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A PRELIMINARIES

A.1 ISOMETRIES

Definition A.1. Let (X,dx) and (Y, dy) be metric spaces with metrics dx : X x X — R,
dy 1Y xY — R. Anisometry ¢ : X — Y is a distance-preserving isomorphism if

dx (a,b) = dy (¢(a), ¢(b)) (15)
foralla,b e X.

A.2 INVARIANCE & EQUIVARIANCE

Definition A.2. Let py : G — GL(K, V') be a representation of group G, and let py(g) : V =5 V
be an automorphism on V' for g € G. A function f : V' — W is G-equivariant if there exists an
equivalent representation py : G — GL(K, W) with equivalent automorphism py (g) : W —> W,
such that

flov(g) () = pw(9)(f(v)) (16)
forallv € Vandg € G.
Definition A.3. Let p : G — GL(K,V) be a representation of group G and let p(g) : V. —=> V be
an automorphism for g € G. A function f : V — W is G-invariant if

flp(g)(w)) = f(v) (7)
forallv € Vandg € G.

A.3 SPECIAL PROPERTY OF SO(n)

Since rotations are distance, angle, and orientation preserving, they are linear transformations. As
such, rotations can be represented as a matrix. Suppose x,y € R™ and ) € R™*" is a rotation matrix.
Then if @ is an isometry, we require: x'y = (Qx) (Qy) =x"(QTQ)yorQTQ =1=Q'Q.
Preservation of orientation (equivalently, handedness) means det ) > 0. We take the determinant of
the identity and find det(Q " Q) = (det(Q))? = 1, which means det @ = 41. Hence, det Q = +1
for SO(n).

A.4 PROOF OF FE(n)-INVARIANCE FOR SCHNET CONTINUOUS FILTER

In SchNet, the representation of interactions of a particle ¢ in the next layer [ 4 1 is given by the
convolution with neighboring particles:

e1(x; —x;)
hU+D . N0 g
= H W) =) h oW, : (18)

=t en(Xj — X;)
where e (x; — x;) = exp(—(|[x; — Xil|2 — px)?).

Proof. Consider an isometry of E(n) defined by T’ : x — Ax + b for A € R™*" an orthogonal
matrix rotation and b € R”™ a translation vector. Then the basis expansion becomes:

ex(T(x;) — T(x:)) = exp(—y(|T(x;) — T(x:)|l2 — p1x)?)
= exp(—7(||Ax; + b — Ax; — b]|2 — pux)?) (19)
= exp(—y((x; —x;) AT A(X; — x;) — 1x)?)
= exp(—(|Ixj — xill2 — p11)?)-

It follows that the basis expansion is £(n)-invariant and, thus, so is the continuous convolution. []
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B PROOF OF EQUIVARIANCES FOR TEMPORAL ATTENTION LAYER

B.1 POSITION COMPONENT: E(n)-EQUIVARIANCE

Proof. Consider an isometry of E(n) defined by £ — A& + b for A € R™*™ an orthogonal rotation
matrix and b € R"™ a translation vector. Then

[1€:() — &i(s)|I* = [|A&i(t) +b — A&i(s) — b|?
= [|A(&(t) — &())II?
= (&i(t) — &(s) TATA&(1) — &i(5))
= [l&:(t) — &i(s)II%,

where the last line follows by the orthogonality of A. Hence, W, (6;(t), 0:(s), ||€(t) — &(s)]|3) is
E(n)-invariant. Thus, applying the isometry to the layer

(20)

L
)+ > (&l $)) ine(m; (2, 5)) 1)
A
yields
L
A&i(t) + b+ Z A(&i(t) — &i(5))gume(mi(1, 5))
s;ét
L (22)
=A| &)+ (& 5))int(m;(t,5)) | +b
=
= A;(t) +b
It follows that the position component of ETAL is F(n)-equivariant. [

B.2 VELOCITY COMPONENT: SO(n)-EQUIVARIANCE

Proof. Consider an orthogonal rotation matrix A € R"*" of SO(n) with action w — Aw. Clearly,

(Aw;(t) T (Awi(s)) = wi(t) T AT Aw;(s)
— w(t)Twils). 2

Thus, the coefficient 3;(t, s) = w;(t) Tw;(s)/ 25/:1 exp(w;(t) Tw;(s")) is invariant under rotations
of SO(n).

Applying the rotation to the attention layer

L
)= Bilt,s)wi(s) (24)
s=1
yields:
ZﬁltsAwl AZﬂltswl 05)
= Awl( ),
as asserted. Hence, the velocity component of ETAL is SO(n)-equivariant. [
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C TENSORIZATION OF EQUIVARIANT TEMPORAL ATTENTION LAYER (ETAL)

C.1 TEMPORAL ATTENTION FEATURE COMPONENT

Define the matrix of spatial graph representations for features across time:

0;(1)7
prt — | € RLx4, (26)
6;(L)"

We compute the value vectors v/ = 61"y € REX4, key vectors k1 = 0" K € RE*4, and

5
query vectors ¢ = 9 Q € REXA for V, K, Q € R?*. Thus, to compute the attention layer

for the graph features in Equation |/} we first compute the weights:

9[1:L]QKT9[1:L]T

o; = softmax Wz e RIXL, 27
Then we apply the weights as follows:

o) = qltH e REXA, (28)
We would like to tensorize this computation for all nodes i = 1,...,N. Let gl =
(@1 o) @ RVXExd Likewise, let k[1E) = gt e RN xExd, Il — gItLIQ e

RN Lxd and L] = glt:Lly ¢ RN*Exd T 3 slight abuse of notation,

[1:L]7.[1:0] T

a = softmax (%) € RV*EXL (29)

T
c RNXdXL

where the transpose k%] interchanges the last two dimensions, the tensor multiplica-

tion q[l:L]k[l‘L]T is with respect to the last two dimensions, and the softmax is computed over the
last dimension. Then
é[l:L] — OZ’U[LL] c ]1Q.N><L><d7 (30)

where the tensor multiplication is over the last two dimensions.

C.2 TEMPORAL ATTENTION POSITION COMPONENT

Define the matrix of spatial graph representations for positions and its corresponding temporally-
transformed matrix, across time:

&)’ &7
gl[liL] — c Ran’é-Z[l:L] — c Ran. (31)
&(L)" &i(L)7
Similarly, construct the A X L x L node-wise message-passing tensor:

M= ; (32)

where m; (¢, s) € R" is defined in Equation@ Then we can write the update in EquationE]as:

EI[I:L] _ fl[lzL] n gZ[I:L] oS —T, (33)
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where © is the Hadamard product and we define:

L
S = S;i € RL
; ’ (34)
[S]ij = [#ine(M) o (1oxr — Ioxr)]ij € R
where ¢ e(M) € REXE and
L
T = ZT” c R
j=1
[T]ij = [(binf(M) © (1L><L - IL><L) ° f[l:L]]ij e R" (35)
&) ... &(D)
€[11L] — : . c RLXLXTL.

&) ... &(L)

Again, we seek to find a differentiable expression that tensorizes the attention layer for all nodes. We

stack él:L] fori =1,..., N into a tensor:
s[1:L =[1:L =[1:L
e qEe e
= v = ¢ | +| 1 |oS—1yoT, (36)
é’%:L] g][\l[:L] é.‘][\l/:L]

which is a differentiable function with respect to the &;(1),...,&;(L) fori = 1,..., N, where
é[l:L] c RNXLxn

C.3 TEMPORAL ATTENTION VELOCITY COMPONENT

Define the matrix of spatial graph representations for velocities, across time:

wi(1)"
wl[l:L] _ c RLXn. (37)
w; (L) T
We compute the weights as:
w[l:L]w[l:L]T
; = softmax T e REXL, (38)
Then we apply the weights to obtain the layer transform:
ol = g ¢ RExn (39)
We would like to find a tensorized expression that includes all nodes ¢ = 1,..., N. Let wltL] =
(wgl:m, e ,wj[\l,:L]) € RVxLxn_ Ag before, in a slight abuse of notation,
[1:L], ,[1:L] T
3 = softmax (” - )@WM, (40)
vn
where the transpose w[LL]T € RV*nxL interchanges the last two dimensions, the tensor multiplica-
tion wEl: ] ! is with respect to the last two dimensions, and the softmax is computed over the

last dimension. Hence,
(:)[LL] _ 6w[1:L] c IRNXLXTL7 (41)

where the tensor multiplication is over the last two dimensions.
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C.4 TEMPORAL ATTENTION ADJACENCY COMPONENT

Let AE = (A(1),..., A(L)) € REXN*N pe the tensor of all adjacency matrices over time. Let
ERE = AL R gL = AL QoI = AIBEY where K, Q,V € RV*N . With a slight abuse
of notation, let

q[1:L]k[1:L]T
m = softmax T e REXNXN, (42)

L)’ € RLXNXN

where the transpose k interchanges the last two dimensions, the tensor multiplica-

tion glU P EEL s with respect to the last two dimensions, and the softmax is computed over the
last dimension as usual.

Thus,

A[l:L] — 7TU[1:L] c RLXNXN. (43)

D POSITIONAL ENCODING & LAYER NORMALIZATION

We use sinusoidal positional encodings, as defined in [Vaswani et al.| (2023)). That is, we define
the positional encodings WEl € REXNxd x[1:L] ¢ REXNxn y{IiL] ¢ RIXNxn and Z[1:L] ¢
RLXNQ, used in Algorithm as:

1
(KQj/7L> i,-,2i41 = COS (KQJ/n) )
. 1
Yi. 2; = sin (ng/n> i,-,2i+1 = COS (m )

! A
ng/Nz i,2i+1 = COS sz/Nz .

We compress the adjacency matrix positional encoding as Z[11H ¢ REXN * because we treat the
N?2 entries of the adjacency matrix as belonging to a vectorspace, to which we apply a positional
encoding.

. 1
Wi,~,2j = Sin szj/d) i,-,2i4+1 = COS

Xi,~,2j = sin
(44)

Zi’gj = sin

Layer normalization in Algorithm[T]is defined as follows:

B d 1:L
ézjzl 0]

ﬂ[l:L] _ : GRLXNXI,
1:L
dzj 1 [LN]J

(61121 — gy

eRLxle
2
~[1:L
\/Z; 1 LNJ_ [LN])

gIiLl _ L]
o1:L] '

~[1:L]

LN (0 =
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so we broadcast fi, & across the second d dimensions of 8111, Likewise, for the adjacency matrix,

we define:

N2 Z] 1 0[1 /]
’a[liL] _ c RLXI,
N2 Zy 1 0[1 i
[:1] _ o [:r])?
Nz Z ( — M1 )
A[l:L] _ : c RLxl
2
1:L L [1:L
L (ol )
AlLL] _ L]
[1:L]\ _ f
LN = Sk

(46)

where we view A[lL] ¢ REXN?,

E CHARGED N-BODY DATASET: HYPER-PARAMETER SETTINGS &

IMPLEMENTATION DETAILS

E.1 SET & SCALING RESULTS

After a hyper-parameter optimization for SET, we found the following optimal settings. Namely, we
used an Adam optimizer with an initial learning rate of 4.45 x 1072, a batch size of 100, dropout of
0.1, 2 EGNN layers with SiLU activations, 3 vertical stacking layers with ReL.U activations, hidden
dimension of 128, spatial and temporal attention, and equivariance. The following hyper-parameters
were inactive: weight decay, temporal adjacency, positional encoding and causal attention. We chose
a = 1in Equation[T4and B = 0.5 in Equation[9]

The results in tables[3|and ] show the effects of scaling the dataset. SET is the best-performing model

across all datasets.

Model Params  Test MSE

SET 796,058 5.72e-11
LSTM 1,269,833  1.02e-04
EGNN 100,612 5.34e-05
MLP 67,718 3.77e-06
Linear 3 4.48

Table 3: Performance metrics for optimized models with N = 20.
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Model Params  Test MSE
SET 796,058 1.20e-10
LSTM 1,859,513  1.95e-07
EGNN 100,612 5.88e-05
MLP 67,718 3.99¢e-06
Linear 3 5.19

Table 4: Performance metrics for optimized models with N = 30.

E.2 EGNN, LSTM, MLP, LINEAR BASELINES

For the EGNN baseline, we apply the same methodology outlined in Algorithm [T} whereby we apply
MLPS ¢, ¢y, Po, ¢, across the time dimension:

h§l+1)(1) _ (,bh(hgl)(l)?ml(l)) e ]Rd
: (47)
W (L) = ¢, (0D (L), m;(L)) € R,

forl =1,..., K. We used an Adam optimizer without weight decay and with an initial learning rate
of 3.98 x 1075, batch size of 32, hidden dimension of 64, 3 EGNN layers, and residual connections.

For the LSTM baseline, we found using only temporal attention was optimal. That is, we did not
pre-process the graph data with an EGNN; we simply applied a vanilla LSTM to the graph data. Each
token embedding z(t) € RYV*(4+27+2N=2) comprises of the following data:

hi(t),..., hy(t) € RV*4

X1 (t), ..., xy(t) € RV*"

vi(t),...,vn(t) € RV*™ (48)
ep,1(t),...,en(t),e10(t),...,e1n (1),

e ,eN70(t), e ,eN7N_1(t) S R2.

We used Adam with an initial learning rate of 2.47 x 1072, batch size of 32, hidden dimension
of 512, 2 EGNN layers, 3 temporal stacking layers, and dropout of 0.1. We omitted the use of
weight decay, temporal adjacency, and recurrence. The MLP uses 5 hidden layers with hidden
dimension 128. It only takes a tensor of positions x € REXN>7 and velocities v € REXN X" a9
inputs. It is trained using an Adam optimizer with a learning rate of 1.75 x 10~° and a batch size
of 100. The linear dynamics model simply predicts position z(t) = z(t — 1) + av(t — 1) and
velocity v(t) = Bv(t — 1) + v, learning «, (3, 7y using an Adam optimizer with initial learning rate of
2.73 x 1075, weight decay of 1 x 1075, and batch size of 100.

F CLASSICAL N-BODY DATASET: HYPER-PARAMETER SETTINGS &
IMPLEMENTATION DETAILS

F.1 DATASET: GRAVITATIONAL MASSES

Masses exert gravitational forces on each other according to Newton’s universal law of gravitation.
The force F; acting on mass m; in an N-body system is given by [Trenti & Hut (2008)):

Gm;m,; X; —X;
F, = — J L V- p(x; 49
2T ) “
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where G is the universal gravitational constant and ¢ is an external scalar potential. Solving the
forward dynamics of the system involves a system of non-linear second order ordinary differential
equations:

82Xi Fz

Hence, by the Picard-Lindelof theorem, the initial value problem with specified initial positions
x;(0) and initial velocities v;(0) = %Xt (0) has a unique solution. However, this system only has an
analytic solution up to N = 2|Trenti & Hut| (2008). Thus, larger systems require advanced numerical
integration techniques. Figure [3|shows how a system with N = 20 bodies evolves over 10 seconds,
obeying the law of energy conservation.
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Figure 3: Evolution of a 20-body system over 10 seconds, with plots of kinetic energy, potential
energy, and total energy in Joules.

We use the NV-body system simulator from |[Mocz (2020) to generate a dataset with 100k trajectories
without an external scalar potential ¢. We sample 80k trajectories for training, 10k trajectories for
validation, and 10k trajectories for testing. The model is fed graph data for L = 10 time steps,
sampled 10 apart, and predicts the trajectory at a horizon of H = 1k timesteps. We consider N = 20
masses, whereby positions, velocities, and masses are known at each timestep. As before, the edge
attributes between gravitational masses are e;;(t) = (m;m;,||x;(t) — x;(t)||3) and the features
are h;(t) = ||vi(t)||2 fori = 1,...,5. We select the best model according to a hyper-parameter
optimization with 30 trials, as per Appendix [F]

F.2 ABLATION STUDY: EQUIVARIANCE, ADJACENCY, AND ATTENTION

We conduct an ablation study on the use of equivariance, temporal adjacency, and spatial and temporal
attention in SET, shown in Table@ By selecting the best model on the validation set, we find that
incorporating equivariance, adjacency, and only spatial attention improves performance. Unlike in
the charged N-body problem, temporal attention is not useful for this dataset.
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Ablation Model Params Val MSE Test MSE MSE Ratio
Attention Equiv=True, Adj=True, SATT=True, TATT=False 175,882 1.84el 1.84el —
Equiv=True, Adj=True, SATT=True, TATT=True 185,488 2.50el 2.52¢l 1.37x
Adjacency Equiv=True, Adj=False, SATT=True, TATT=True 175,888 3.19¢1 3.22el 1.75x
Equivariance Equiv=False, Adj=True, SATT=True, TATT=True 185,620 3.71el 3.77el 2.05x

Table 5: Ablation study of attention, adjacency, and equivariance for N = 20.

F.3 BASELINES & SCALING N

We performed model selection using a hyper-parameter optimization on SET. The best settings
found are as follows: an Adam optimizer with an initial learning rate of 5 x 1075, a batch size of
100, dropout of 0.1, 3 EGNN layers with SiLU activations, 4 vertical stacking layers with ReLU
activations, hidden dimension of 32, only spatial attention, and equivariance imposed. We report
results with both spatial and temporal attention to highlight the effects of scaling on the bonafide
SET architecture. The following hyper-parameters were inactive: weight decay, temporal adjacency,
positional encoding and causal attention. We chose o = 1 in Equation[T4]

Model Params Test MSE
SET 175,888 7.36
EGNN 34,409 4.61
EGNN SchNet 73,098 4.72

SE(3)-Transformer 395,972 11.93

Table 6: Performance metrics for models with N = 20.

We compare our best performing SET model with EGNN, EGNN SchNet, and SE(3)-Transformer
baselines for a varying number of masses N = 5,20, 50. EGNN outperforms all baselines, as seen
in Table[7] Indeed, it appears that the imposition of temporal structure is not useful for this dataset,
unlike the charged N-body dataset. SET performs the best when N is large; nontheless, the number
of parameters grows like O(N?) because we use temporal adjacency.

Model N Params Val MSE Test MSE
5 34,409 2.04 2.05
EGNN
20 34,409 4.57 4.61
50 34,409 4.65 4.65
73,098 2.13 2.12
EGNN SchNet
20 73,098 4.66 4.72
50 73,098 4.73 4.74
395,972 77.71 78.60
S E(3)-Transformer
20 395,972 11.93 12.04
50 395,972 8.60 8.71
5 175,888 31.89 32.20
SET
20 3,641,488 7.36 7.37
50 144,235,888 7.00 7.05

Table 7: Scaling the number of masses N = 5, 20, 50.
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F.4 SCALING L

For SET, we fix N = 5 and scale the sequence length for L = 10, 50, 100, as shown in table
Evidently, shorter sequences L yield better test MSE.

Sequences length I. Test MSE

5 25.20
50 115.83
100 322.29

Table 8: Scaling L = 10, 50, 100 in SET, with N = 5 masses.

Thus, we find that SET performs most optimally when N is large and L is small.
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