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This supplementary material contains additional details of the main
manuscript. Section 1 presents additional details of the models and
training strategies. Section 2 further explains the Algorithm 1. Sec-
tion 3 evaluate the reasonableness of the keeping ratio formulation.
Section 4 shows more visualization results to prove the effective-
ness of SparseFormer. Section 5 provide the PyTorch-like code for
SparseFormer.

1 DETAILS OF MODELS AND TRAINING

1.1 Dataset Preparation

PANDA dataset [4] . PAN [1] prepares the data for training by
using a sliding window of 2,048x1,024 pixels to decompose the
image which is downsampling with a factor of 4. In this paper, we
use a multi-scale pre-process to accelerate training convergence
and boost performance. Firstly, we cropped the patches according
to a 16X16 grid, an 8x8 grid, and a 4x4 grid on the original image
and filter the patch which has no persons. Then, all of the patches
are resized to the same resolution for training. In other words, our
pre-process is using the sliding window on images downsampled
at three scales.

DOTA dataset [5]. We crop the original images into the patches
of 1024x1024 with a stride of 824, which means the pixel overlap
between two adjacent patches is 200. In our experiment, we do not
use multi-scale training and testing and compared with the current
state-of-the-art methods which have the same setting.

1.2 Training and Inference

The observations in [2] show that training from scratch is no worse
than the fine-tuning counterpart. Thus, we train the detector with
36 epochs instead of pretraining on ImageNet. This also ensures that
we have a fair comparison with Swin Transformer, the performance
improvement comes from the novel design rather than better pre-
train weight. Benefiting from the sparse architecture, our model
can be easily trained on GeForce RTX 3090Ti GPUs.

During inference, we divided large-resolution images into patches
with a resolution of 6000x3600 and an overlap of 600 pixels between
patches for the PANDA dataset, and with a resolution of 1024x1024
and an overlap of 200 pixels between patches for the DOTA dataset.

2 ALGORITHM EXPLANATION FOR C-NMS

Suppose there are only two candidate box sets 81 and B for sim-
plicity, indicating the predictions of the object detector on the two
overlapped sliding windows. We first employ the conventional
score-based NMS post-processing on both box sets 81 and 8 to lo-
cally eliminate redundant boxes with low confidence. This process
results in two locally-suppressed outcomes: B and B;. Then, for
the cross-window box suppression, we unite 8] and 8; to form a
union box set B. In order to retain the boxes covering the complete

Algorithm 1: Cross-window NMS (C-NMS)
Variables : 8, B, are candidate box sets from two
windows, 7 is the C-NMS threshold;
Functions : NMS(-) is the conventional NMS;
AREA(+) calculates the area of a box;
1 B{ — NMS(Bl);Bé «— NMS(8B»);
2 B<—B{UB§;’ " — 0
3 while 8 # 0 do
4 m < argmax; AREA(b;), s.t. b; € B;
5 | B 8 U{bn};B B~ {bn};
6 for b; € B do
7 if IoU (b;, byy) > 7 then
L | 8 8-}

9 return B’;

Table 1: Ablation studies on sparse ratio.

GFLOPs AP
Fore Back AIl |[Total Small Medium Large
0.1 |[591 31.24 37.15| 75.1 31.6 71.4 85.4
0.3 |590 34.14 40.04| 75.9 345 72.7 85.3
DyHead | 0.5 |6.16 40.59 46.75| 76.5 34.7 73.5 85.5
0.7 |6.19 60.87 67.06| 77.1 36.4 74.0 86.3
1.0 | 6.21 1179 124.1| 78.2 44.2 75.4 86.3
0.1 |6.74 44.77 51.51| 75.6 33.5 75.1 82.4
0.3 |6.79 48.86 54.65| 76.1 41.1 76.2 81.3
DINO 0.5 |6.84 52.53 59.37| 76.7 42.5 77.2 80.9
0.7 |6.90 68.81 75.71| 77.3 443 77.5 81.3
1.0 | 7.06 134.2 141.3| 78.0 53.0 77.8 81.9

Method | Ratio

targets, we design to use the area of boxes to suppress boxes located
at overlapping regions. As in Algorithm 1, at each iteration, the
box by, with the largest area is removed from $ and append to the
suppressed set B’. We then remove all boxes b; from 8B, whose IoUs
with by, are greater than a pre-defined threshold 7. The algorithm
ends when the box union set 8 is empty. This strategy is effective
in selecting optimal boxes for HRW shot object detection.

3 STUDY ON KEEPING RATIO.

Discarding the worthless grids is an important part of our strategy.
So we conduct experiments to study the effect of the keeping ratio of
the grids on the final performance. Table 1 shows the results and the
keeping ratio k is formulated as [k, k2, K3, k4] for each stage. As the
features become more and more sparse, we can see a significant drop
in FLOPs but an insignificant drop in accuracy. In order to evaluate
the reasonableness of this formulation, we conduct experiments
on new parameters containing[k, 1, 1, 1] denoted as “Stage-1”, and
[1, 1,1, k] denoted as “Stage-4” with k € {0.1,0.5, 1}. The results are
shown in Figure 1. From the perspective of the GFLOPs, discarding
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Figure 1: Effect of keeping ratio on different stage-1 and stage-4.

Figure 2: Visualization of the sparse window scores of four stages. The samples are from the PNADA dataset [4]. Highlighted
patches mean higher scores. It is easy to observe that our model pays more attention to the details of foreground and complex
regions.

the tokens in Stage-4 can save more computation than in Stage-1. It
is because the most computation of window self-attention is on the
MLP layer and the feature in Stage-4 has larger dimensions. To our
surprise, with more sparse windows, Stage-4 can still perform well
on total AP. From the perspective of objects of different scales, more
sparse windows (lower k) on Stage-4 can drop the performance
on small and middle objects but improve the AP on large objects.
The opposite is true for Stage-1. Therefore, The formulation of
[k, K2, K3, k4], with more drop in Stage-4, seems a reasonable choice.

4 MODEL ANALYSIS
4.1 Visualization Results

To further investigate the behavior of the window sparsification,
we visualize selected windows of each stage in Figure 2 to show
the advantage of the reduction on the redundancy computation
such as background and low-entropy foreground. The results also
demonstrate that our sparse representation learning makes sense
and we believe this will become a promising research direction
for not only future detection but any other vision tasks. The se-
lected windows of each stage on the DOTA dataset are shown in
Figure 3. The results show that when there is more background
and less foreground, our local self-attention is more concentrated

in the foreground region. When it is all background, the scores are
relatively even across all regions. To our surprise, Stage-2 usually
generates a more even score map which might show its importance
among the four stages. This is also an important basis for further
exploring how to design more efficient sparse architecture.

4.2 Qualitative comparison of detection results.

We present qualitative results in Figure 4 to compare the Sparse-
Former and Swin Transformer. We observe that through the token
sparsification on the background, SparseFormer has lower false
positive examples.

5 CODE IN PYTORCH

The local block is an essential module for reducing the computation,
and it can be easily implemented by inserting a plug-in module
into the original network. We provide the PyTorch-like pseudocode
in Algorithm 2 and Algorithm 3 associated with the Local self-
attention block. Algorithm 4 further shows the SparseFormer block
built with these modules. It can be seen from the pseudocode that
our sparse design is not limited to the Transformer but also could
modify the convolution neural network like ResNet [3] by adding
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Figure 3: Visualization of the sparse window scores of each stage on DOTA dataset.The samples are from the DOTA dataset [
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Figure 4: Qualitative results. We compare our SparseFormer to the Swin TransFormer and our model has fewer false positives
thanks to a sparse sampling of the background.

windows. The whole code will be publicly released after the review [2] Kaiming He, Ross Girshick, and Piotr Dollar. 2019. Rethinking imagenet pre-
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465

Algorithm 2: Sparse Window based Multi-head Self-attention, PyTorch-like Pseudocode

466
523
467
524
468 class SparseWindowMSA(BaseModule):
525
469 s
def forward(self, query, hw_shape, keep_token_indices): 526
470 B, L, C = query.shape 527
471 H, W = hw_shape
472 K = keep_token_indices.shape[1] 528
3 query = query.view(B, H, W, C) 529
530
474 # pad feature maps to multiples of window size -
475 pad_r = (self.window_size - W % self.window_size) % self.window_size
6 pad_b = (self.window_size - H % self.window_size) % self.window_size 532
query = F.pad(query, (@, 0, @, pad_r, @, pad_b)) 533
477 H_pad, W_pad = query.shape[1], query.shape[2] 34
478 ]
47 # cyclic shift 535
shifted_query = shift_function(query) 536
480
537
481 # B, nW, window_size, window_size, C 538
482 query_windows = self.window_partition(shifted_query)
539
483 .
# plug-in 540
484 # sparse windows:nW->K (B, K, window_size, window_size, C) sa1
485 query_windows_sparse = torch.gather(query_windows, sparse_grad=True, dim=1, index=keep_token_indices)
156 query_windows_sparse = query_windows_sparse.view(-1, self.window_size**2, C) 542
# 543
487
. ) ) ) 544
488 # W-MSA/SW-MSA (B*K, window_size*window_size, C)
489 attn_windows_sparse = self.w_msa(query_windows_sparse, mask=attn_mask_sparse) 545
546
490 # plug-in 547
491 # (B, K, window_size, window_size, C) a8
492 attn_windows_sparse = attn_windows_sparse.view(B, -1, self.window_size, self.window_size, C)
103 # inverse sparse:K->nW (B, nW, window_size, window_size, C) 549
attn_windows = query_windows.scatter(src=attn_windows_sparse, dim=1, index=keep_token_indices) 550
494
# 551
495 )
196 # (B, H_pad, W_pad, C) 952
shifted_x = self.window_reverse(attn_windows, H_pad, W_pad) 553
497
554
498 # reverse cyclic shift S5
499 x = shift_function(shifted_x)
556
0 .
50 if pad_r > @ or pad_b: 557
501 x = x[:, :H, :W, :].contiguous() s58
502 X = x.view(B, H * W, C)
503 x = self.drop(x) 559
’ return x 560
504
561
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Algorithm 3: Sparse Feed-forward Network, PyTorch-like Pseudocode

from module import FFN, BaseModule
class SparseFFN(BaseModule):

def forward(self, x, hw_shape, keep_token_indices, identity):

B, L, C = x.shape

H, W = hw_shape

K = keep_token_indices.shape[1]
query = x.view(B, H, W, C)

# pad feature maps to multiples of window size

pad_r = (self.window_size - W % self.window_size) % self.window_size
(self.window_size - H % self.window_size) % self.window_size

pad_b
query = F.pad(query, (@, 0, @, pad_r, @, pad_b))
H_pad = query.shape[1]
W_pad = query.shape[2]

# B, nW, window_size, window_size,
query_windows = self.window_partition(query)

# plug-in
# sparse windows:nW->K (B, K, window_size, window_size, C

query_windows_sparse = torch.gather(query_windows, sparse_grad=True, dim=1, index=keep_token_indices)

#

output = self.ffn(query_windows_sparse)

plug-in

H X H H

inverse sparse:K->nW (B, nW, window_size, window_size, C)
= query_windows.scatter(src=output, dim=1, index=keep_token_indices)

# merge windows
x = x.view(-1, self.window_size, self.window_size, C)
x = self.window_reverse(x, H_pad, W_pad)
if pad_r > @ or pad_b:
x = x[:, :H, :W, :].contiguous()
X = x.view(B, H x W, C)

if not self.add_identity:
return x
return x + identity
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697

Algorithm 4: Local Self-attention Block, PyTorch-like Pseudocode

698
755
699
756
700 class LocalBlock(BaseModule): ’
01 def __init__(self, 757
embed_dims, 758
702 num_heads, 750
703 feedforward_channels,
704 window_size=7, 760
shift=False, 761
705 gkv_bias=True, 762
706 gk_scale=None, 763
707 drop_rate=0.,
708 attn_drop_rate=0., 764
drop_path_rate=0., 765
709 act_cfg=dict(type='GELU"), 766
710 norm_cfg=dict(type='LN"),
- init_cfg=None): 767
768
72 super(LocalBlock, self).__init__() 769
713
L o 770
714 self.init_cfg = init_cfg
self.with_cp = with_cp 771
715 X . X .
self.window_size = window_size 772
716
773
717 self.norml = build_norm_layer(norm_cfg, embed_dims)[1]
18 self.attn = SparseWindowMSA( 774
embed_dims=embed_dims, 775
719 num_heads=num_heads, 776
720 window_size=window_size,
791 shift_size=window_size // 2 if shift else 0, 7
. gkv_bias=qgkv_bias, 778
722 gk_scale=gk_scale, 779
723 attn_drop_rate=attn_drop_rate, 780
724 proj_drop_rate=drop_rate,
- dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), 781
init_cfg=None) 782
726
783
727 self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
- self.ffn = SparseFFN( 784
) embed_dims=embed_dims, 785
729 feedforward_channels=feedforward_channels, 786
730 num_fcs=2, 787
731 ffn_drop=drop_rate,
32 dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), 788
’ act_cfg=act_cfg, 789
733 add_identity=False, 790
734 init_cfg=None)
791
735
792
736 def forward(self, x, hw_shape, keep_token_indices): 703
737 identity = x ’
738 x = self.norml(x) 704
730 x = self.attn(x, hw_shape, keep_token_indices) 795
796
740 X = x + identity
797
741
742 identity = x 708
x = self.norm2(x) 799
743 x = self.ffn(x, hw_shape, keep_token_indices, identity=identity) 500
744
745 return x 801
802
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