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SparseFormer: Detecting Objects in HRW Shots
via Sparse Vision Transformer

Anonymous Author(s)∗

ABSTRACT
Recent years have seen an increase in the use of gigapixel-level im-
age and video capture systems and benchmarkswith high-resolution
wide (HRW) shots. However, unlike close-up shots in the MS COCO
dataset, the higher resolution and wider field of view raise unique
challenges, such as extreme sparsity and huge scale changes, caus-
ing existing close-up detectors inaccuracy and inefficiency. In this
paper, we present a novel model-agnostic sparse vision transformer,
dubbed SparseFormer, to bridge the gap of object detection between
close-up and HRW shots. The proposed SparseFormer selectively
uses attentive tokens to scrutinize the sparsely distributed windows
that may contain objects. In this way, it can jointly explore global
and local attention by fusing coarse- and fine-grained features to
handle huge scale changes. SparseFormer also benefits from a novel
Cross-slice non-maximum suppression (C-NMS) algorithm to pre-
cisely localize objects from noisy windows and a simple yet effective
multi-scale strategy to improve accuracy. Extensive experiments
on two HRW benchmarks, PANDA and DOTA-v1.0, demonstrate
that the proposed SparseFormer significantly improves detection
accuracy (up to 5.8%) and speed (up to 3×) over the state-of-the-art
approaches.

CCS CONCEPTS
• Computing methodologies→ Computer vision; • Computer
systems organization→ Embedded systems.
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1 INTRODUCTION
Object detection has been a challenging yet fundamental task in
computer vision for the last decade. Close-up settings such as MS
COCO [24] have shown impressive performance with successful
real-world applications. However, with the development of imag-
ing systems and new application requirements like UAVs, detecting
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Figure 1: Performance comparison in terms of object size
on the PANDA dataset [43]. The horizontal axis indicates
object sizes (the area of bounding boxes) on a logarithmic
scale. The vertical axis shows detection accuracy per size.
Both YOLOv8 [20] and DINO [54] underperform in handling
extreme scale variations, especially for small and large ob-
jects. The proposed method performs well, achieving new
state-of-the-art detection accuracy.

objects in high-resolution wide (HRW) shots with square-kilometer
scenes and gigapixel-level resolutions have drawn increasing atten-
tion [5, 10, 15, 22, 29, 30, 52, 53].

Detecting objects in HRW shots using close-up detectors is not
effective due to several unique characteristics of HRW shots, as
found in PANDA [43] and DOTA [45], compared to close-up shots
like MS COCO. The most significant challenge is the sparse in-
formation in HRW shots, where objects often cover less than 5%
of the image. This makes it difficult for detectors to extract key
features from a sea of background noise, resulting in false positives
within the background and false negatives within the object areas
during training and testing. The second challenge is the varying
scales of objects in HRW shots, with changes up to 100 times. De-
tectors relying on fixed settings of the receptive field and anchors
cannot adapt to these extreme scales, as shown in Figure 1. For
instance, YOLOv8 [20] underperforms in detecting small objects.
While DINO [54] shows marginal improvement, it still falls short
in adapting to such exaggerated scale changes, resulting in subpar
detection of larger objects (Figure 2). Additionally, the typical two-
stage downsampling schemes [5, 10, 21, 29] miss more small objects.
The slicing strategy [1] can result in incomplete boxes when using
NMS to merge prediction boxes, as shown in Figure 5. Therefore, it
is imperative to bridge the gap between object detection in close-up
and HRW shots.

Motivated by recent advanced techniques [28, 31, 37, 40, 41, 47]
to enhance object detection accuracy, we present a novel detector
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for HRW shots that employs a sparse Vision Transformer, called
SparseFormer. SparseFormer uses attentive tokens selectively to
concentrate on regions of an image where objects are sparsely
distributed, facilitating the extraction of fine-grained features. To
achieve this, it learns a ScoreNet to assess the importance of regions.
By examining the variance of importance scores of all regions, our
SparseFormer prioritizes regions that capture rich fine-grained de-
tails. In this way, it can focus on complex image regions rather than
less significant ones (e.g., smooth content from the background).
Concurrently, it divides each HRW shot into non-overlapping win-
dows to extract coarse-grained features. Sharing a similar spirit with
the receptive field strategy of the original Vision Transformer [8],
our proposed SparseFormer combines coarse and fine-grained fea-
tures, achievingmuch higher efficiency than Swin Transformer [26].
This greatly helps to handle large scale variations and detect both
large and small objects accurately.

We further present two innovative techniques to improve detec-
tion accuracy against huge scale changes. First, we observe that
conventional NMS refers to confidence scores only to merge detec-
tion results, leading to incomplete bounding boxes on oversized
objects. To address this, we propose a novel Cross-slice NMS scheme
(C-NMS) that favors large bounding boxes with high confidence
scores. The proposed C-NMS scheme greatly improves the detec-
tion accuracy of oversized objects. Second, we use a multi-scale
strategy to extract coarse-grained and fine-grained features. The
multi-scale strategy enlarges the receptive field, enhancing the de-
tection accuracy on both large and small objects. In summary, the
main contributions of this work are as follows:

• We propose a novel sparse Vision Transformer based detec-
tor to handle huge scale changes in HRW images.

• We further use cross-windowNMS and multi-scale schemes
to improve detection on large and small objects.

• We extensively validate our method on two large-scale
HRW-shot benchmarks, PANDAandDOTA-v1.0. Ourmethod
advances state-of-the-art performance by large margins.

2 RELATEDWORK
Close-up shot detectionmodels. The majority of common object
detection datasets, such as PASCALVOC [9] andMSCOCO [24], col-
lect high-resolution images with close-up shots, which has greatly
contributed to the development of object detection. Based on the
detection head, the literature can be broadly categorized into two
types: one-stage detectors and two-stage detectors. The primary
objective of the two-stage object detection is accuracy, and it frames
the detection as a “coarse-to-fine" process [3, 12, 13, 18, 34]. On the
other hand, one-stage detectors have an edge in terms of speed,
such as YOLO [32]. Subsequent works have attempted to make
improvements such as more anchors, better architecture, and richer
training techniques [11, 25, 33]. To sum up, the current detectors
exhibit great speed and accuracy in close-up shots.

High-resolution wide shot detection models. The introduction
of imaging systems led to the development of a new benchmark for
gigapixel-level detection with HRW shots called PANDA [43]. This
benchmark has recently gained a lot of attention. Previous works on
gigapixel-level detection focus on achieving lower latency through
patch selection or arrangement [5, 10, 29]. However, they are unable

Figure 2: Featured detection example onPANDA. The state-of-
the-art detectors, YOLOv8 [20] (blue) and DINO [54] (green),
relying on fixed settings of the receptive field and anchors
yield incomplete bounding boxes on a large bus and miss
detections on a small car.

to solve the unique challenges faced in HRW shots. Some works use
sparse policies on patches [31], self-attention heads [28], and trans-
former blocks [28] for image classification. PnP-DETR [41] exploits
a poll and pool sampler to extract image features from the backbone
and feed the sparse tokens to the attention encoder. This approach
shows to be effective for object detection, panoptic segmentation,
and image recognition. However, the sparse sampling on the back-
bone has not been adequately studied yet. DGE [37] is a plugin for
vision transformers, but it is not flexible enough to be extended
to ConvNet-based models or use arbitrary-size images as input.
Therefore, how to design a flexible and model-agnostic architecture
for object detection in HRW shots remains underexplored.

Transformer backbones. Transformers have been successful in
natural language processing (NLP), and their potential for vision
tasks has gained considerable attention. One such example is the
Vision Transformer (ViT) [8], which uses a pure Transformer model
for image classification and has shown promising results. However,
ViT’s computational costs for processing high-resolution images
are impractical. Several methods have been attempted to reduce ViT
model costs, including window-based attention [26], downsampling
in self-attention [42, 44], and low-rank projection attention [46].
Other works use sparse policies on patches [31], self-attention
heads [28], and transformer blocks [28] for image classification.
Unfortunately, these methods suffer from significant accuracy drops
when detecting objects in high-resolution wide shots.

3 PROPOSED METHOD
We address the unique challenges of HRW detection by proposing
the Sparse Vision Transformer. This model efficiently extracts valu-
able features from sparse information, while enlarging the receptive
field to handle huge scale changes. To tackle the problem of incom-
plete large objects on intersecting sliced areas, we modify vanilla
NMS. Additionally, we introduce our HRW-based augmentation for
both training and inference to enhance the detection accuracy for
both large and small objects. The pipeline for inference using our
proposed modules is shown in Figure 3.

3.1 Overview of SparseFormer
An ideal vision model should be able to extract meaningful infor-
mation from sparse data using limited calculations, just like our
human eyes tend to focus on valuable areas over unimportant back-
ground information. To achieve this, we design a novel Sparse

2
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Figure 3: Pipeline of SparseFormer in one forward inference.
First, we perform multi-scale slicing on a gigapixel image.
Then, we apply patch partitioning to each slice, and group
neighboring patches into windows. Global Attention utilizes
aggregated features to quickly obtain coarse-grained infor-
mation. Local Attention selects important windows to extract
fine-grained information.

Vision Transformer called SparseFormer. It dynamically selects key
regions and enables dynamic receptive fields to cover objects with
various scales. The overall framework of SparseFormer is illustrated
in Figure 4. Inspired by Swin Transformer [26], we split the input
image into non-overlapping patches to generate tokens. Sparse-
Former consists of four stages that work together to produce an
adaptive representation. Each stage begins with a patch merging
layer that concatenates the features of each group of 2 × 2 neigh-
boring patches. The concatenated features are then projected to
half of their dimension using a linear layer.

Each stage of SparseFormer is centered around attention blocks
that are designed to capture long-range and short-range interac-
tions at different scales. To achieve this, we take both the advan-
tages of the vanilla self-attention Transformer block and the Swin
Transformer block. In this way, we develop two distinct types of
sparse-style blocks. One is used to capture long-range interactions
at a coarse grain, while the other focuses on short-range interac-
tions at a finer scale. To facilitate this approach, we introduce the
concept of a Window which divides each feature map into equally
spaced windows. Operations within each window are considered
“local”, while operations that encompass all windows are designated
as “global."

We outline the global and local attention blocks in more detail.
We construct the global block using the standard multi-head self-
attention (MSA) [38] and MLP module with aggregated features,
or only convolution layers, as detailed in Section 3.2. We construct
the local block by adding a sparsification step and an inverse spar-
sification step before and after the Swin Transformer [26] block,
as described in Section 3.3. Unlike previous work [41, 49], we do
not build separate branches for global and local attention. Instead,
the local attention is positioned after the global one to obtain more
details, rather than different features. When a stage has multiple
blocks, the ordering of global attention blocks (G) and local atten-
tion blocks (L) follows a pattern of ‘GGLL’.

3.2 Global Attention on Aggregated Features
Feature aggregation. Global attention aims to capture coarse-
grained features based on long-range interaction. As such, we gen-
erate low-resolution information by sparsifying the feature in each
window. As shown in Figure 4, we begin each stage with the global
attention block. The primary function of this block is to aggregate
the features of each window. To achieve this, we take the input
feature map 𝑧 and divide it into windows of size𝑀 , ensuring they
do not overlap. The left-top location of each window is given by (𝑥 ,
𝑦), and each token within the window has a relative location (Δ𝑥 ,
Δ𝑦). We then calculate the aggregated features using the following
formula:

𝑧𝑥 ′,𝑦′ =

∑
Δ𝑥,Δ𝑦𝛼Δ𝑥,Δ𝑦 · 𝑧𝑥+Δ𝑥,𝑦+Δ𝑦∑

Δ𝑥,Δ𝑦𝛼Δ𝑥,Δ𝑦
, (1)

Here, 𝑥 ′ = 𝑥/𝑀 and 𝑦′ = 𝑦/𝑀 . 𝛼Δ𝑥,Δ𝑦 is the weight of each token.
In this paper, we assign equal weights to all tokens by setting
𝛼Δ𝑥,Δ𝑦 = 1. After aggregating the features using the above formula,
we obtain the aggregated feature 𝑧 which can be further used for
attention.

Window-level global attention. Feature aggregation is a tech-
nique that reduces the number of tokens by a multiple of𝑀2, which
is equivalent to a𝑀× downsampling of resolution. This reduction
in tokens allows us to use global attention interaction without ex-
pensive computation. With the aggregated features, consecutive
global blocks are computed as follows:

𝑧𝑙 = Layer(𝑧𝑙−1;Θ), (2)

where 𝑧𝑙 refers to the output features of the 𝑙-th global block.

Inverse aggregated features. The aggregated features contain
abstract information that facilitates global content-dependent inter-
actions among different image regions. However, their resolution
differs from the input feature map. Consequently, we convert the
window-level features back to the token-level using an inverse
function of equation Equation (1), as follows:

𝑧𝑥+Δ𝑥,𝑦+Δ𝑦 = 𝛼Δ𝑥,Δ𝑦 · 𝑧𝑥 ′,𝑦′ . (3)

Here, 𝑥 = 𝑀 · 𝑥 ′ and 𝑦 = 𝑀 · 𝑦′, where (𝑥 ′, 𝑦′) and (𝑥 , 𝑦) represent
the location on the input and output feature maps, respectively.
Additionally, (Δ𝑥 , Δ𝑦) represents the relative location with respect
to (𝑥 , 𝑦). We consider (𝑥 , 𝑦) as the top-left of each window on the
output feature map, where the windows are partitioned in the same
manner as in the feature aggregation process.

This step extracts the output feature map from the successive
global block (Equation (2)). Then, we invert it using Equation (3)
and denote the resulting feature map by 𝑧global. It is worth noting
that the final global feature 𝑧global has the same resolution as the
input feature map 𝑧. Even though aggregated features have a lower
resolution, the global attention operation can provide more non-
local information with little extra computation.

3.3 Local Attention on Sparse Windows
Variance-based scoring. Note that coarse-grained features for
each window can achieve high efficiency. However, we still need
fine-grained features that can extract object details to accurately

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Global Attention

U
pd

at
e
(+
)

Fe
at

ur
e 

A
gg

re
ga

tio
n

Local Attention

0.210 0.108 0.018

0.247 0.243 0.090

0.021 0.010 0.053

Pa
tc

h 
Pa

rti
tio

n

Li
ne

ar
 E

m
be

dd
in

g

Lo
ca
lA
tte
nt
io
n

G
lo
ba
lA
tte
nt
io
n
×
2

×
2

Pa
tc

h 
M

er
gi

ng

Pa
tc

h 
M

er
gi

ng

Pa
tc

h 
M

er
gi

ng

𝐻×𝑊×3
𝐻
4
×
𝑊
4
×48

𝐻
4 ×

𝑊
4 ×𝐶

𝐻
8
×
𝑊
8
×2C

𝐻
16×

𝑊
16×4𝐶

𝐻
32×

𝑊
32×8C

Lo
ca
lA
tte
nt
io
n

G
lo
ba
lA
tte
nt
io
n
×
2

×
2

Lo
ca
lA
tte
nt
io
n

G
lo
ba
lA
tte
nt
io
n
×
6

×
6

Lo
ca
lA
tte
nt
io
n

G
lo
ba
lA
tte
nt
io
n
×
2

×
2

Feature map 𝑧

Aggregated 
features	𝑧#

𝑧 updated by Eq. (5) Feature map 𝑧

Window scores

Sc
or

eN
et

W
in

do
w

s 
Sp

ar
si

fic
at

io
n

𝑧 updated by Eq. (8)

Figure 4: Network Architecture of SparseFormer. The red box represents the interaction range of attention. means tokens
are updated by self-attention and means they remain unchanged. We partition the image into tokens and group them into
windows. Global attention extracts coarse-grained features from all windows based on aggregated tokens and merges them
with the original features. Local attention selects only the windows with complex details for fine-grained feature extraction
through our ScoreNet, while the rest retain their original features to save computational resources.

detect objects. As such, we drop certain windows based on their low
information content to reduce computation. Our goal is to identify
windows that require further local attention because their window-
level feature cannot represent their inner token-level features.

We begin with an initial feature map 𝑧, which is before global
and local attention, and has dimensions of 𝐻 ,𝑊 , and 𝐶 . We then
get the aggregated feature 𝑧 from 𝑧 using Equation (1) and apply the
inverse sparsification function via Equation (3), which produces an
intermediate feature map 𝑧 with the same resolution as 𝑧. Next, we
calculate the residual 𝑟 between 𝑧 and 𝑧 and concatenate the features
of each window to obtain the tokens of𝑀 ×𝑀 ×𝐶 dimensions that
are 𝐻

𝑀
× 𝑊
𝑀

in size. We can easily calculate the variance of each
window from these tokens. We construct a ScoreNet using MLP to
add learnable weights to each residual. The score of each window
is given by:

ScoreNet(𝑧, 𝑧) = SoftMax(MLP(𝑧 − 𝑧)), (4)

where the MLP projects (𝑀 ×𝑀 ×𝐶)-dimensional features for each
window to 1 dimension, and the SoftMax operation calculates the
score for each window. A higher score indicates greater variance,
meaning high-variance windows require fine-grained attention. In
other words, we discard windows with lower scores during local
attention. Once we have ranked the windows, we can selectively
choose a part of them to generate finer-level features. Before doing
so, we update the feature map 𝑧 with global feature 𝑧global using:

𝑧 ← 𝑧 + 𝑧global . (5)

Windows sparsification. We start by analyzing the global atten-
tion and variance-based scoring to obtain the initial feature 𝑧 and
scores for each window. Next, we partition 𝑧 into windows of size
𝐻
𝑀
× 𝑊

𝑀
, in the same way as the ScoreNet. We represent these

windows as a matrix 𝑍 ∈ R𝑁×𝐷 , where 𝑁 is the total number of
windows, i.e., 𝑁 = 𝐻

𝑀
× 𝑊
𝑀

and 𝐷 = 𝑀 × 𝑀 × 𝐶 . To determine

which windows to keep, we define a hyperparameter 𝑘 to repre-
sent the keeping ratio. We maintain a binary decision mask vector
𝐴 ∈ {0, 1}𝑁 to indicate whether to drop or keep each window based
on 𝑘 and scores. The value of 𝑘 would depend on the specific task at
hand, and can be adjusted as required. The sparse matrix 𝑆 ∈ R𝐾×𝑁
collects the one-hot encoding of vector 𝐴, where 𝐾 is the number
of keeping windows, i.e., 𝐾 = 𝑘 · 𝑁 . Using this sparse matrix, we
compute the features of the sparse windows as follows:

𝑍𝑠 = 𝑆 × 𝑍, (6)

The output feature 𝑍𝑠 ∈ R𝐾×𝐷 is then used as input for the local
attention.

Shifted window-based attention.We utilize the Shift Window-
based Attention module which was first introduced in Swin Trans-
former [26]. The consecutive local blocks can be represented as:

𝑧𝑙 = W-Layer(𝑧𝑙−1;Θ),

𝑧𝑙+1 = SW-Layer(𝑧𝑙 ;Θ),
(7)

where 𝑧𝑙 denotes the output features of the local block 𝑙 . The layer
can be either a self-attention or convolution module. To fuse the
output and input features of local attention, we use the following
equation:

𝑍 ← 𝐴𝑇 × 𝑍𝑠 + (1 −𝐴𝑇 ) × 𝑍 . (8)

Here, 𝑍𝑠 is updated by local attention, while 𝑍 is the output of each
stage of SparseFormer. Finally, we revert 𝑍 back into the original
dimensional space of 𝐻 ×𝑊 × 𝐶 to obtain the final feature map,
denoted as 𝑧. The window-based attention, based on variance-based
scoring, can extract more local information in a lightweight form,
thus improving the detection performance of small objects while
saving computation for the background.
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Algorithm 1: Cross-slice NMS (C-NMS)
Variables :B1, B2 are candidate box sets from two slices, 𝜏

is the C-NMS threshold;
Functions :NMS(·) is the conventional NMS;

AREA(·) calculates the area of a box;
1 B′1 ← NMS(B1);B′2 ← NMS(B2);
2 B ← B′1 ∪ B

′
2;B′ ← ∅;

3 while B ≠ ∅ do
4 𝑚 ← argmax𝑖 AREA(𝑏𝑖 ), s.t. 𝑏𝑖 ∈ B;
5 B′ ← B′ ∪ {𝑏𝑚} ;B ← B − {𝑏𝑚};
6 for 𝑏𝑖 ∈ B do
7 if 𝐼𝑜𝑈 (𝑏𝑖 , 𝑏𝑚) ≥ 𝜏 then
8 B ← B − {𝑏𝑖 };

9 return B′;

0.930.92

Slicing

Truth
Boxes

Figure 5: Featured detection example on large objects with
slicing aid. Detector yields two boxes based on overlapped
slices. NMS, relying on the detection scores, will wrongly
select the blue box for the kid.

End-to-endOptimization. It is challenging to optimize the ScoreNet
because we only use the output to sort the windows, and the gradi-
ent cannot be back-propagated. To overcome this issue, we imple-
ment the Gumbel-Softmax trick [27] to relax the sampling process,
making it differentiable. This trick provides a bridge for gradient
back-propagation between soft values and binarized values through
re-parameterization. Hence, we re-write Equation (5) as:

𝑧 ← 𝑧 + (1 − 𝑠) × 𝑧global, (9)

Here, 𝑠 represents the output of the SoftMax function, which indi-
cates the scores of windows.

3.4 Cross-slice Non-Maximum Suppression
In HRW shot processing, the slicing strategy generates box candi-
dates for each slice, which must then be merged into a mutually
non-conflicting box set. However, using Non-Maximum Suppres-
sion (NMS) to select the highest-scoring boxes may lead to incom-
plete boxes when objects are on the edge regions of multiple slices

(For a more detailed explanation and visual representation, refer to
Figure 5). To address this, we propose a Cross-slice Non-Maximum
Suppression (C-NMS) strategy, as shown in Algorithm 1, that prior-
itizes boxes with the maximum area across multiple slices, rather
than just the highest scores. The C-NMS algorithm consists of two
stages: a local suppression stage and a cross-slice suppression stage.

3.5 Multi-scale Training and Inference
Due to memory limitations, it is not possible to train and test super
high-resolution datasets at their original size. Therefore, we use a
slicing strategy in both the training and testing phases. To make
better use of the multi-scale information, we use high-resolution
images and divide them into slices of varying sizes using the slicing
strategy. All slices are scaled to the same size, enabling effective
training and inference for the object detector. We divide the image
into grids of 16×16, 8×8, 4×4, and 2×2 grids, respectively, and re-
move the slices with no objects. This approach allows us to analyze
and understand the complex features of these images, ultimately
improving the overall accuracy and effectiveness of the detector.

During the inference phase, we use slicing windows of two sizes:
the original one and one quarter of both height and width. Instead
of simply combining the two windows, we set different receptive
fields for the two types of windows with a threshold 𝑇𝑎 . Based on
the first window, we remove the prediction boxes larger than 𝑇𝑎 .
We only keep the boxes larger than𝑇𝑎 for the second window. This
follows the idea of scale-specific design [35, 36], where we should
arrange each window to cover the appropriate scale to improve
performance. With this technique, we can quickly and accurately
process high-resolution images.

4 EXPERIMENT
4.1 Effectiveness Evaluation

Datasets. Our evaluation is on two public benchmarks with HRW
shots, PANDA [43] and DOTA-v1.0 [45]. PANDA is the first human-
centric gigapixel-level dataset. It contains 18 scenes with over
15,974.6k bounding boxes annotated. Specifically, there are 13 scenes
for training and 5 scenes for testing. DOTA is a large-scale dataset to
evaluate the oriented object detection in aerial images with sizes up
to 4000×4000. It contains 2,806 images and 188,282 instances with
oriented bounding box annotations, covered by 15 object classes.

Evaluation metrics. We report the FLOPs and standard COCO
metrics including AP𝑡𝑜𝑡𝑎𝑙 , AP𝑆 (< 96×96), AP𝑀 (96×96−288×288)
and AP𝐿 (> 288×288). For quantitative efficiency evaluation, we use
the average FLOPs of each detector to process a 1280 × 800 window
in the datasets. Further, we calculate FLOPs in foreground and back-
ground, respectively, to show the efficiency of our SparseFormer to
reduce the computation on backgrounds.

Implementation details.We implement the detectors usingMMDe-
tection [4], incorporating both the officially provided DINO and
Dynamic-Head, and integrating the open-source code for the DEG
backbone. To ensure a fair comparison, we evaluate these two de-
tectors across four different backbones, including Swin, DEG, and
our own proprietary design, all configured with identical numbers
of hyperparameters (e.g., depths, embedding dimension, number
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Table 1: Comparison with the state-of-the-arts on PANDA. “F” and “B” denote foreground and background, respectively (A=F+B).
“*” denotes the re-implementation in [10]. The GFLOPs on the two-stage detector do not include the detection heads due to the
dynamic cost.

Method Backbone GFLOPs-F GFLOPs-B GFLOPs-A AP𝑇𝑜𝑡𝑎𝑙 AP𝑆 AP𝑀 AP𝐿
FasterRCNN [34] ResNet-101 14.15 268.98 283.14 - 0.190 0.552 0.744
FasterRCNN* [10] ResNet-50 10.35 196.71 207.07 0.705 0.203 0.712 0.760
RetinaNet [23] ResNet-101 15.77 299.62 315.39 - 0.221 0.561 0.740
CascadeRCNN [3] ResNet-101 15.54 295.24 310.78 - 0.227 0.579 0.765
ClusDet [48] ResNet-50 10.35 196.71 207.07 0.718 0.219 0.696 0.782
DMNet [21] ResNet-50 10.35 196.71 207.07 0.540 0.119 0.371 0.714
GigaDet [5] CSP-DarkNet-53 4.61 87.59 92.20 0.684 0.210 0.599 0.762
PAN [10] ResNet-50 10.35 196.71 207.07 0.715 0.256 0.719 0.768
Dynamic-Head [6] Swin-T 5.74 109.1 114.8 0.592 0.165 0.537 0.694
Dynamic-Head+DEG [37] PVT-DEG 6.12 60.11 66.23 0.575 0.154 0.508 0.695
Dynamic-Head+Ours SparseFormer 6.29 58.35 64.64 0.771 0.364 0.740 0.863
DINO [54] Swin-T 6.64 126.19 132.84 0.606 0.367 0.612 0.649
DINO+DEG [37] PVT-DEG 6.77 78.57 85.34 0.582 0.339 0.578 0.624
DINO+Ours SparseFormer 6.90 68.81 75.71 0.780 0.508 0.781 0.823
DINO [54] ResNet-50 6.21 118.02 124.24 0.542 0.289 0.530 0.592
DINO+Ours SparseNet 6.53 100.97 107.50 0.746 0.381 0.754 0.797

Table 2: Ablation studies on component effectiveness.

AP𝑇𝑜𝑡 . AP𝑆 AP𝑀 AP𝐿
Swin Block 0.577 0.309 0.594 0.620
+MS Train 0.590 0.344 0.599 0.628
+MS Inference 0.606 0.367 0.612 0.649
Local Block 0.594 0.319 0.583 0.644
+Global Block 0.654 0.238 0.611 0.744
+MS Train 0.765 0.386 0.763 0.817
+MS Inference 0.773 0.443 0.775 0.813
+C-NMS 0.780 0.508 0.781 0.823

of multi-heads). All models are trained from scratch for 36 epochs,
in line with the observations in [17]. This also ensures a fair com-
parison with Swin and DEG, affirming that the performance im-
provement stems from our novel design rather than from better
pre-trained weights.

Results on PANDA.We compare our model with a different keep-
ing ratio 𝑘 to current state-of-the-art methods on the first gigapixel-
level dataset PANDA, which not only has the challenge of wide FoV,
but also super high resolution. The results are presented in Table 1.
We first produce two baselines, one based on ATSS framework [55]
with dynamic head block [6] which achieves GFLOPs of 114.80, the
other based on DINO [54] and GFLOPs of 132.84. Then, the back-
bone is modified to SparseFormer for further experiments. Note
that the keeping ratio means the ratio of keeping tokens based on
the previous stage, so the ratio of each stage based on the full num-
ber of tokens is [𝑘, 𝑘2, 𝑘3, 𝑘4]. We can observe our method achieves
more than 5% increase in AP over SotAs, with only 75.71 GFLOPs
(43% reduction from Swin-T, 63% reduction from PAN [10]). The
most notable thing is that the reduced FLOPs are mainly from the

0 50 100 150 200 250
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DyHead+Ours

GigaDet

DyHead+DEG

ClusDet
PAN

DyHead

DINO+Ours

DINO+DEG
DINO

Figure 6: FLOPs vs. AP. Our methods reduce FLOPs up to 50%
and improve detection accuracy in HRW shots.

background region, which is why we can significantly reduce the
amount of computation but maintain high performance. An addi-
tional note is that GigaDet and PAN is to accelerate the detector by
optimizing the process. Unlike these approaches, our work does not
prescribe a specific pipeline. Instead, we propose a model-agnostic
strategy that could be seamlessly integrated into existing pipelines.

Results on DOTA.We choose aerial images that also have HRW
shots to verify the generalization. The compared methods include:
Faster RCNN-O [34], ICN [2], RoI-Transformer [7], CADNet [53],
DRN [30], CenterMap [39], SCRDet [52], R3Det [51], S2A-Net [15],
CFA [14], CSL [50], ReDet [16] , Or-RepPoints [22]. RoI-Transformer
is used as the baseline detector for comparison and we set 𝑘 = 0.7.
In Table 3, SparseFormer improves mAP from 69.56% to 77.94%
and reduces 296.74 GFLOPs to 174.31 GFLOPs. Compared to SotA
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Table 3: Comparisonwith the state-of-the-artmethods onDOTA-v1.0. The short names for categories are defined as (abbreviation-
full name): PL-Plane, BD-Baseball diamond, BR-Bridge, GTF-Ground field track, SV-Small vehicle, LV-Large vehicle, SH-Ship,
TC-Tennis court, BC-Basketball court, ST-Storage tank, SBF-Soccer-ball field, RA-Roundabout, HA-Harbor, SP-Swimming pool,
and HC-Helicopter. BB means Backbone. Conv. means our SparseNet. Trans. means our SparseFormer.

Method BB PL BD BRe GTF SV LV SH TC BC ST SBF RA HA SP HC mAP GFLOPs
FR-O R-101 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13 282.88
ICN R-101 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16 -
RoI-Trans. R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56 296.74
CADNet R-101 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90 -
DRN H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70 -
CenterMap R-50 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74 -
SCRDet R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61 -
R3Det R-152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74 480.33
S2A-Net R-50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12 193.11
CFA R-101 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77 83.40 85.54 54.86 67.75 73.04 70.24 64.96 75.05 265.96
CSL R-152 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17 383.13
ReDet ReR-50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25 -
O-Rep. Swin-T 89.11 82.32 56.71 74.95 80.70 83.73 87.67 90.81 87.11 85.85 63.60 68.60 75.95 73.54 63.76 77.63 221.32
Ours Conv. 89.00 82.42 55.04 74.19 79.62 81.54 87.77 90.90 87.08 85.83 64.18 64.13 74.65 71.21 58.74 76.42 167.24
Ours Trans. 89.45 85.81 55.18 77.65 78.51 83.45 87.81 90.90 86.88 86.26 63.59 67.30 75.94 73.65 66.69 77.94 174.31

Table 4: Ablation studies on sparse ratio. Based on the fol-
lowing results, we set the ratio to 0.7 to maintain the best
balance between speed and accuracy in other experiments.

Method Ratio GFLOPs AP
Fore Back All Total Small Medium Large

0.1 5.91 31.24 37.15 75.1 31.6 71.4 85.4
0.3 5.90 34.14 40.04 75.9 34.5 72.7 85.3

DyHead 0.5 6.16 40.59 46.75 76.5 34.7 73.5 85.5
0.7 6.19 60.87 67.06 77.1 36.4 74.0 86.3
1.0 6.21 117.9 124.1 78.2 44.2 75.4 86.3
0.1 6.74 44.77 51.51 75.6 33.5 75.1 82.4
0.3 6.79 48.86 54.65 76.1 41.1 76.2 81.3

DINO 0.5 6.84 52.53 59.37 76.7 42.5 77.2 80.9
0.7 6.90 68.81 75.71 77.3 44.3 77.5 81.3
1.0 7.06 134.2 141.3 78.0 53.0 77.8 81.9

Transformer-based method Or-RepPoints, we achieve 0.3% AP im-
provement and reduce 21% GFLOPs. Compared to the method with
similar computation S2A-Net, we surpass its AP by 3.82%. This indi-
cates a significant enhancement in terms of accuracy and efficiency.
The DOTA [45] dataset presents a formidable challenge, yet our
approach achieves the precision of the current SotAs with signifi-
cantly fewer FLOPs. This not only validates the design intention
behind SparseFormer to reduce computational demands but also
demonstrates its generalizability across various tasks and domains.

4.2 Ablation Study

Component effectiveness. We investigate the effectiveness of
global block, C-NMS, multi-scale training (MS Train) and infer-
ence (MS Inference). Evaluation is conducted on the PANDA with
𝑘 = 0.7. As shown in Table 2, all components can significantly
improve performance with a little extra cost which also shows that
our strategies are useful for object detection in HRW shots.

Table 5: Ablation studies on the selection strategy. The re-
sults indicate that using the difference is more effective than
directly inputting 𝑧, and using the p-norm brings no gains.
Therefore, we choose 𝑧 − 𝑧 in other experiments.

APTotal APS APM APL
𝑧 0.748 0.452 0.757 0.786
𝑧 0.735 0.283 0.737 0.805
𝑧 − 𝑧 0.773 0.443 0.775 0.813
|𝑧 − 𝑧 | 0.773 0.474 0.770 0.818
(𝑧 − 𝑧)2 0.771 0.468 0.784 0.811

Keeping ratio. Our strategy involves discarding the grids that are
deemed unimportant. We study the impact of the grid-keeping ratio
on the final performance. Table 4 presents our findings, where the
keeping ratio 𝑘 is represented as [𝑘, 𝑘2, 𝑘3, 𝑘4] for each stage. As
the features become sparser, we observe a significant reduction in
FLOPs, but the decrease in accuracy is insignificant.

Effect on ScoreNet. We study the effect of different post-processing
of residual values which feed into ScoreNet (introduced in Sec-
tion 3.3). 𝑧 and 𝑧 denote the original features and aggregated fea-
tures, respectively, which are the same in Equation (4). As can be
seen from the last three lines, several variants based on residuals
have a performance within the error range, so we consider using
less computation and do not perform any redundant processing
on them. Compared with 𝑍 , which directly uses all the features in
the window, the average feature 𝑧 can achieve better results. We
think this is because the ScoreNet is a simple MLP, it cannot take
advantage of complex features 𝑧 well, while the 𝑧 is easier to be
classified based on color (blue for the sky and green for glasses)
and other patterns.

4.3 Comparison on Edge Device
The HRW shots are usually captured by edge devices like UAVs.
UAV detectors typically cannot run on large computing devices,
but instead run on low-power edge devices. Because it is usually
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Figure 7: Visualization of the window scores. We illustrate the first-stage window scores of SparseFormer, with the left two
columns of images from PANDA [43] and the right two columns from DOTA [45]. Highlighted points indicate areas requiring
extraction of fine-grained features.

Table 6: Comparison of the inference time on edge-device.

Method AP𝑇𝑜𝑡𝑎𝑙 AP𝑆 AP𝑀 AP𝐿 Latency(s) FPS
FasterRCNN [34] - 0.190 0.552 0.774 140 0.007
CascadeRCNN [3] - 0.227 0.579 0.765 200 0.005
PAN [10] 0.715 0.256 0.719 0.768 43 0.023
DyHead [6] 0.592 0.165 0.537 0.694 63 0.015
DyHead+DEG [37] 0.575 0.154 0.508 0.695 58 0.017
DyHead+Ours 0.771 0.364 0.740 0.863 52 0.019
DINO [54] 0.606 0.367 0.612 0.649 19 0.052
DINO+DEG [37] 0.582 0.339 0.578 0.624 15 0.066
DINO+Ours 0.773 0.443 0.775 0.813 14 0.071

difficult to quantify FLOPs on edge devices, we use NVIDIA AGX
Orin (top power 60W) to evaluate the average inference time of
each detector on the gigapixel-level images from PANDA and the
results are shown in Table 6. Notably, our method can largely reduce
inference time compared to previous methods. Our method is 3×
faster than PAN and has 5.8% increase of AP. We can see because
of the complex head structure, the inference speed of dynamic-
head [6] is not ideal. On the opposite, DINO [54] shows promising
FPS than the previous work and the improvement of the speed
is clearer. Compared to the competitive approach DEG [37], our
method could achieve much better performance with faster speed.

4.4 Model-agnostic Study
It is noteworthy that our strategy is model-agnostic, enabling seam-
less integration with either ConvNet or Transformer architectures.
This flexibility leads to the creation of SparseNet and SparseFormer.
Building upon the previously mentioned SparseFormer, we have
innovated by substituting every self-attention module with con-
volution layers. As illustrated in Table 1 and Table 3, SparseNet
demonstrates performance that is not only comparable but also
competitive with the renowned ResNet [19]. Especially noteworthy

is that SparseNet reduces the GFLOPs up to 56% while increasing ac-
curacy compared to CSL [50] and it achieves the lowest GFLOPs on
the DOTA dataset [45], underscoring its efficiency and effectiveness
in complex computational tasks.

4.5 Visualization of Sparse Windows
In order to better understand how window sparsification works,
we visualize the selected windows from each stage in Figure 7.
The red patches represent regions with higher scores, while the
blue patches indicate lower scores. SparseFormer will perform fine-
grained feature extraction on the regions with higher scores. This
illustration highlights the advantages of computation reduction on
background areas and low-entropy foregrounds. Additionally, the
results validate the effectiveness of our SparseFormer approach.
The PANDA [43] and DOTA [45] datasets focus on different tar-
get objects, they share the common characteristic of containing
large-scale background areas, making the sparsification approach
particularly relevant. We believe that this methodology will not
only benefit object detection in HRW shots but also various other
vision tasks.

5 CONCLUSION
We introduced SparseFormer, a sparse Vision Transformer-based
detector designed for HRW shots. It uses selective token utilization
to extract fine-grained features and aggregate features across win-
dows to extract coarse-grained features. The combination of fine
and coarse granularity effectively leverages the sparsity of HRW
shots, facilitating handling extreme scale variations. Our Cross-
slice NMS scheme and multi-scale strategy help detect oversized
and diminutive objects. Experiments on PANDA and DOTA-v1.0
benchmarks show significant improvement over existing meth-
ods, advancing state-of-the-art performance in HRW shot object
detection.
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