
A CIL-750K DETAILS

The original CIL dataset includes 919,265 five-channel fields of view containing 30,616 test com-
pounds. It also includes metadata files which record morphological features for each cell in each
image, both at the single cell level and at the population average level (i.e. per well); a workflow for
image analysis to generate morphological features is also provided. Quality control indicators are
provided as metadata, indicating fields of view that are out of focus or contain highly fluorescent ma-
terial or debris. Chemical annotations are also provided for the application of compound processing.
Figure 1 shows the molecular data distribution and the number of view per molecule in CIL dataset.

In CIL, each molecular intervention is imaged from multiple views in an experimental well and the
experiment was repeated several times, resulting in an average of 30 views for each molecule. In
order to keep the data balanced, we restricted each molecule to a maximum of 30 images, resulting
in a cross-modal graph-image benchmark containing 750K views. Each view has a resolution of
692×520 pixels and 5 channels. These images were imaged with the ImageXpress Micro XLS
automated microscope at 20×magnification. We resize the images to 128×128 without any cropping
to fit the CNN models’ input format. Figure 2 shows examples of molecules and corresponding
images from the CIL dataset and Figure 3 shows the multiple views of a random selected molecule.

Figure 1: Data Distribution of CIL.

Figure 2: A random selection of 10 molecules and corresponding cellular images (1 view).
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Figure 3: Five different views on the same molecule.

B IMPLEMENTATION DETAILS AND HYPERPARAMETERS.

Here we describe the implementation details for pre-training and fine-tuning stages.

Generative Graph-image matching. We employ Variational Auto-Encoders (VAE) as generative
agents, which are asked to recover the representation of one modality given the parallel representation
from the other modality. For example, when generating the cellular image from their corresponding
molecular graph, we need to model the conditional likelihood p(zI |zG). The reparameterized variable
could be defined as zG = µG + σG · ζ with mean µG, covariance sigmaG, and ζ ∼ N (0, 1).
Therefore, we have the following lower bound:

logp(zI |zG) ≥ Eq(zG|zI)[logp(zI |zG)]−DKL(q(zG|zI)||p(zG)) (1)

Similarly, when generating the molecular graph from their corresponding cellular image, we have:

logp(zG|zI) ≥ Eq(zI |zG)[logp(zG|zI)]−DKL(q(zI |zG)||p(zI)) (2)

Both the above objectives are composed of a conditional log-likelihood and a KL-divergence.

Following the variation representation reconstruction (VRR) of (1), we use the mean-squared error
(MSE) for reconstruction on the representation space:
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Thus, combining both two regularizers mentioned above, the final GM loss function can be formulated
as:
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(5)

Pre-training Our pre-training model consists of a Graph Isomorphism Network (GIN) from (2)
with 5 layers and 300 hidden dimensions and a residual convolutional neural network (ResNet-34)
(3) with 63.5M parameters. We pre-train the model for 100 epochs using a batch size of 1024 on 8
NVIDIA 3090TI GPUs. We use the Adam optimizer with an initial learning rate of 3e-4 and weight
decay of 0.02. We take image with resolution of 128×128. The margin γ is set to 4. Pre-training on
750k graph-image pairs for MIGA takes 8 hours, far less than 26 hours for ContextPred and 48 hours
for GraphCL on 280k molecules of GEOM-Drugs.
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Graph-Image Retrieval We randomly split the CIL-750K dataset into a training set of 27.6K
molecules corresponding to 680K images, and hold out the remaining of the data for testing. The
held-out data consists of 3K molecules and the corresponding 50K images. We formulate the retrieval
task as a ranking problem. In the inference phase, given a query molecular graph in the held-out set,
we take images in the held-out set as a candidate pool and rank candidate images according to the L2
distance between the image embeddings and the molecular embeddings, and vice versa. The negative
sampling rate is set to positive: negative = 1:100. We use GraphCL (4) and cross-modal pre-learning
methods, CLIP (5)and ALIGN (6) as well as baselines. The encoder part of these methods has been
changed to the same setting as MIGA, but the decoder, training part and technical tricks have not
been changed. We also re-implemented CLOOME (7) following the setting shown in the paper,
except that we did not use the trick in warm-up iterations as no improvements were observed. After
pre-training, We use the pre-trained model to output embeddings of molecular graphs and celluar
images, then rank the candidate pool based on their L2 similarity. Experiments are performed 5 times
with different seeds. The average of MRR, AUC, Hit@1, Hit@5 and Hit@10 are reported.

Zero-shot Graph Retrieval We use MIGA to prioritize the functional molecules from a compound
pool. This task mimics the real-world virtual screening scenario using morphological features
observed when overexpressing a specific gene by cDNA interventions. We collected cellular images
that were overexpressed with cDNA open reading frames for 6 genes by (8), including BRCA1,
HIF1A, JUN, STAT3, TP53 and HSPA5. We used ExCAPEDB database (9) to retrieve gene-specific
agonists and inactive molecules that have not been observed in training set. For each gene, we
constructed a candidate pool with 20 agonists and 100 negative molecules, denoted as P (I,GA, GN ).
For each gene, given a random selected input image I with resolution of 128×128, we ask the model
to rank the GA in front of the GN . We use Hit@10 as the metric to evaluate our model in such a
zero-shot graph retrieval task, where the random Hit@10 is 0.17 (20/120).

Clinical Outcome Prediction DATASET To standardize the clinical-trial-outcome predictions, we
use the Trial Outcome Prediction (TOP) benchmark constructed by HINT, which incorporate rich data
components including drug molecule information, disease information, trial eligibility criteria and
trial outcome information. Herein, we consider phase-level evaluation on the trial outcome, where
we predict the outcome of a single-phase study. Since each phase has different goals (e.g., phase I is
for safety, whereas phases II and III are for efficacy), we evaluate phases I, II, and III separately. We
follow the data splitting proposed by HINT and data statistics are shown in Table 1

Phase-level Molecule Successes Failures
Phase I 944 564 380
Phase II 2865 1396 1469
Phase III 1752 1203 549

Table 1: Statistics of Clinical Outcome Datasets.

BASELINES We first include three machine learning-based methods (RF, LR, XGBoost) and a
knowledge-aware GNN model HINT as our baseline. Random Forest (RF) is a bagging algorithm
for classification or regression problems, which obtains the prediction by voting or averaging of
each base learner (decision tree). Logistic regression (LR) is a simple, parallelizable classification
method that uses maximum likelihood estimation for parameter estimation. XGBoost, also called
an extreme gradient boosting tree, uses CART regression tree or linear classifier as a base learner to
ensemble model predictions. These machine learning baselines utilize 1024-dimensional Morgan
fingerprint features for trial outcome prediction. HINT is a hierarchical interaction network designed
for clinical-trial-outcome predictions. It uses (1) 1024-dimensional Morgan fingerprint features, (2)
a pre-trained BERT model to encode eligibility criteria into sentence embedding and (3) a graph-
based attention model GRAM to encode disease information. Furthermore, we also include the
self-supervised learning methods to constitute our baselines, including ContextPred, GraphLoG,
GROVER, GraphCL and JOAO. For this downstream task, we use the molecule encoders over
input molecule graphs for the fine-tuning of clinical outcome prediction.

FUNE-TUNING HYPERPARAMETER For fine-tuning, an extra linear classifier is appended to the
pre-trained GNN. We fine-tune the model for 100 epochs using a batch size of 32 with a dropout rate
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of 50%. We use the Adam optimizer with an initial learning rate of 1e-3. Experiments are performed
for 5 times, with mean and standard deviation of ROC-AUC and PR-AUC are reported.

Molecular property Prediction DATASET BBBP: The Blood-brain barrier penetration dataset
includes binary labels for 2035 compounds on their permeability properties.Tox21: The Tox21 dataset
was created in the Tox21 data challenge, which contains qualitative toxicity measurements for 7821
compounds on 12 different targets, including nuclear receptors and stress response pathways. HIV:
41K compounds with binary labels for HIV virus replication inhibition. ToxCast includes 8576 drug
compounds with binary labels of toxicity experiment outcomes with 617 targets. ESOL: The ESOL is
a small dataset consisting of water solubility data for 1128 compounds.Lipophilicity: Experimental
data for the octanol/water distribution coefficient of 4200 molecules.

Dataset Tasks Type Molecule Metric
BBBP 1 GC 2,035 ROC-AUC
Tox21 12 GC 7,821 ROC-AUC
HIV 1 GC 41K ROC-AUC

ToxCast 617 GC 8,576 ROC-AUC
ESOL 1 GR 1,128 RMSE

Lipophilicity 1 GR 4,198 RMSE

Table 2: Statistics of datasets. GC for Graph Classification, GR for Graph Regression.

Features Size Description
Atom type 101 type of atom (e.g C,N,O)

Hybridization 6 sp, sp2, sp3, sp3d, sp3d2 or unknown
Number of H 1 number of bond hydrogen atoms

Degrees 1 number of neighbor atoms
Formal Charges 1 number of formal charge

Valences 1 number of valences

Table 3: Atom features
Features Size Description

Bond type 4 single, double, triple, aromatic
Stereo 6 none, any, E/Z or cis/trans
In ring 1 whether the bond is part of a ring

conjugated 1 whether the bond is conjugated

Table 4: Bond features

FEATURIZATION EXTRACTION The feature extraction contains three parts: 1) Node feature extraction.
2) Bond feature extraction. 3) Topology connection matrix. We use RDKit to extract all features as
the input of GNN. Table 3 and Table 4 show the atom and bond features we used in MIGA.

FUNE-TUNING HYPERPARAMETER For fine-tuning, we followed the GraphCL’s (4) settings. An extra
linear layer is appended to the pre-trained GNN to perform classification and regression, repectively.
We fine-tune the model for 100 epochs using a batch size of 32 with a dropout rate of 50%. We use
the Adam optimizer with an initial learning rate of 1e-3. Experiments are performed for 5 times, with
mean and standard deviation of AUC and RMSE are reported.
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C CASE STUDY FOR IMAGE RETRIEVAL.

Figure 4: Case study for image retrieval task. The images retrieved by our method and baseline
(ALIGN) are shown.

D CASE STUDY FOR ZERO-SHOT GRAPH RETRIEVAL.

Figure 5: Case study for zero-shot graph retrieval task. The figure shows the cells induced by the
cDNA interventions for specific genes (HIF1A, HSPA5, JUN, STAT3) and our model can find diverse
molecules that have similar functions to these cDNA interventions (ticked).
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E PERFORMANCE COMPARISON OF MIGA AND BASELINE APPROACHES FOR
PHASE-LEVEL-OUTCOME PREDICTIONS (WITH STANDARD DEVIATIONS)

Task Phase I Phase II Phase III
Metrics PR-AUC AUC PR-AUC AUC PR-AUC AUC

LR 0.634 (0.007) 0.487 (0.006) 0.509 (0.014) 0.534 (0.017) 0.675 (0.010) 0.528 (0.003)
RF 0.651 (0.013) 0.488 (0.009) 0.488 (0.005) 0.523 (0.009) 0.722 (0.011) 0.588 (0.013)
XGBoost 0.646 (0.003) 0.508 (0.006) 0.481 (0.004) 0.516 (0.007) 0.712 (0.009) 0.597 (0.015)
HINT 0.683 (0.015) 0.516 (0.005) 0.537 (0.004) 0.584 (0.003) 0.689 (0.003) 0.621 (0.006)

ContextPred 0.693 (0.006) 0.541 (0.019) 0.544 (0.019) 0.586 (0.003) 0.710 (0.023) 0.554 (0.036)
GraphLoG 0.681 (0.016) 0.539 (0.016) 0.550 (0.043) 0.593 (0.043) 0.719 (0.024) 0.554 (0.024)
GROVER 0.711 (0.015) 0.559 (0.024) 0.521 (0.005) 0.574 (0.011) 0.713 (0.013) 0.575 (0.028)
GraphCL 0.721 (0.020) 0.578 (0.018) 0.543 (0.008) 0.588 (0.004) 0.733 (0.011) 0.601 (0.008)
JOAO 0.736 (0.019) 0.586 (0.018) 0.546 (0.018) 0.587 (0.000) 0.720 (0.000) 0.563 (0.006)

MIGA 0.758 (0.010) 0.601 (0.031) 0.562 (0.010) 0.605 (0.022) 0.729 (0.008) 0.654 (0.016)

Table 5: Performance comparison of MIGA and several baseline approaches for phase-level-outcome
predictions on TOP dataset. We report the mean (and standard deviation) PR-AUC and ROC-AUC of
five times for clinical trial outcome prediction. The best and second best results are marked bold and
bold, respectively

F PERFORMANCE COMPARISON OF MIGA AND BASELINE APPROACHES FOR
MOLECULAR PROPERTY PREDICTIONS (WITH STANDARD DEVIATIONS)

Dataset Classification (AUC) Regression (RMSE)
HIV Tox21 ToxCast BBBP Avg. ESOL Lipo Avg.

Non-pretrain 70.30 (0.51) 68.90 (0.80) 58.60 (1.20) 65.40(2.4) 65.80 1.278 (0.24) 0.744 (0.14) 1.011

ContextPred 74.17 (1.33) 71.44 (0.11) 60.05 (0.15) 69.87 (0.99) 68.88 1.141 (0.03) 0.724 (0.02) 0.933
AttrMask 75.55 (1.00) 74.58 (0.66) 59.51 (0.36) 68.88 (2.65) 69.63 1.194 (0.04) 0.736 (0.02) 0.965
EdgePred 72.53 (1.20) 68.86 (0.38) 57.39 (0.80) 63.45 (1.39) 65.56 1.146 (0.05) 0.751 (0.02) 0.949
InfoGraph 76.22 (0.24) 69.22 (0.78) 59.87 (0.35) 63.75 (1.52) 67.27 1.242 (0.01) 0.725 (0.01) 0.984
GraphLoG 73.29 (2.64) 69.80 (0.41) 59.22 (1.05) 68.43 (2.86) 67.68 1.194 (0.02) 0.766 (0.01) 0.980
GraphCL 74.85 (1.71) 74.19 (0.43) 61.37 (0.10) 66.13 (1.68) 69.14 1.151 (0.04) 0.745 (0.02) 0.948
GROVER 74.35 (0.92) 74.02 (0.79) 61.30 (0.13) 69.88 (0.58) 69.89 1.199 (0.02) 0.721 (0.01) 0.960
JOAO 74.91 (0.66) 74.60 (0.49) 61.62 (0.37) 68.33 (0.58) 69.87 1.117 (0.05) 0.753 (0.02) 0.935

MIGA 76.38 (0.55) 75.23 (0.71) 62.34 (0.23) 71.52 (0.43) 71.37 1.123 (0.01) 0.717 (0.00) 0.919

Table 6: Comparison of SSL baselines against MIGA on six OGB datasets. Mean ROC-AUC and
Root Mean Squared Error (RMSE) (with the SD) of 5 times independent test are reported. The best
and second best results are marked bold and bold, respectively.
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