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A DATASETS 
MOSI [16] is a widely utilized dataset with three modalities (i.e., 

text, vision, and audio) specially designed for sentiment analysis. 

MOSI comprises speakers' opinions on various topics, such as film, 

extracted from 93 YouTube videos, encompassing 2,199 discourse 

video clips. The MOSEI [1] dataset is a larger version of MOSI, 

which contains 22,856 annotated video clips on 250 different topics. 

Each clip in both datasets was annotated with a sentiment score 

ranging from -3(strongly negative) to +3(strongly positive). Table 

5 shows the statistics for all datasets. 

Table 5: Dataset statistics 

 Datasets #Speakers # Clips # Train # Valid #Test 

Pre-training 
VoxCeleb1 1105 132708 132708   

VoxCeleb2 5256 947726 947726   

Testing 
MOSI 93 2199 1284 229 686 

MOSEI 1000 22856 16326 1871 4659 

B EXPERIMENTAL DESIGN 

B.1 Feature Extraction 

Text: We use BERT [9]as the encoder for KEBR text. Moreover, 

we investigate the impact of backbone language models of varying 

sizes. Specifically, for pre-training text information, we utilize the 

Google Cloud Speech API to acquire transcripts of video content. 

Then, we use the VADER 2 sentiment lexicon [14] to search for 

and block sentiment words.  

Audio: The library librosa [4]is used to extract frame-level 

acoustic features. These include a 12-dimensional Constant-Q 

Chromatogram (CQT), 20-dimensional MelFrequency Cepstral 

Coefficients (MFCCs), and 1-dimensional log fundamental 

frequency (log F0). Extracting audio signals from videos using 

FFmpeg tool. 

Vision: We employ the widely recognized MultiComp 

OpenFace2.2 toolkit [3] for extracting visual features. These 

features include 40-dimensional rigid and non-rigid shape 

parameters, 340-dimensional facial landmarks, 35-dimensional 

facial action units, 288-dimensional eye gaze, and 6-dimensional 

head pose and orientation. 

B.2 Hyper-Parameters Setting 

Table 6 provides a detailed hyper-parameters setting. 

C BASELINES. 

 
 http://multicomp.cs.cmu.edu/resources/cmu-mosi-dataset/ 
 http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset/ 

 

Table 6: Hyper-parameters Setting 

Hyper-parameter Value 

ⅆ𝑡 768&1024 

ⅆ𝑎 33 

ⅆ𝑣 709 

K 4 

g 0.2 

s 1 

Batch size 32 

Epoch 200 

Optimizer Adam 

Learning rate of BERT 5e-6 

Learning rate of other parameters 1e-4 

Fully connected layer 256 

TFN. The Tensor Fusion Network (TFN) [50] encodes the three 

modalities with embedding sub-networks. It uses the outer product 

to model single-peak, double-peak, and triple-peak interactions as 

fusion results.  

LMF: Low-rank multimodal fusion (LMF) [19] utilizes a low-rank 

rank tensor to improve the efficiency of multimodal fusion. 

MISA. The modality-invariant and -specific representations 

(MISA) [12] design a multitask loss including task prediction loss, 

reconstruction loss, similarity loss, and difference loss to learn 

modality-invariant and modality-specific representations.  

MAG-BERT. The Multimodal Adaptation Gate for Bert [29] 

builds an alignment gate that allows the multimodal fusion of audio 

and visual information into BERT models. 

HyCon. Hybrid Contrastive Learning (HyCon) [22] performs 

intra- and inter-modal contrastive learning in modalities to explore 

cross-modal dynamic interactions. 

MIMM. Multimodal InfoMax (MMIM) [11] maximizes the 

mutual information between pairs of unimodal inputs, as well as 

between multimodal fusion results and unimodal inputs, to aid in 

the main MSA task. 

ConKI. Multimodal Contrast Knowledge Injection (ConKI) [49] 

enhances the domain-specific knowledge representation of each 

modality by learning adaptor architecture-based knowledge 

injection along with the general knowledge representation. 

MulT. Multimodal Transformer (MulT) [35] proposes directed 

pairwise cross-modal attention, which adapts one modality to 

another for multimodal fusion. 

CENeT. Cross-modal Enhancement network (CENet) [37] 

enhances text representation by integrating visual and audio 

information into the language model. In addition, clustering 

introduces a feature transformation strategy to reduce distribution 

differences between verbal and non-verbal initial representations.  

 https://huggingface.co/google-bert/ 

  https://ffmpeg.org/ 

https://huggingface.co/google-bert
https://ffmpeg.org/
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(c) 1.7, 0.3 = =  (d) 

Figure. 5: Modal imbalance in MSA. L ,
tL ,

aL ,
vL and 

mccL

represent the total loss, sentiment prediction loss(
taskL ), 

unimodal audio similarity loss, unimodal visual similarity 

constraint loss, and multimodal cosine constraint loss in this 

paper, respectively. 

Self-MM. The Self-Supervised Multitask Learning (Self-MM) 

[48], proposes a label generation module based on self-supervised 

learning to obtain unimodal supervision. Then they joint-train the 

multimodal and unimodal tasks for better fusion results. 

D FURTHER EXPERIMENTAL ANALYSIS 

D.1 Modal Imbalance in MSA 

Some studies have interpreted imbalanced optimization as a 

barrierto multimodal learning [40]. It shows that the problem of 

modal imbalance is common in multimodal tasks. To explore 

modal imbalance in MSA, we redesigned the comparative 

experimental analysis of KEBR, drawing from prior studies that 

addressed modal imbalance by adjusting learning rates [38,26]. 

In Fig. 5(a)(b)(c), the loss function is
a v

taskL L L L = + + . While 

keeping other calculations constant, the joint multimodal cosine 

constraint loss for audio and vision in Eq. (17) 
task mccL L L= +  is 

divided into two separate cosine similarity losses, Hyperparameters 

,  are then adjusted for different losses to modify the learning 

rate. Fig. 5(d) uses the joint loss function in this paper, i.e., Eq. 17. 

In Fig. 5(a), it is observed that audio converges faster at the same 

learning rate, while visual loss increases as audio convergence This 

suggests the existence of modal imbalance in MSA tasks. In Fig.5 

(b), we apply a higher learning rate for visual loss and a lower for 

audio. We discovered that this merely postponed bias, as it still 

gradually led to an imbalance problem as the training epoch 

progressed. Continuously increasing the adjusted learning rate, as 

shown in Fig. 5 (c), audio and vision still converge in the opposite 

trend. It shows the imbalance problem of unimodal encoding in  

  
(a) (b) 

Figure 6: Visualization analysis. Red, cyan, green, and blue 

respectively represent audio, text, visual, and cross-modal 

fusion features. (a) Indicates no multimodal cosine constraint. 

(b) Indicates supervised multimodal cosine constraint. In (a), 

the text encoder corresponds to the original BERT, while in (b), 

it represents the KEBR pre-trained with BERT as the 

backbone model. 

joint learning. If a non-verbal modality holds a relative advantage 

in fusion, it will quickly amplify this advantage. This imbalance 

problem is difficult to solve by controlling the learning rate on the 

three-modalities joint task of MSA. Compared to our proposed joint 

multimodal cosine constrained loss (MCC), as shown in Fig. 5 (d), 

the loss of MCC converges stepwise with training. 

D.2 Visualization Analysis 

The 2D projection of modal features enables a straightforward 

examination of their distribution. We applied t-SNE  on the 

verification set of MOSI to visualize the disparity in the distribution 

of KEBR features post multimodal fusion, both with and without 

MCC. Closer distributions indicate higher feature similarity. 

In Fig. 6(a)(b), the text feature (cyan) is more centered than the 

audio (green) and visual (red), indicating the correctness of the text-

based in the MAS task. At the same time, it is observed that audio 

and visual are distributed on either side of the fused features (blue). 

Without constraints, once the fused features tend to a certain non-

verbal modality, the gap with the other non-verbal modality will 

inevitably increase relatively, resulting in a situation of opposition 

between the two non-verbal information in the fusion process. This 

also explains the opposing phenomenon observed in Fig. 5(a, b, c) 

of D.1 regarding the convergence loss of audio and visual features. 

Further analysis of Fig. 6(a) shows that in the absence of MCC, 

the fused modal features (blue) are highly concentrated near the text 

features, but away from the audio and visual. Compared with Fig. 

6 (b) following the inclusion of MCC, the fused modal features are 

close to the text while further expanding the distribution to be close 

to the audio and visual feature distributions, so that the fused modal 

can take into account the features of non-verbal information. 

Further, we observe that the text features in Fig. 6 (b) exhibit 

greater dispersion compared to those in Fig. 6 (a). The overall text 

representation in Fig. 6 (b) is closer to audio and visual than Fig. 6 

(a). The overall text representation in Fig. 6 (b) demonstrates a 

closer affinity with audio and visual modalities compared to Fig. 6 

(a). This suggests that the original BERT exhibits a degree of 

multimodal representation capability following KEBR pre-training 

with a substantial corpus of speaker videos. The pre-trained KEBR 
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tends to encode text in a way that favors audio-visual fusion, which 

will facilitate representation in multimodal tasks. 


