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KEBR: Knowledge Enhanced Self-Supervised Balanced
Representation for Multimodal Sentiment Analysis

Anonymous Authors

ABSTRACT
Multimodal sentiment analysis (MSA) aims to integrate multiple
modalities of information to better understand human sentiment.
The current research mainly focuses on conducting multimodal fu-
sion and representation learning, which neglects the under-optimized
modal representations generated by the imbalance of unimodal per-
formances in joint learning. Moreover, the size of labeled datasets
limits the generalization ability of existing supervised models used
inMSA. To address the above issues, this paper proposes a knowledge-
enhanced self-supervised balanced representation approach (KEBR)
to capture common sentimental knowledge in unlabeled videos and
explore the optimization issue of information imbalance between
modalities. First, a text-based cross-modal fusion method (TCMF)
is constructed, which injects the non-verbal information from the
videos into the semantic representation of text to enhance the multi-
modal representation of text. Then, amultimodal cosine constrained
loss (MCC) is designed to constrain the fusion of non-verbal infor-
mation in joint learning to balance the representation of multimodal
information. Finally, with the help of sentiment knowledge and
non-verbal information, KEBR conducts sentiment word masking
and sentiment intensity prediction, so that the sentiment knowl-
edge in the videos is embedded into the pre-trained multimodal
representation in a balanced manner. Experimental results on two
publicly available datasets MOSI and MOSEI show that KEBR sig-
nificantly outperforms the baseline, achieving new state-of-the-art
results.

CCS CONCEPTS
• Computing methodologies → Natural language processing.

KEYWORDS
Multimodal sentiment analysis, Knowledge enhanced pre-training,
Imbalanced optimization, Text-based cross-modal fusion method,
Multimodal cosine constrained loss

1 INTRODUCTION
Multimodal Sentiment Analysis (MSA) offers a comprehensive un-
derstanding of human sentiment by integrating information from
text, audio, and visual modalities, which are closer to real-life sce-
narios where human beings process sentiment [2]. The widespread
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Figure 1: The pipeline of KEBR. The red ellipse represents
the sentiment words and corresponding sentiment values in
the text searched from the sentiment lexicon.

use of smart devices has led to a significant increase in user opin-
ion videos, which offer abundant data resources and application
scenarios for studying MSA tasks, such as depression detection,
e-commerce, smart customer service, and human-computer, inter-
action, among others. With the generation of large amounts of
multi-source information, MSA has received increasing attention,
and richer information can also help to improve model performance
[42]. However, due to the heterogeneous modal gap, achieving
human-comparable MSA performance remains still challenging
[44].

The majority of previous MSA approaches have concentrated on
developing multimodal fusion and representation learning. RNN-
based models[6, 20, 21, 51] connect each modal feature to a fusion
vector input for subsequent classification or regression. Models
based on Transformers [35, 36] are employed to simulate multi-
modal interactions for reducing the effect of inter-modal differences.
The BERT [12, 29, 40, 45] pre-trained language model is employed
as an encoder for text modality, thereby enhancing the perfor-
mance of the MSA task by leveraging BERT’s exceptional language
representation capabilities. However, a joint model for uniform
objective optimization may have its unimodal encoders converging
at different rates [40]. One dominant modality could dominate the
optimization process, leading to the neglect of other modalities and
causing under-optimized representations. This results in modal bias
that fails to fully utilize the capabilities of multimodal. To address
this issue, some studies control the learning rate of different modal-
ities [24, 26, 38]. However, all of these methods only mitigate the
imbalance between the audio-visual modalities, and they all require
additional training costs. Numerous studies have demonstrated

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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that text plays a more central role than non-verbal (audio, vision)
information in MSA tasks[10, 22, 30, 31, 33, 37, 49]. To explore the
dynamic relationship between modalities, HyCon [22] and ConKI
[49] conducted intra-modal and inter-modal comparative learning
to explore the interaction between modalities, but heavily relied on
labeled datasets. Due to the limited availability of MSA sentiment-
annotated datasets and the increased parameter capacity of fused
models, supervised models tend to experience significant overfit-
ting [8, 38], thus reducing the generalization ability of existing MSA
models.

Through the above analysis, to improve the quality and per-
formance of fusion representations for MSA, two key issues need
to be addressed: 1) How to avoid modal imbalance (mainly non-
verbal) due to modal gaps and efficiently construct text-centered
non-verbal joint multimodal representations? 2) How to address the
problem of overfitting and poor generalization ability in supervised
models when using limited labeled datasets?

Inspired by knowledge-enhanced pre-training models on text
sentiment analysis [32, 34, 54, 55], we found that a large number
of unlabeled opinion videos on the Internet contain valuable senti-
ment knowledge. This knowledge can guide the fusion of visual,
audio, and text modalities to express sentiment patterns or com-
bine sentiment semantics. Learning this knowledge will enhance
sentiment representation in MSA tasks. This can enhance further
learning on a restricted MSA dataset. To this end, we propose
a knowledge-enhanced self-supervised balanced representation
(KEBR) method. Sentiment knowledge helps predict the sentiment
intensity of masked sentiment words in unlabeled opinion videos
using contextual and non-verbal information to learn common sen-
timent patterns. Specifically, we propose a text-based cross-modal
fusion method (TCMF). Different from the previous work, we em-
ploy multi-layer cross-modal fusion to inject low-level features
of non-verbal modalities into the semantic representation of text,
while keeping the fused parameter capacity unchanged. This ap-
proach preserves the original affective semantics of the non-verbal
information and enhances the text-based multimodal representa-
tion. In addition, a multimodal cosine constrained loss (MCC) was
designed to mitigate the modal imbalance. Different from previous
methods, MCC is capable of optimizing the imbalance among the
three modalities. Its design restricts the injected non-verbal infor-
mation in the fused multimodal representations to mitigate modal
bias. Furthermore, MCC is designed as an external constraint with
almost no additional training cost and is independent of the model
or architecture.

As shown in Fig.1, first, the most significant sentiment word in
the text is masked according to the pre-specified sentiment lexi-
con. Then, employing the proposed text-based cross-modal fusion
method, the injection fusion of non-verbal information and the
enhancement of text representation is accomplished. At the same
time, the designed multimodal cosine constrained loss is applied
to avoid the problem of under-optimization of non-verbal infor-
mation due to modal gaps in the joint multimodal representation.
Finally, the masked word representations are used to predict the
joint loss of sentiment intensity and multimodal cosine constraints,
embedding word-level sentiment knowledge from the video into
pre-trained multimodal representations in a balanced manner.

After pre-training KEBR, to evaluate its effectiveness, we fine-
tuned it on two benchmark datasets: MOSI [52] and MOSEI [1].
The experimental results demonstrate that KEBR outperforms the
baseline and achieves state-of-the-art performance. The code has
been released at https://github.com/*****/KEBR/.

The primary contributions of this paper are as follows:

• Wepropose a knowledge-enhancedmultimodal self-supervised
balanced representation method, which leverages the sen-
timent knowledge from large-scale unlabeled videos to en-
hance multimodal sentiment representation learning.

• We propose a text-based cross-modal fusion approach that
injects low-level features from audio and visual modalities
into text to enhance the multimodal information representa-
tion of text. This method highlights the dominance of text
and the assistance of non-verbal information in modal fu-
sion, which preserves the original affective semantics of
the non-verbal information while enhancing the text-based
multimodal representation.

• We propose a multimodal cosine constrained loss function
to optimize the imbalance of unimodal in joint representa-
tion, which avoids the problem of certain modalities being
neglected in fusion unable to exploit their capabilities.

2 RELATEDWORK
2.1 Knowledge Enhanced Pre-training

Language Models
In NLP, Transformer-based pre-trained language models have been
widely studied and applied to extract contextual semantic features.
Considerable attention has been focused on pre-training models on
large-scale unlabeled datasets [9, 18, 46] to capture linguistic infor-
mation, followed by fine-tuning the model for specific downstream
tasks.

It is effective to introduce domain-specific knowledge into the
process of pre-training language models [53]. The domain-specific
knowledge can be the common knowledge of entity type and rela-
tionship classification tasks [17, 27, 53], legal knowledge of extract-
ing legal elements [56], sentiment knowledge of sentiment analysis
[15, 34, 47], and biomedical knowledge for health question-and-
answer and medical reasoning [13]. Several studies [17, 27, 53, 54]
integrate sentiment knowledge, encompassing sentiment words,
word polarity, and aspect-emotion pairs, into text representations
to improve specific sentiment analysis tasks. Knowledge-enhanced
pre-trained language models have made significant progress in
text sentiment analysis. However, few studies have utilized the
abundant sentiment knowledge presented in unlabeled videos to
improve sentiment representation learning for MSA tasks.

2.2 Multimodal Sentiment Analysis
MSA collects and processes data from multiple sources of audio,
visual, and text information to comprehensively understand human
sentiment [11]. Early MSA studies integrate multimodal representa-
tions obtained from different feature extraction networks [28]. The
Tensor Fusion Network (TFN) [50] learns the intra-modaldynamics
through modal embedding sub-networks. Low-rank multimodal
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Figure 2: The overall architecture of the KEBR model. 𝑋𝑀0 (𝑀 ∈ {𝑡, 𝑎, 𝑣}) denotes the original feature sequence before fusion.
𝑋
𝑡 (𝑎𝑣)
𝑘

denotes the output of TCMF at layer k. CMA denotes cross-model attention within the TCMF module.𝑀𝑡 (𝑚)
𝑘

(𝑚 ∈ {𝑎, 𝑣})
denotes the output of text doing cross-modal attention at k-th layer with audio and vision, respectively. 𝐿𝑚𝑐𝑐 denotesmultimodal
cosine constraint loss. 𝐿𝑡𝑎𝑠𝑘 denotes sentiment prediction loss.

fusion (LMF) [19] reduces the computational cost of TFN by uti-
lizing a low-rank tensor. The multimodal transformer (MulT) [35]
applies cross-modal attention to transform one modality to another.
Different from MulT, our KEBR model injects low-level features of
non-verbal information into the text feature representation through
multimodal interaction. It uses the enhanced text representation as
the joint representation for MSA tasks.

Given the remarkable success of pre-trained language models
in NLP, MISA [12] learns invariant and specific representations of
each modality. The self-supervised multitask multimodal Sentiment
Analysis Network (Self-MM) [48] introduced a self-supervised la-
bel generation module for acquiring additional unimodal labels.
MAG-BERT [29] introduced a multimodal adaptation gate that
enables BERT to accept representations of non-verbal modalities.
MMIM [11] maximizes mutual information in the multimodal fu-
sion pipeline to preserve the fusion of task-relevant information
among modalities. To explore the dynamic relationship between
modalities, HyCon [22] performs comparative learning intra-modal
and inter-modal to explore cross-modal interactions. Furthermore,
ConKI uses the dataset from one MSA task as domain-specific
knowledge trained on a different dataset, leading to the model’s
performance becoming overly reliant on the labeled dataset. CENet
[37] utilizes visual and audio sentiment information to enrich the
text representation in the pre-trained language model, while still
relying on the labeled data.

Different from existing MSA models, KEBR not only uses audio
and vision of MSA task labeled data to enhance the correspond-
ing text representation but also uses sentiment knowledge from
large-scale unlabeled videos to promote multimodal sentiment rep-
resentation learning, which facilitates further training on limited
MSA datasets.

2.3 Imbalanced Optimization
By integrating various sensory inputs, multimodal methods con-
tribute to enhancing overall task comprehension and performance
[2]. However, in practice, it has been found that even if a multi-
modal model outperforms its unimodal counterpart, one modality
will dominate the optimization process because the unimodal con-
verges at different speeds. Thus, causing the other modalities to be
neglected and unable to play their ability [38]. To address this issue,
some studies have proposed methods such as gradient mixing [38],
dynamic gradient modulation [26], and an information-sharing
multimodal fusion strategy [24]. MMCosine [43] proposes a multi-
modal cosine loss, which performs a modal L2 normalization of the
features and weights. Inspired by this, we propose a multimodal
cosine constrained loss function (MCC), which extends from audio-
visual bimodality to address imbalance optimization among text,
audio, and visual modalities compared to previous imbalance miti-
gation methods. Our method is self-supervised and independent of
the model architecture.

3 INTRODUCTION METHODOLOGY
As shown in Fig. 2, the framework of KEBR consists of four main
components: sentiment knowledge-guided masking and predic-
tion, text-based cross-modal fusion (TCMF), multimodal cosine
constraint loss function (MCC), and sentiment intensity prediction.

3.1 Task Setup
The task of MSA is to calculate the sentiment information in videos
based on multimodal signals (𝑀 = {𝑡𝑒𝑥𝑡 (𝑡), 𝑎𝑢𝑑𝑖𝑜 (𝑎), 𝑣𝑖𝑠𝑢𝑎𝑙 (𝑣)}).
The feature sequences of these signals can be denoted as 𝑋 𝑡 ∈
R𝑙𝑡×𝑑𝑡 , 𝑋𝑎 ∈ R𝑙𝑎×𝑑𝑎 and 𝑋 𝑣 ∈ R𝑙𝑣×𝑑𝑣 . 𝑙𝑀∈{𝑡,𝑎,𝑣} denotes the se-
quence length of each modality, and 𝑑𝑀 denotes the dimension of
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Figure 3: The process and effect of MCC. 𝑋𝑀
𝑖

| |X𝑀
𝑖
| | (𝑀 ∈ {𝑡, 𝑎, 𝑣})

denotes normalization. cos𝜃𝑡 (𝑎𝑣)𝑚
𝑖

(𝑚 ∈ {𝑎, 𝑣})denotes the co-
sine similarity between the multimodal feature sequence
𝑋
𝑡 (𝑎𝑣)
𝐾

and𝑋𝑚0 of sample 𝑖 . Δ𝜃𝑖 = arccos𝜃𝑡 (𝑎𝑣)𝑎
𝑖

−arccos𝜃𝑡 (𝑎𝑣)𝑣
𝑖

.
g denotes the angle penalty used to adjust the cosine conver-
gence value. s denotes the scaling factor. For samples with
cos𝜃𝑡 (𝑎𝑣)𝑚

𝑖
< 0 , it means that there is no similarity, and it is

gradually optimized during training after giving it a larger
loss 𝑠 + 𝑓 𝑖𝑚𝑐𝑐 , so we only discuss the case cos𝜃𝑡 (𝑎𝑣)𝑚

𝑖
≥ 0 below.

the feature. Given themultimodal sequence𝑋𝑀 = {𝑥𝑀1 , 𝑥
𝑀
2 , ..., 𝑥

𝑀
𝑙𝑀

},
the main tasks of KEBR are divided into two stages: pre-training
and fine-tuning (testing). The pre-training task is to predict the
sentiment values 𝑦 ∈ R of the sentiment words in the unlabeled
videos with the help of sentiment knowledge and non-verbal infor-
mation. Pre-training aims to facilitate the sentiment knowledge in
the unlabeled videos to promote the learning of multimodal sen-
timent representation. The testing task is to predict the polarity
𝑦 ∈ {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒} or sentiment values 𝑦 ∈ R of the
entire labeled videos by fine-tuning the pre-trained model.

3.2 Sentiment Knowledge-guided Masking and
Prediction

KEBR captures common sentiment knowledge in unlabeled videos
by predicting the sentiment value of masked sentiment words,
which is helpful for further learning with the limited labeled data
of MSA. Specifically, given an opinion video without sentiment
labels, Automatic Speech Recognition (ASR) is used to obtain the
transcribed text of the video. Subsequently, the words with the high-
est sentiment intensity in the transcribed text are identified to be
masked 𝑦 ∈ {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒} based on a predetermined
sentiment lexicon [14]. At the same time, the sentiment score of
the word and its position in the text are recorded. The masked text
be represented as follows.

𝑇 ′ = {𝑤1,𝑤2, ...,𝑤𝑚𝑎𝑠𝑘 , ...,𝑤𝑛} (1)

where𝑤𝑚𝑎𝑠𝑘 denotes the masked word. For text sentences that do
not contain sentiment words, a word in the sentence is randomly
masked, and its sentiment score is set to 𝑦𝑚𝑎𝑠𝑘 = 0.0 .

Masked text 𝑇 ′ with accompanying non-verbal information is
used as input for KEBR pre-training. The sentiment score serves as
the label to predict the sentiment value of the masked words. This
prediction is assisted by text-based cross-modal fusion and a multi-
modal cosine constraint loss function. Thereby, word-level senti-
ment information is embedded into the pre-trained multimodal rep-
resentation to enhance the model’s performance on MSA-specific
tasks.

3.3 Text-based Cross-Modal Fusion
In MSA, different non-verbal information may convey different
sentiments for the same word. Therefore, the precise sentiment
semantics should be determined by the word itself and the accompa-
nying non-verbal behavior[39]. However, many studies have shown
that text plays a more central role in MSA than non-verbal infor-
mation [10, 12, 30, 31, 33, 37, 49] . Inspired by MulT [35], which
focuses on low-level features in other modalities to fuse multimodal
information, a text-based cross-modal fusion method (TCMF) is
designed. In this method, low-level features from audio and visual
modalities are repeatedly injected into the text feature space (K
times) to enhance the multimodal representation of the text. The ca-
pacity of the fused feature parameters remains unchanged, avoiding
overfitting.

In 2, the feature sequence 𝑋𝑀0 (𝑀 ∈ {𝑡, 𝑎, 𝑣}) is used as the input
to TCMF. The TCMF module consists of a total of K-th layers. The
calculation for the TCMF at layer can be expressed as:

𝑋
𝑡 (𝑎𝑣)
𝑘

= 𝑇𝐶𝑀𝐹𝑘 (𝑋𝑎0 , 𝑋
𝑡 (𝑎𝑣)
𝑘−1 , 𝑋 𝑣0 ) (2)

Where 0 ≤ 𝑘 ≤ 𝐾 , if 𝑘 = 1 , 𝑋 𝑡 (𝑎𝑣)1 = 𝑇𝐶𝑀𝐹1 (𝑋𝑎0 , 𝑋
𝑡
0 , 𝑋

𝑣
0 ).The

main difference is that the audio and vision inputs of different
layers of TCMF 𝑋𝑎0 are and 𝑋 𝑣0 , while the text is input as 𝑋 𝑡0 (𝑘 = 1)
or 𝑋 𝑡 (𝑎𝑣)

𝑘−1 (1 < 𝑘 ≤ 𝐾) . Non-verbal information and text within
the TCMF module interact through cross-modal attention (CMA).
Taking text and audio as examples, the Q (query), K (key), and V
(value) of CMA are represented as follows:

𝑄𝑡 = 𝐿𝑁 (𝑋 𝑡
𝑘−1) ·𝑊

𝑡
𝑄 (3)

𝐾𝑎 = 𝐿𝑁 (𝑋𝑎0 ) ·𝑊
𝑎
𝐾 (4)

𝑉𝑎 = 𝐿𝑁 (𝑋𝑎0 ) ·𝑊
𝑎
𝑉 (5)

Where𝑊 𝑡
Q ∈ R𝑑𝑡×𝑑𝑡 ,𝑊 𝑎

𝐾
∈ R𝑑𝑎×𝑑𝑡 and𝑊 𝑎

𝑉
∈ R𝑑𝑎×𝑑𝑡 are weighs.

𝑋 𝑡
𝑘−1 = 𝑋

𝑡
0 (𝑘 = 1) , 𝑋 𝑡

𝑘−1 = 𝑋
𝑡 (𝑎𝑣)
𝑘−1 (1 < 𝑘 ≤ 𝐾). Further, the CMA

for audio and text can be expressed as follows.

𝑀
𝑡 (𝑎)
𝑘

= 𝐶𝑀𝐴(𝑄𝑡 , 𝐾𝑎,𝑉𝑎)
= softmax(𝑄

𝑡 ·𝐾𝑎

√
𝑑𝑡

) ·𝑉𝑎
(6)

Where 𝑀𝑡 (𝑎)
𝑘

∈ R𝑁×𝑑𝑡 denotes the text sequence enhanced by
audio modal injection. Likewise, the text sequence enhanced by
audio modal injection can be denoted as𝑀𝑡 (𝑣)

𝑘
.𝑀𝑡 (𝑎)

𝑘
and𝑀𝑡 (𝑣)

𝑘

are combined with the output 𝑋 𝑡 (𝑎𝑣)
𝑘−1 of TCMF at the layer 𝑘 − 1 to

obtain a text representation enhanced by non-verbal information.

𝑀
𝑡 (𝑎𝑣)
𝑘

= 𝑀
𝑡 (𝑎)
𝑘

+ 𝐿𝑁 (𝑋 𝑡 (𝑎𝑣)
𝑘−1 ) +𝑀𝑡 (𝑣)

𝑘
(7)
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Where𝑀𝑡 (𝑎𝑣)
𝑘

∈ R𝑁×𝑑𝑡 denotes a text representation that injected
audio and vision. Specifically, since 𝑄𝑡 (𝑘 > 1) is the result of the
TCMF output from the previous𝑘−1 layer, also contains the injected
visual information of the former layers. However, to differentiate
𝑀
𝑡 (𝑎)
𝑘

from 𝑀
𝑡 (𝑎𝑣)
𝑘

, only [𝑀𝑡 (𝑎)
𝑘

is used to signify the fusion of
audio and text at the 𝑘 − 𝑡ℎ layer.
𝑀
𝑡 (𝑎𝑣)
𝑘

is processed by layer normalization, feedforward neural
network (FFNN), and residual connection. The 𝑘 − 𝑡ℎ layer of non-
verbal information-enhanced text representation𝑋 𝑡 (𝑎𝑣)

𝑘
is obtained.

𝑋
𝑡 (𝑎𝑣)
𝑘

= 𝐹𝐹𝑁𝑁 (𝐿𝑁 (𝑀𝑡 (𝑎𝑣)
𝑘

)) +𝑀𝑡 (𝑎𝑣)
𝑘

(8)

Where 𝑋 𝑡 (𝑎𝑣)
𝑘

∈ R𝑁×𝑑𝑡 denotes the output of the TCMF module at
layer k.

3.4 Multimodal Cosine Constraint
In Section 3.3, we employ the low-level features of both audio and
visual modalities to enhance the multimodal representation of the
text via TCMF. However, in the process of information fusion, we
find that when a non-verbal modality gains a relative advantage in
the fusion, it tends to quickly strengthen its advantages, thus pre-
cluding the fusion of other non-verbal information within the main
modality. To optimize the imbalance of modality in the multimodal
joint representation, we design a multimodal cosine constraint loss
function (MCC), which constrains the fusion of non-verbal infor-
mation by utilizing the cosine constraint. This approach facilitates
the synchronous convergence of different non-verbal information
and exploits the capabilities of different modalities.

As shown in Fig. 3, the sample feature sequences are firstly
normalized by L2. Subsequently, the cosines of the fusedmultimodal
features𝑋 𝑡 (𝑎𝑣)

𝐾
and the original features𝑋𝑎0 , and𝑋 𝑣0 are calculated,

respectively.

cos𝜃𝑡 (𝑎𝑣)𝑎
𝑖

=
𝑋
𝑡 (𝑎𝑣)𝑇
𝐾 (𝑖 ) 𝑋𝑎0(𝑖 )

∥ 𝑋 𝑡 (𝑎𝑣)
𝐾 (𝑖 ) | | · | |𝑋𝑎0(𝑖 ) | |

(9)

where cos𝜃𝑡 (𝑎𝑣)𝑎
𝑖

represents the cosine of 𝑋 𝑡 (𝑎𝑣)
𝐾

and 𝑋𝑎0 for the
sample 𝑖 . Similarly, the cosine 𝑋 𝑡 (𝑎𝑣)

𝐾
and 𝑋 𝑣0 can be expressed

as cos𝜃𝑡 (𝑎𝑣)𝑣
𝑖

. Given n samples, the MCC loss function can be
expressed as follows.

𝐿𝑚𝑐𝑐 =
1
𝑛

𝑛∑︁
𝑖=0

𝑓 𝑖𝑚𝑐𝑐 (10)

𝑓 𝑖𝑚𝑐𝑐 = 𝑠 × (| cos(𝜋 (cos(
𝜃
𝑡 (𝑎𝑣)𝑣
𝑖

+ 𝜃𝑡 (𝑎𝑣)𝑎
𝑖

2
)𝑒Δ𝜃𝑖 + 𝑔)) |) (11)

Where Δ𝜃𝑖 = arccos𝜃𝑡 (𝑎𝑣)𝑎
𝑖

− arccos𝜃𝑡 (𝑎𝑣)𝑣
𝑖

, 𝑓 𝑖
𝑠𝑖𝑚

denotes the
MCC loss function of the sample 𝑖 . g is the angle penalty used to
adjust the cosine of𝑋 𝑡 (𝑎𝑣)

𝐾
with𝑋𝑎0 and𝑋𝑎0 when the similarity loss

converges. Due to the function | cos(𝑥) | ∈ [0, 1] , the introduction
of parameters to balance the size loss of MCC and the main task
loss ensures the convergence of the model.

𝑦 (𝑥𝑖 ) = cos(
𝜃
𝑡 (𝑎𝑣)𝑣
𝑖

+ 𝜃𝑡 (𝑎𝑣)𝑎
𝑖

2
)𝑒 (arccos𝜃

𝑡 (𝑎𝑣)𝑎
𝑖

−arccos𝜃𝑡 (𝑎𝑣)𝑣
𝑖

) (12)

When 𝑓 𝑖𝑚𝑐𝑐 converges, the value of the cosine function 𝑦 (𝑥𝑖 )
value is assumed to be 𝑦 (𝑥𝑖 ) . To induce 𝑦 (𝑥𝑖 ) convergence 𝑦 (𝑥𝑖 )
, both 𝜃𝑡 (𝑎𝑣)𝑎

𝑖
→ arccos(𝑦 (𝑥𝑖 )) and 𝜃𝑡 (𝑎𝑣)𝑣𝑖

→ arccos(𝑦 (𝑥𝑖 )) are
required. Meanwhile, arccos𝜃𝑡 (𝑎𝑣)𝑎

𝑖
− arccos𝑡 (𝑎𝑣)𝑣

𝑖
must be mini-

mized, i.e., arccos𝜃𝑡 (𝑎𝑣)𝑎
𝑖

and arccos𝜃𝑡 (𝑎𝑣)𝑣
𝑖

must be very close to
each other. Under this cooperative constraint, the convergence of
non-verbal information should be synchronous to avoid modal bias.

The non-verbal modalities are expected to play an auxiliary and
augmenting role in the multimodal fusion. To maintain the domi-
nance of the text master modality, it should prevent the cosine func-
tion cos𝜃𝑡 (𝑎𝑣)𝑚

𝑖
(𝑚 ∈ {𝑎, 𝑣}) → 0 or cos𝜃𝑡 (𝑎𝑣)𝑚

𝑖
(𝑚 ∈ {𝑎, 𝑣}) → 1

, i.e., the cosine values of the fused feature sequences and the
non-verbal modal feature sequences being very high or very low.
To achieve this, we reintroduce the cosine function, resulting a
higher loss for the similarity score cos𝜃𝑡 (𝑎𝑣)𝑚

𝑖
(𝑚 ∈ {𝑎, 𝑣}) → 0 or

cos𝜃𝑡 (𝑎𝑣)𝑚
𝑖

(𝑚 ∈ {𝑎, 𝑣}) → 1 , as shown in table 3. Simultaneously,
an angle penalty g is introduced to regulate the convergence value
of the cosine function 𝑦 (𝑥𝑖 ) . Through this joint regulation, the
convergence of the multimodal cosine constrained loss 𝑓 𝑖𝑚𝑐𝑐 for the
sample 𝑖 can be expressed as follows.

𝑓 𝑖𝑚𝑐𝑐 = lim
(𝑦 (𝑥𝑖 )+𝑔)→�̂� (𝑥𝑖 )

𝑠 × (| cos(𝜋 (𝑦 (𝑥𝑖 ) + 𝑔)) |) = 0 (13)

3.5 Sentiment Intensity Prediction
In the pre-training phase of KEBR, the main task is to predict the
intensity of sentiment words that have been masked. This is to
use the sentiment knowledge from large, unlabeled videos to im-
prove multimodal sentiment representation learning. Masked text
encoded by BERT [9] and enhanced with low-level features from
audio and visual modalities by TCMF, can be represented as follows:

𝑋
𝑡 (𝑎𝑣)
𝐾

= {𝑥𝑡 (𝑎𝑣)
𝐾,1 , 𝑥

𝑡 (𝑎𝑣)
𝐾,2 , ..., 𝑥

𝑡 (𝑎𝑣)
𝑀𝐴𝑆𝐾

, ..., 𝑥
𝑡 (𝑎𝑣)
𝐾,𝑛

} (14)

Where 𝑥𝑡 (𝑎𝑣)
𝑀𝐴𝑆𝐾

denotes the masked word that has been reinforced
by non-verbal information. To predict the sentiment value of the
masked word, we employ a multilayer perceptron (MLP) with a
ReLU activation function acting as a classifier.

𝑦𝑝𝑟𝑒𝑑 = 𝑀𝐿𝑃𝜃𝐹𝐶 (𝑥
𝑡 (𝑎𝑣)
𝑀𝐴𝑆𝐾

) (15)

Where 𝜃𝐹𝐶 denotes the parameters of the fully connected network,
and 𝑦𝑝𝑟𝑒𝑑 is the predicted sentiment value.

𝐿𝑡𝑎𝑠𝑘 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑀𝐴𝑆𝐾 | (16)

𝐿 = 𝐿𝑡𝑎𝑠𝑘 + 𝐿𝑚𝑐𝑐 (17)

where n is the batch size. L is the total loss of the model pre-training.
𝐿𝑡𝑎𝑠𝑘 is the masked sentiment word sentiment value prediction loss.

Our task in the testing phase is also affective computing. There-
fore, in the testing phase, we only added an output layer to the
pre-trained language model as well as the multimodal fusion mod-
ule to generate task-specific predictions. Then, we fine-tuned the
labeled multimodal dataset to validate the performance of KEBR in
the MSA task.
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Table 1: Results on MOSI and MOSEI. In Acc-2 and F1, the left of the "/" is "negative/nonnegative" and the right is "nega-
tive/positive". "*" denotes the result is from ConKI [49]. "Δ" denotes the reimplementation of the non-verbal feature mentioned
in 4.2 .Mark the best results in bold.

Model MOSI MOSEI

Acc-2 F1 Acc-7 MAE Corr Acc-2 F1 Acc-7 MAE Corr

LFN* -/80.8 -/80.7 34.9 0.901 0.698 -/82.5 -/82.1 50.2 0.593 0.7
LMF* -/82.5 -/82.4 33.2 0.917 0.695 -/82.0 -/82.1 48 0.677 0.623
MISA* 80.79/82.10 80.77/82.03 - 0.804 0.764 82.59/84.23 82.67/83.97 - 0.548 0.724

MAG-BERT* 82.37/84.43 82.50/84.61 43.62 0.781 0.727 82.51/84.82 82.77/84.71 52.67 0.543 0.755
HyCon* -/85.2 -/85.1 46.6 0.713 0.79 -/85.4 -/85.6 52.8 0.601 0.776
MIMM* 84.14/86.06 84.00/85.98 46.65 0.7 0.8 82.24/85.97 82.66/85.94 54.24 0.526 0.772
ConKI* 84.37/86.13 84.33/86.13 48.43 0.681 0.816 82.73/86.25 83.08/86.15 54.25 0.529 0.782

MulTDΔ 79.51/80.47 79.46/80.49 36.74 0.892 0.667 81.10/83.63 81.05/83.46 52.34 0.605 0.671
CENETDΔ 83.57/85.31 83.54/85.29 44.86 0.725 0.799 83.49/86.33 83.74/86.21 54.15 0.529 0.773
Self-MMDΔ 83.21/85.21 83.18/85.18 44.65 0.701 0.774 82.93/84.07 83.14/84.12 53.74 0.554 0.75

KEBR 84.84/87.27 84.83/87.25 47.81 0.683 0.819 84.01/86.74 84.25/86.68 54.37 0.517 0.799

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Pre-training datasets. KEBR was pre-trained on the VoxCeleb1
dataset, which is a sizable dataset of English speaker recognition
with rich sentiment. The dataset has two parts: VoxCeleb1 [23]
and VoxCeleb2 [7]. VoxCeleb1 has over 100,000 discourses from
1251 celebrities from YouTube videos. VoxCeleb2 has more than
one million discourses from 6112 speakers. According to previous
research [41], video clips without English were excluded.

Fine-tuning datasets. We fine-tuned the pre-trained KEBR on
two benchmark datasets in the MSA field: MOSI [52] and MOSEI
[1]. The details of the datasets are shown in Appendix A.

Following previous works [7, 12, 22, 33, 49], we present our
experimental results in both regression and classification. For re-
gression, we present the mean absolute error (MAE) and Pearson
correlation (Corr). For classification, we calculate the Acc-2 and
F1 scores for both the negative positive (zero excluded) and non-
negative positive (zero included) settings. Additionally, In addition,
we calculate Acc-7, which shows the percentage of predictions cor-
rectly classified into seven intervals between -3 and +3. Except for
MAE, higher values indicate better performance for all metrics.

4.2 Experimental Design
For the text, audio, and visual information in the dataset, we use
BERT [9], librosa [4], and OpenFace [3] to perform the feature ex-
traction of the corresponding information. To be consistent with
the sentiment values of the test dataset, we linearly scale the senti-
ment scores shown in the sentiment lexicon [14] from [-4, +4] to
[-3, +3].

Training Details: All models are built on the Pytorch [25] tool-
box with the NVIDIA RTX A100 GPU. The batch size is set to 32
and the epoch is set to 200. The initial learning rate is set to 5e-6
for BERT and 1e-4 for other parameters. Adam[16] is used as the

1https://mm.kaist.ac.kr/datasets/voxceleb

optimizer. The angle penalty g is 0.2. Appendix B describes the
details of video feature extraction and hyper-parameter setting.

4.3 Baselines
Given that the pre-training dataset lacks explicit word timestamps,
our model does not need to align text words with vision and audio.
We performed a comprehensive comparative analysis of KEBR with
baselines and state-of-the-art models on an unaligned setup, with
the comparative model as follows: TFN [50], LMF [19], MISA [12],
MAG-BERT [29], HyCon [22], MMIM [11], ConKI [49], MulT [35],
CENet [37], Self-MM [48]. Please refer to Appendix C for more
details on these baselines.

4.4 Quantitative Results and Analysis
Following previousworks [8, 12, 22, 49], we run ourmodel five times
with the same hyper-parameter settings and report the average
performance of all the metrics in Table 1. It is evident that KEBR
produces better or more competitive results in MOSI and MOSEI.

In the experiments based on the re-implementation of non-verbal
feature extraction in Section 4.2 (Marked with "Δ" in Table 1), our
KEBR significantly outperforms the other models on all experimen-
tal metrics for two datasets. The baseline code is from publicly
available repositories2.

Compared with the experimental metrics in the latest research
papers, KEBR achieved better or competitive results, except for
Acc-7 and MAE on MOSI are slightly lower than ConKI. This may
be because, ConKI utilizes adapters to inject a larger amount of data
from MOSEI as MOSI-specific domain knowledge into the learning
process. However, KEBR was pre-trained on the unlabeled dataset
VoxCeleb to learn more general sentiment patterns, so the metrics
of the more refined multi-classification tasks were slightly lower
than ConKI. However, on the MOSEI dataset, KEBR outperforms
ConKI in all metrics, with an average performance improvement
of 1.72%. Considering that the size of MOSEI is much larger than

2https://github.com/thuiar/MMSA

https://mm.kaist.ac.kr/datasets/voxceleb
https://github.com/thuiar/MMSA
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Table 2: Results on MOSE and MOSEI with different amounts of pre-training data. "Avg" donates the average improvement
across all metrics. "↑"means increase, and "↓" means decrease.

Dataset Pre-train Acc-2 F1 Acc-7 MAE Corr Ave

MOSI VoxCeleb1 84.4/87.2 84.32/87.19 47.1 0.702 0.808 0.99%↑VoxCeleb2 84.84/87.27 84.83/87.25 47.81 0.683 0.819

MOSEI VoxCeleb1 83.67/86.21 83.99/86.16 53.33 0.534 0.776 1.37%↑VoxCeleb2 84.01/86.74 84.25/86.68 54.37 0.517 0.799

Table 3: Results on MOSE and MOSEI with different pre-trained language models. "Avg" donates the average improvement
across all metrics. "↑"means increase, and "↓" means decrease.

Dataset Bert Acc-2 F1 Acc-7 MAE Corr Avg

MOSI Bert-base 83.84/86.14 83.82/86.18 45.59 0.734 0.795 1.88%↑Bert-large 84.4/87.2 84.32/87.19 47.1 0.702 0.808

MOSEI Bert-base 83.6/85.1 83.76/85.28 51.88 0.554 0.751 1.79%↑Bert-large 83.67/86.21 83.99/86.16 53.33 0.534 0.776

Table 4: Ablation experiments on MOSI. Pre-t means pre-training. TCMF means text-based cross-modal fusion. MCC means
multimodal cosine constraint. "✓" means with and "×" means without. Excluding TCMF, only removing the text-based part
and retaining the overall network architecture of cross-modal fusion. The Avg of C2 C5 is calculated relative to C1 as the
benchmark. "Avg" represents the average improvement across all metrics. "↑"means increase, and "↓" means decrease.

No. Pre-t TCMF MCC Acc-2 F1 Acc-7 MAE Corr Avg

C1 ✓ ✓ ✓ 84.4/87.2 84.32/87.19 47.1 0.702 0.808 -
C2 × ✓ ✓ 84.11/86.74 84.03/86.73 46.76 0.705 0.803 0.51% ↓
C3 ✓ × ✓ 81.92/83.99 81.82/83.96 38.48 0.826 0.737 8.3% ↓
C4 ✓ ✓ × 83.75/86.28 83.69/83.29 45.7 0.7069 0.8074 1.55% ↓
C5 × × × 80.9/82.32 80.88/82.35 34.4 0.927 0.7302 12.58% ↓

that of MOSI, injecting knowledge from MOSEI into MOSI has a
greater impact on the downstream task than injecting knowledge
from MOSI into MOSEI [49]. This is consistent with the research
results of this paper that utilizing external data as an injection
of sentiment knowledge facilitates model training. The difference
is that our model KEBR utilizes unlabeled data from the network
whereas ConKI uses domain-specific (MSA) labeled data.

To study the impact of learning from external data on the model,
we pre-trained KEBR using the VoxCeleb1 (132K) and VoxCeleb2
(947K) datasets.

The results are presented in Table 2. A substantial amount of
pre-training data results in a more significant performance im-
provement. Compared with VoxCeleb1, the average performance of
MOSI and MOSEI pre-trained on VoxCeleb2 is improved by 0.99%
and 1.37%, respectively. The performance improvement of MOSEI
exceeds that of MOSI, possibly due to the relatively small size of the
MOSI dataset, which might have been more effectively enhanced
using the VoxCeleb1 pre-trained model. It may also contain labels
with noise, which has been found in some previous studies [37].
In Section 4.6, when the effects of different g on performance are
analyzed on two data sets, it is further demonstrated that the model
trained on MOSI has greater instability than MOSEI.

To investigate the impact of backbone language models with
different parameters on KEBR, we conducted comparative analyses
on VoxCeleb1 using Bert-base and Bert-large models with 110M
and 340M parameters in MOSI and MOSEI.

As shown in Table 3, Bert-large enhances the average perfor-
mance of MOSI and MOSEI by 1.88% and 1.79%, respectively, com-
pared to Bert-base. By comparing Tables 2 and 3, we observe that
larger language models may outperform models trained on larger
pre-training datasets. Bert-large has stronger language comprehen-
sion and representation ability. This is consistent with the earlier
conclusion [5] that scaling up can significantly enhance perfor-
mance. Moreover, the text encoded by a larger pre-trained language
model can acquire a broader representation space for non-verbal in-
formation under the same cosine constraint, while retaining the text
features, thereby facilitating further improvement in performance.

4.5 Ablation Study
We conduct an associated ablation study in the MOSI dataset. Pre-
training in VoxCeleb2 is costly, so we conduct an ablation analysis
in the VoxCeleb1 dataset. Bert-large serves as the backbone model.

In this paper, the performance of the KEBR is primarily influ-
enced by a sentiment knowledge-enhanced pre-training task (Pre-t)
and two model components: text-based cross-modal fusion (TCMF)
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Figure 4: Analyze the angle penalty g. The blue and red curves
depict the change in F1 score with varying angle penalty
values on the MOSI and MOSEI datasets.

and multimodal cosine constraints (MCC). C1 represents the result
of pre-training on VoxCeleb1 followed by fine-tuning based on
the pre-training model. C2 represents no pre-training, with tests
conducted directly on the initial BERT and TCMF parameters. C3
represents the pre-training and testing phases that do not involve
text-based multimodal fusion. C4 means that no multimodal cosine
constraints are applied on both pre-training and test tasks.

We evaluated the impact of not including the KEBR compo-
nents on performance using the average degradation rate of all the
metrics. As shown in Table 4, it can be observed that excluding
different parts of the KEBR will lead to performance degradation.
Further analysis shows that without TCMF(C2) KEBR performance
decreases by 8.3%. This decrease is significantly larger compared to
the exclusion of Pre-t(C2) and MCC(C4). This suggests that a text-
based approach in the MAS task can significantly improve model
performance. The average performance of KERB without Pre-t(C2)
only decreases by 0.51%, which may be attributed to conducting
our ablation experiments on the smaller VoxCeleb1 dataset (132 K).
Comparing the results in Table 2 to VoxCeleb2 (947 K), the over-
all performance without Pre-t(C2) drops to 1.49%. This suggests
that the impact of pre-training on model performance is limited by
the amount of pre-training data. Meanwhile, we observed that the
average performance without MCC(C4) decreased by 1.55%, even
surpassing the 1.49% decline observed with the larger pre-training
dataset VoxCeleb2. This suggests the presence of a potential modal
imbalance issue in MSA, and incorporating additional constraints of
MCC to balance the modal representation can significantly enhance
the model’s performance.

4.6 Further Analysis
We analyze the effects of different g on the model and the imbal-
ance phenomena in the MSA task (provided by Appendix D.1),
and further, visualize the reasons for the imbalance phenomena in
multimodal fusion(provided by Appendix D.2).

Analyze the angle penalty g. In Section 4.5, experiments demon-
strate that MCC is effective and necessary in KEBR. Next, we an-
alyze the effect of different values of the angle penalty g in MCC

on the MOSI and MOSEI datasets. The pre-training dataset used is
VoxCeleb1.

It is observed in Fig. 4 that the variation trend of F1 on the
two datasets with g is similar. However, MOSI exhibits relatively
higher instability, likely due to its smaller dataset size and the
potential presence of noisy labels. For 𝑔 ∈ [−0.5,−0.05] , F1 is low
and the performance is very unstable. For 𝑔 ∈ [−0.05, 0.25] , F1 is
relatively high and stable. For 𝑔 ∈ [0.25, 0.5] , F1 is relatively low
and unstable. Further analysis with Eq.11, d considering the periodic
nature of the cosine function, suggests that the variation of F1 with
g should also display a weak periodicity with a period of 1. Due to
the nonlinearity of the cosine function, g varies within the same step
interval, resulting in differing effects on the cosine values. For 𝑔 ∈
[−0.5, 0] , the same change has a greater impact on F1 than that 𝑔 ∈
[0, 0.5] , so there is a tendency for F1 to be destabilized. Furthermore,
when 𝑔 ∈ [−0.5, 0] , the cosine function needs to converge to a
larger cosine value. This will make the proportion of non-verbal info
in the fused features larger, which destroys the dominance of the
text modality and causes performance degradation and instability.
On the contrary, when 𝑔 ∈ [0, 0.5], the value that 𝑦 (𝑥𝑖 ) needs to
converge decreases as g increases. The fused feature has less non-
verbal information and cannot utilize the ability of all modalities,
so the performance will be decreased. However, in this scenario,
text still dominates, resulting in a slight decline in performance.
Considering different non-verbal information may convey different
sentiments for the same word, non-verbal dominant modal fusion
tends to be more unstable than text. Thus, we can guess boldly
that for different datasets, when 𝑔 ∈ [0, 0.25], it will bring a large
performance improvement while maintaining a robust multimodal
joint representation.

To better comprehend the modal imbalance issue in MSA, a
comparative experiment is conducted in Appendix D.1 to observe
the convergence of various modalities at different learning rates. In
Appendix D.2, modal feature distribution is visualized and analyzed
with and without MCC to elucidate the underlying cause of the
modal imbalance problem.

5 CONCLUSION
In this paper, we propose KEBR, which leverages the sentiment
knowledge from large-scale unlabeled videos to enhance multi-
modal sentiment representation learning. This approach facilitates
learning on limited MSA datasets. KEBR highlights the dominance
of text modality inMSA tasks by employingmulti-layer cross-modal
cross-fusion to inject non-verbal information into text representa-
tions to enhance multimodal representation in text. Furthermore,
we design the multimodal cosine constrained loss to optimize the
imbalance of unimodal in joint representation and utilize the ca-
pability of different modalities. We validate the effectiveness of
the KEBR model and the importance of each module through com-
prehensive experiments and ablation studies conducted on two
benchmark datasets. The experiments show that the larger the
amount of unlabeled video data and the stronger the language mod-
eling ability, the better the performance. We believe this work can
inspire further exploration of multimodal representations for vari-
ous scenarios and tasks, as well as investigations into optimizing
modal imbalance in joint learning.
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