23
24
25
26
27
28

29

39
40
41
42
43
44

SparseFormer: Detecting Objects in HRW Shots
via Sparse Vision Transformer
—-Supplementary Material-

Anonymous Author(s)

This supplementary material contains additional details of the main
manuscript. Section 1 presents additional details of the models and
training strategies. Section 2 further explains the Algorithm 1. Sec-
tion 3 evaluate the reasonableness of the keeping ratio formulation.
Section 4 shows more visualization results to prove the effective-
ness of SparseFormer. Section 5 provide the PyTorch-like code for
SparseFormer.

1 DETAILS OF MODELS AND TRAINING

1.1 Dataset Preparation

PANDA dataset [4] . PAN [1] prepares the data for training by
using a sliding window of 2,048x1,024 pixels to decompose the
image which is downsampling with a factor of 4. In this paper, we
use a multi-scale pre-process to accelerate training convergence
and boost performance. Firstly, we cropped the patches according
to a 16X16 grid, an 8x8 grid, and a 4x4 grid on the original image
and filter the patch which has no persons. Then, all of the patches
are resized to the same resolution for training. In other words, our
pre-process is using the sliding window on images downsampled
at three scales.

DOTA dataset [5]. We crop the original images into the patches
of 1024x1024 with a stride of 824, which means the pixel overlap
between two adjacent patches is 200. In our experiment, we do not
use multi-scale training and testing and compared with the current
state-of-the-art methods which have the same setting.

1.2 Training and Inference

The observations in [2] show that training from scratch is no worse
than the fine-tuning counterpart. Thus, we train the detector with
36 epochs instead of pretraining on ImageNet. This also ensures that
we have a fair comparison with Swin Transformer, the performance
improvement comes from the novel design rather than better pre-
train weight. Benefiting from the sparse architecture, our model
can be easily trained on GeForce RTX 3090Ti GPUs.

During inference, we divided large-resolution images into patches
with a resolution of 6000x3600 and an overlap of 600 pixels between
patches for the PANDA dataset, and with a resolution of 1024x1024
and an overlap of 200 pixels between patches for the DOTA dataset.

2 ALGORITHM EXPLANATION FOR C-NMS

Suppose there are only two candidate box sets 81 and B for sim-
plicity, indicating the predictions of the object detector on the two
overlapped sliding windows. We first employ the conventional
score-based NMS post-processing on both box sets 81 and 8 to lo-
cally eliminate redundant boxes with low confidence. This process
results in two locally-suppressed outcomes: B and B;. Then, for
the cross-window box suppression, we unite 8] and 8; to form a
union box set B. In order to retain the boxes covering the complete

Algorithm 1: Cross-window NMS (C-NMS)
Variables : 8, B, are candidate box sets from two
windows, 7 is the C-NMS threshold;
Functions : NMS(-) is the conventional NMS;
AREA(+) calculates the area of a box;
1 B{ — NMS(Bl);Bé «— NMS(8B»);
2 B<—B{UB§;’ " — 0
3 while 8 # 0 do
4 m < argmax; AREA(b;), s.t. b; € B;
5 | B 8 U{bn};B B~ {bn};
6 for b; € B do
7 if IoU (b;, byy) > 7 then
L | 8 8-}

9 return B’;

Table 1: Ablation studies on sparse ratio.

GFLOPs AP
Fore Back AIl |[Total Small Medium Large
0.1 |[591 31.24 37.15| 75.1 31.6 71.4 85.4
0.3 |590 34.14 40.04| 75.9 345 72.7 85.3
DyHead | 0.5 |6.16 40.59 46.75| 76.5 34.7 73.5 85.5
0.7 |6.19 60.87 67.06| 77.1 36.4 74.0 86.3
1.0 | 6.21 1179 124.1| 78.2 44.2 75.4 86.3
0.1 |6.74 44.77 51.51| 75.6 33.5 75.1 82.4
0.3 |6.79 48.86 54.65| 76.1 41.1 76.2 81.3
DINO 0.5 |6.84 52.53 59.37| 76.7 42.5 77.2 80.9
0.7 |6.90 68.81 75.71| 77.3 443 77.5 81.3
1.0 | 7.06 134.2 141.3| 78.0 53.0 77.8 81.9

Method | Ratio

targets, we design to use the area of boxes to suppress boxes located
at overlapping regions. As in Algorithm 1, at each iteration, the
box by, with the largest area is removed from $ and append to the
suppressed set B’. We then remove all boxes b; from 8B, whose IoUs
with by, are greater than a pre-defined threshold 7. The algorithm
ends when the box union set 8 is empty. This strategy is effective
in selecting optimal boxes for HRW shot object detection.

3 STUDY ON KEEPING RATIO.

Discarding the worthless grids is an important part of our strategy.
So we conduct experiments to study the effect of the keeping ratio of
the grids on the final performance. Table 1 shows the results and the
keeping ratio k is formulated as [k, k2, K3, k4] for each stage. As the
features become more and more sparse, we can see a significant drop
in FLOPs but an insignificant drop in accuracy. In order to evaluate
the reasonableness of this formulation, we conduct experiments
on new parameters containing[k, 1, 1, 1] denoted as “Stage-1”, and
[1, 1,1, k] denoted as “Stage-4” with k € {0.1,0.5, 1}. The results are
shown in Figure 1. From the perspective of the GFLOPs, discarding

59
60

61

63

64

65

66

67

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Anon.

Total Small Middle Large
0.78 0.46 0.76 - _0.87 73
Foo 05 ! » 05 1 04 : 1
0.78 : ;] 01 - : 0.86 1
' R Ll [05 i
0781 042 0.86F -
Z 078 | o 0.75 ok osel -
0.78- 040 L) Stagel | o 2y 0.1 ’ Stage-1
077k oh ok 038 o4 = Staged | 0.86/- 0.1 -+ Stage-4
L. I SO/ S O R 0.74— PR S N TN S U T SN I | .) A S S S T S S S
0'7105 110 115 120 1250'3?05 110 115 120 125 105 110 115 120 125 105 110 115 120 125
GFLOPs GFLOPs GFLOPs GFLOPs

Figure 1: Effect of keeping ratio on different stage-1 and stage-4.

Figure 2: Visualization of the sparse window scores of four stages. The samples are from the PNADA dataset [4]. Highlighted
patches mean higher scores. It is easy to observe that our model pays more attention to the details of foreground and complex
regions.

the tokens in Stage-4 can save more computation than in Stage-1. It
is because the most computation of window self-attention is on the
MLP layer and the feature in Stage-4 has larger dimensions. To our
surprise, with more sparse windows, Stage-4 can still perform well
on total AP. From the perspective of objects of different scales, more
sparse windows (lower k) on Stage-4 can drop the performance
on small and middle objects but improve the AP on large objects.
The opposite is true for Stage-1. Therefore, The formulation of
[k, K2, K3, k4], with more drop in Stage-4, seems a reasonable choice.

4 MODEL ANALYSIS
4.1 Visualization Results

To further investigate the behavior of the window sparsification,
we visualize selected windows of each stage in Figure 2 to show
the advantage of the reduction on the redundancy computation
such as background and low-entropy foreground. The results also
demonstrate that our sparse representation learning makes sense
and we believe this will become a promising research direction
for not only future detection but any other vision tasks. The se-
lected windows of each stage on the DOTA dataset are shown in
Figure 3. The results show that when there is more background
and less foreground, our local self-attention is more concentrated

in the foreground region. When it is all background, the scores are
relatively even across all regions. To our surprise, Stage-2 usually
generates a more even score map which might show its importance
among the four stages. This is also an important basis for further
exploring how to design more efficient sparse architecture.

4.2 Qualitative comparison of detection results.

We present qualitative results in Figure 4 to compare the Sparse-
Former and Swin Transformer. We observe that through the token
sparsification on the background, SparseFormer has lower false
positive examples.

5 CODE IN PYTORCH

The local block is an essential module for reducing the computation,
and it can be easily implemented by inserting a plug-in module
into the original network. We provide the PyTorch-like pseudocode
in Algorithm 2 and Algorithm 3 associated with the Local self-
attention block. Algorithm 4 further shows the SparseFormer block
built with these modules. It can be seen from the pseudocode that
our sparse design is not limited to the Transformer but also could
modify the convolution neural network like ResNet [3] by adding

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

SparseFormer: Detecting Objects in HRW Shots
via Sparse Vision Transformer
-Supplementary Material-

Figure 3: Visualization of the sparse window scores of each stage on DOTA dataset.The samples are from the DOTA dataset [

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

404
405
406

Anon.

Transformer

win

S

SparseFormer

Figure 4: Qualitative results. We compare our SparseFormer to the Swin TransFormer and our model has fewer false positives
thanks to a sparse sampling of the background.

windows. The whole code will be publicly released after the review [2] Kaiming He, Ross Girshick, and Piotr Dollar. 2019. Rethinking imagenet pre-
training. In ICCV.
process. - 1) . .
[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.
REFERENCES [4] Xueyang Wang, Xiya Zhang, Yinheng Zhu, Yuchen Guo, Xiaoyun Yuan, Liuyu
[1] Jiahao Fan, Huabin Liu, Wenjie Yang, John See, Aixin Zhang, and Weiyao Lin. 2022. Xla‘j‘g’ Zer un Wang, Guiguang Dlng’ David Brady, Qionghai Dai, et al. 2020. Panda:
Speed Up Object Detection on Gigapixel-Level Images With Patch Arrangement. A gigapixel-level human-centric video dataset. In CVPR o
In CVPR. [5] Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai

Datcu, Marcello Pelillo, and Liangpei Zhang. 2018. DOTA: A large-scale dataset
for object detection in aerial images. In CVPR.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

SparseFormer: Detecting Objects in HRW Shots
via Sparse Vision Transformer
-Supplementary Material-

465

Algorithm 2: Sparse Window based Multi-head Self-attention, PyTorch-like Pseudocode

466
523
467
524
468 class SparseWindowMSA(BaseModule):
525
469 s
def forward(self, query, hw_shape, keep_token_indices): 526
470 B, L, C = query.shape 527
471 H, W = hw_shape
472 K = keep_token_indices.shape[1] 528
3 query = query.view(B, H, W, C) 529
530
474 # pad feature maps to multiples of window size -
475 pad_r = (self.window_size - W % self.window_size) % self.window_size
6 pad_b = (self.window_size - H % self.window_size) % self.window_size 532
query = F.pad(query, (@, 0, @, pad_r, @, pad_b)) 533
477 H_pad, W_pad = query.shape[1], query.shape[2] 34
478]
47 # cyclic shift 535
shifted_query = shift_function(query) 536
480
537
481 # B, nW, window_size, window_size, C 538
482 query_windows = self.window_partition(shifted_query)
539
483 .
plug-in 540
484 # sparse windows:nW->K (B, K, window_size, window_size, C) sa1
485 query_windows_sparse = torch.gather(query_windows, sparse_grad=True, dim=1, index=keep_token_indices)
156 query_windows_sparse = query_windows_sparse.view(-1, self.window_size**2, C) 542
543
487
.))) 544
488 # W-MSA/SW-MSA (B*K, window_size*window_size, C)
489 attn_windows_sparse = self.w_msa(query_windows_sparse, mask=attn_mask_sparse) 545
546
490 # plug-in 547
491 # (B, K, window_size, window_size, C) a8
492 attn_windows_sparse = attn_windows_sparse.view(B, -1, self.window_size, self.window_size, C)
103 # inverse sparse:K->nW (B, nW, window_size, window_size, C) 549
attn_windows = query_windows.scatter(src=attn_windows_sparse, dim=1, index=keep_token_indices) 550
494
551
495)
196 # (B, H_pad, W_pad, C) 952
shifted_x = self.window_reverse(attn_windows, H_pad, W_pad) 553
497
554
498 # reverse cyclic shift S5
499 x = shift_function(shifted_x)
556
0 .
50 if pad_r > @ or pad_b: 557
501 x = x[:, :H, :W, :].contiguous() s58
502 X = x.view(B, H * W, C)
503 x = self.drop(x) 559
’ return x 560
504
561
505
562
506
563
507
564
508
565
509
566
510
567
511
568
512
569
513
570
514
571
515
572
516
573
517
574
518
575
519
576
520
577
521
578
522
5 579

580

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Anon.

Algorithm 3: Sparse Feed-forward Network, PyTorch-like Pseudocode

from module import FFN, BaseModule
class SparseFFN(BaseModule):

def forward(self, x, hw_shape, keep_token_indices, identity):

B, L, C = x.shape

H, W = hw_shape

K = keep_token_indices.shape[1]
query = x.view(B, H, W, C)

pad feature maps to multiples of window size

pad_r = (self.window_size - W % self.window_size) % self.window_size
(self.window_size - H % self.window_size) % self.window_size

pad_b
query = F.pad(query, (@, 0, @, pad_r, @, pad_b))
H_pad = query.shape[1]
W_pad = query.shape[2]

B, nW, window_size, window_size,
query_windows = self.window_partition(query)

plug-in
sparse windows:nW->K (B, K, window_size, window_size, C

query_windows_sparse = torch.gather(query_windows, sparse_grad=True, dim=1, index=keep_token_indices)

#

output = self.ffn(query_windows_sparse)

plug-in

H X H H

inverse sparse:K->nW (B, nW, window_size, window_size, C)
= query_windows.scatter(src=output, dim=1, index=keep_token_indices)

merge windows
x = x.view(-1, self.window_size, self.window_size, C)
x = self.window_reverse(x, H_pad, W_pad)
if pad_r > @ or pad_b:
x = x[:, :H, :W, :].contiguous()
X = x.view(B, H x W, C)

if not self.add_identity:
return x
return x + identity

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

SparseFormer: Detecting Objects in HRW Shots
via Sparse Vision Transformer
-Supplementary Material—-

697

Algorithm 4: Local Self-attention Block, PyTorch-like Pseudocode

698
755
699
756
700 class LocalBlock(BaseModule): ’
01 def __init__(self, 757
embed_dims, 758
702 num_heads, 750
703 feedforward_channels,
704 window_size=7, 760
shift=False, 761
705 gkv_bias=True, 762
706 gk_scale=None, 763
707 drop_rate=0.,
708 attn_drop_rate=0., 764
drop_path_rate=0., 765
709 act_cfg=dict(type='GELU"), 766
710 norm_cfg=dict(type='LN"),
- init_cfg=None): 767
768
72 super(LocalBlock, self).__init__() 769
713
L o 770
714 self.init_cfg = init_cfg
self.with_cp = with_cp 771
715 X . X .
self.window_size = window_size 772
716
773
717 self.norml = build_norm_layer(norm_cfg, embed_dims)[1]
18 self.attn = SparseWindowMSA(774
embed_dims=embed_dims, 775
719 num_heads=num_heads, 776
720 window_size=window_size,
791 shift_size=window_size // 2 if shift else 0, 7
. gkv_bias=qgkv_bias, 778
722 gk_scale=gk_scale, 779
723 attn_drop_rate=attn_drop_rate, 780
724 proj_drop_rate=drop_rate,
- dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), 781
init_cfg=None) 782
726
783
727 self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
- self.ffn = SparseFFN(784
) embed_dims=embed_dims, 785
729 feedforward_channels=feedforward_channels, 786
730 num_fcs=2, 787
731 ffn_drop=drop_rate,
32 dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), 788
’ act_cfg=act_cfg, 789
733 add_identity=False, 790
734 init_cfg=None)
791
735
792
736 def forward(self, x, hw_shape, keep_token_indices): 703
737 identity = x ’
738 x = self.norml(x) 704
730 x = self.attn(x, hw_shape, keep_token_indices) 795
796
740 X = x + identity
797
741
742 identity = x 708
x = self.norm2(x) 799
743 x = self.ffn(x, hw_shape, keep_token_indices, identity=identity) 500
744
745 return x 801
802
746
803
747
804
748
805
749
806
750
807
751
808
752
809
753
810
754
7 811

812

	1 Details of Models and Training
	1.1 Dataset Preparation
	1.2 Training and Inference

	2 Algorithm Explanation for C-NMS
	3 Study on keeping ratio.
	4 Model Analysis
	4.1 Visualization Results
	4.2 Qualitative comparison of detection results.

	5 Code in PyTorch
	References

