. However, this system only has an
analytic solution up to N = 2 Trenti & Hut (2008). Thus, larger systems require advanced numerical
integration techniques. Figure 3 shows how a system with N = 20 bodies evolves over 10 seconds,
obeying the law of energy conservation.

Figure 3: Evolution of a 20-body system over 10 seconds, with plots of kinetic energy, potential
energy, and total energy in Joules.

We use the N -body system simulator from Mocz (2020) to generate a dataset with 100k trajectories
without an external scalar potential ϕ. We sample 80k trajectories for training, 10k trajectories for
validation, and 10k trajectories for testing. The model is fed graph data for L = 10 time steps,
sampled 10 apart, and predicts the trajectory at a horizon of H = 1k timesteps. We consider N = 20
masses, whereby positions, velocities, and masses are known at each timestep. As before, the edge
attributes between gravitational masses are eij(t) =

(
mimj , ||xi(t)− xj(t)||22

)
and the features

are hi(t) = ||vi(t)||2 for i = 1, . . . , 5. We select the best model according to a hyper-parameter
optimization with 30 trials, as per Appendix F.

F.2 ABLATION STUDY: EQUIVARIANCE, ADJACENCY, AND ATTENTION

We conduct an ablation study on the use of equivariance, temporal adjacency, and spatial and temporal
attention in SET, shown in Table 5. By selecting the best model on the validation set, we find that
incorporating equivariance, adjacency, and only spatial attention improves performance. Unlike in
the charged N -body problem, temporal attention is not useful for this dataset.
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Ablation Model Params Val MSE Test MSE MSE Ratio

Attention
Equiv=True, Adj=True, SATT=True, TATT=False 175,882 1.84e1 1.84e1 −
Equiv=True, Adj=True, SATT=True, TATT=True 185,488 2.50e1 2.52e1 1.37×

Adjacency Equiv=True, Adj=False, SATT=True, TATT=True 175,888 3.19e1 3.22e1 1.75×
Equivariance Equiv=False, Adj=True, SATT=True, TATT=True 185,620 3.71e1 3.77e1 2.05×

Table 5: Ablation study of attention, adjacency, and equivariance for N = 20.

F.3 BASELINES & SCALING N

We performed model selection using a hyper-parameter optimization on SET. The best settings
found are as follows: an Adam optimizer with an initial learning rate of 5× 10−5, a batch size of
100, dropout of 0.1, 3 EGNN layers with SiLU activations, 4 vertical stacking layers with ReLU
activations, hidden dimension of 32, only spatial attention, and equivariance imposed. We report
results with both spatial and temporal attention to highlight the effects of scaling on the bonafide
SET architecture. The following hyper-parameters were inactive: weight decay, temporal adjacency,
positional encoding and causal attention. We chose α = 1 in Equation 14.

Model Params Test MSE

SET 175,888 7.36

EGNN 34,409 4.61

EGNN SchNet 73,098 4.72

SE(3)-Transformer 395,972 11.93

Table 6: Performance metrics for models with N = 20.

We compare our best performing SET model with EGNN, EGNN SchNet, and SE(3)-Transformer
baselines for a varying number of masses N = 5, 20, 50. EGNN outperforms all baselines, as seen
in Table 7. Indeed, it appears that the imposition of temporal structure is not useful for this dataset,
unlike the charged N -body dataset. SET performs the best when N is large; nontheless, the number
of parameters grows like O(N2) because we use temporal adjacency.

Model N Params Val MSE Test MSE

EGNN
5 34,409 2.04 2.05

20 34,409 4.57 4.61

50 34,409 4.65 4.65

EGNN SchNet
5 73,098 2.13 2.12

20 73,098 4.66 4.72

50 73,098 4.73 4.74

SE(3)-Transformer
5 395,972 77.71 78.60

20 395,972 11.93 12.04

50 395,972 8.60 8.71

SET
5 175,888 31.89 32.20

20 3,641,488 7.36 7.37

50 144,235,888 7.00 7.05

Table 7: Scaling the number of masses N = 5, 20, 50.
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F.4 SCALING L

For SET, we fix N = 5 and scale the sequence length for L = 10, 50, 100, as shown in table 8.
Evidently, shorter sequences L yield better test MSE.

Sequences length L Test MSE

5 25.20

50 115.83

100 322.29

Table 8: Scaling L = 10, 50, 100 in SET, with N = 5 masses.

Thus, we find that SET performs most optimally when N is large and L is small.
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