
Appendices
A Additional Details on Motivation in Introduction

A.1 Preprocssing all client vectors by the same random matrix does not improve performance

Consider n clients. Suppose client i holds a vector xi 2 Rd. We want to apply Rand-k or
Rand-k-Spatial, while also making the encoding process more flexible than just randomly choosing
k out of d coordinates. One naïve way of doing this is for each client to pre-process its vector by
applying an orthogonal matrix G 2 Rd⇥d that is the same across all clients. Such a technique might
be helpful in improving the performance of quantization because the MSE due to quantization often
depends on how uniform the coordinates of xi’s are, i.e. whether the coordinates of xi have values
close to each other. G is designed to be the random matrix (e.g. SRHT) that rotates xi and makes its
coordinates uniform.

Each client sends the server bxi = EiGxi, where Ei 2 Rk⇥d is the subsamaping matrix. If we use
Rand-k, the server can decode each client vector by first applying the decoding procedure of Rand-k
and then rotating it back to the original space, i.e., bx(Naïve)
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Next, we bound the first term in Eq. 12.
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The second term in Eq. 12 can also be simplified as follows.
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Plugging Eq. 13 and Eq. 14 into Eq. 12, we get the MSE is
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which has exactly the same MSE as that of Rand-k. The problem is that if each client applies the
same rotational matrix G, simply rotating the vectors will not change the `2 norm of the decoded
vector, and hence the MSE. Similarly, if one applies Rand-k-Spatial, one ends up having exactly the
same MSE as that of Rand-k-Spatial as well. Hence, we need to design a new decoding procedure
when the encoding procedure at the clients are more flexible.

A.2 nk � d is not interesting
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By Lemma 4.1, when Gi = Ei, Rand-Proj-Spatial recovers Rand-k-Spatial. We now discuss the
limiting behavior of Rand-k-Spatial when nk � d by leveraging our proposed Rand-Proj-Spatial.
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which is exactly the same MSE as Rand-k. This implies when nk is large, the MSE of Rand-k-Spatial
does not get improved compared to Rand-k with correlation information. Intuitively, this implies
when nk � d, the server gets enough amount of information from the client, and does not need
correlation to improve its estimator. Hence, we focus on the more interesting case when nk < d —
that is, when the server does not have enough information from the clients, and thus wants to use
additional information, i.e. cross-client correlation, to improve its estimator.

B Additional Details on the Rand-Proj-Spatial Family Estimator

B.1 �̄ is a scalar

From Eq. 20 in the proof of Theorem 4.3 and Eq. 25 in the proof of Theorem 4.4, it is evident that
the unbiasedness of the mean estimator bxRand-Proj-Spatial is ensured collectively by

• The random sampling matrices {Ei}.
• The orthogonality of scaled Hadamard matrices HT

H = dId = HH
T .

• The rademacher diagonal matrices, with the property (Di)2 = Id.

B.2 Alternative motivating regression problems

Alternative motivating regression problem 1.
Let Gi 2 Rk⇥d and Wi 2 Rd⇥k be the encoding and decoding matrix for client i. One possible
alternative estimator that translates the intuition that the decoded vector should be close to the client’s
original vector, for all clients, is by solving the following regression problem,
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where W = (W1,W2, . . . ,Wn) and the constraint enforces unbiasedness of the estimator. The
estimator is then the solution of the above problem. However, we note that optimizing a decoding
matrix Wi for each client leads to performing individual decoding of each client’s compressed vector
instead of a joint decoding process that considers all clients’ compressed vectors. Only a joint
decoding process can achieve the goal of leveraging cross-client information to reduce the estimation
error. Indeed, we show as follows that solving the above optimization problem in Eq. 15 recovers the
MSE of our baseline Rand-k. Note
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We now show that a sufficient and necessary condition to satisfy the above unbiasedness constraint is
that for all i 2 [n], E[WiGi] = Id.
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Sufficiency. It is obvious that if for all i 2 [n], E[WiGi] = Id, then we have 1
nE[(Id�WiGi)xi] = 0.
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Since our approach is agnostic to the choice of vectors, we need this choice of decoder matrices, by
varying � over [d], we see that we need E[WiGi] = Id. And by varying i over [n], we see that we
need E[WjGj ] = Id for all j 2 [n].
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Since each Wi appears in f2(W ) separately, each Wi can be optimized separately, via solving
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which is the same MSE as that of Rand-k.

Alternative motivating regression problem 2.
Another motivating regression problem based on which we can design our estimator is
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Note that Gi 2 Rk⇥d
, 8i 2 [n], and so the solution to the above problem is
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and to ensure unbiasedness of the estimator, we can set �̄ 2 R and have the estimator as
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It is not hard to see this estimator does not lead to an MSE as low as Rand-Proj-Spatial does. Consider
the full correlation case, i.e., xi = x, 8i 2 [n], for example, the estimator is now
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Note that rank( 1n
Pn

i=1 Gi) is at most k, since Gi 2 Rk⇥d, 8i 2 [k]. This limits the amount of
information of x the server can recover.

While recall that in this case, the Rand-Proj-Spatial estimator is
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where S can have rank at most nk.

B.3 Why deriving the MSE of Rand-Proj-Spatial with SRHT is hard

To analyze Eq. 11, one needs to compute the distribution of eigendecomposition of S =
Pn

i=1 G
T
i Gi,

i.e. the sum of the covariance of SRHT. To the best of our knowledge, there is no non-trivial closed
form expression of the distribution of eigen-decomposition of even a single G

T
i Gi, when Gi

is SRHT, or other commonly used random matrices, e.g. Gaussian. When Gi is SRHT, since
G

T
i Gi = DiHE

T
i EiHDi and the eigenvalues of E

T
i Ei are just diagonal entries, one might

attempt to analyze HDi. While the hardmard matrix H’s eigenvalues and eigenvectors are known3,
the result can hardly be applied to analyze the distribution of singular values or singular vectors of
HDi.

Even if one knows the eigen-decomposition of a single G
T
i Gi, it is still hard to get the eigen-

decomposition of S. The eigenvalues of a matrix A can be viewed as a non-linear function in the A,
and hence it is in general hard to derive closed form expressions for the eigenvalues of A+B, given
the eigenvalues of A and that of B. One exception is when A and B have the same eigenvector and
the eigenvalues of A+B becomes a sum of the eigenvalues of A and B. Recall when Gi = Ei,
Rand-Proj-Spatial recovers Rand-k-Spatial. Since E

T
i Ei’s all have the same eigenvectors (i.e. same

as Id), the eigenvalues of S =
Pn

i=1 E
T
i Ei are just the sum of diagonal entries of ET

i Ei’s. Hence,
deriving the MSE for Rand-k-Spatial is not hard compared to the more general case when G

T
i Gi’s

can have different eigenvectors.

Since one can also view S =
Pnk

i=1 gigT
i , i.e. the sum of nk rank-one matrices, one might attempt to

recursively analyze the eigen-decomposition of
Pn0

i=1 gigT
i + gn0+1gT

n0+1 for n0  n. One related
problem is eigen-decomposition of a low-rank updated matrix in perturbation analysis: Given the
eigen-decomposition of a matrix A, what is the eigen-decomposition of A + V V

T , where V is
low-rank matrix (or more commonly rank-one)? To compute the eigenvalues of A+ V V

T directly
from that of A, the most effective and widely applied solution is to solve the so-called secular
equation, e.g. [59, 60, 61]. While this can be done computationally efficiently, it is hard to get a
closed form expression for the eigenvalues of A+ V V

T from the secular equation.

The previous analysis of SRHT in e.g. [37, 38, 39, 45, 55] is based on asymptotic properties of SRHT,
such as the limiting eigen-spectrum, or concentration bounds that bounds the singular values. To
analyze the MSE of Rand-Proj-Spatial, however, we need an exact, non-asymptotic analysis of the
distribution of SRHT. Concentration bounds does not apply, since computing the pseudo-inverse in
Eq. 5 naturally bounds the eigenvalues, and applying concentration bounds will only lead to a loose
upper bound on MSE.

3See this note https://core.ac.uk/download/pdf/81967428.pdf
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B.4 More simulation results on incorporating various degrees of correlation

Figure 6: MSE comparison of estimators Rand-k, Rand-k-Spatial(Opt), Rand-Proj-Spatial, given the
degree of correlation R. Rand-k-Spatial(Opt) denotes the estimator that gives the lowest possible
MSE from the Rand-k-Spatial family. We consider d = 1024, a smaller number of clients n 2
{5, 11}, and k values such that nk < d. In each plot, we fix n, k, d and vary the degree of positive
correlation R. Note the range of R is R 2 [0, n� 1]. We choose R with equal space in this range.

C All Proof Details

C.1 Proof of Theorem 4.3

Theorem 4.3 (MSE under Full Correlation). Consider n clients, each holding the same vector
x 2 Rd. Suppose we set T (�) = �, �̄ = d

k in Eq. 5, and the random linear map Gi at each client to
be an SRHT matrix. Let � be the probability that S =
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i=1 G

T
i Gi does not have full rank. Then,
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Proof. All clients have the same vector x1 = x2 = · · · = xn = x 2 Rd. Hence, x̄ = 1
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x, and the decoding scheme is
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where S =
Pn
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T
i Gi. Let S = U⇤UT be its eigendecomposition. Since S is a real symmetric

matrix, U is orthogonal, i.e., UT
U = Id = UU
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T , where ⇤† is a diagonal
matrix, such that
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Let �c be the probability that S has rank c, for c 2 {k, k + 1, . . . , nk � 1}. Note that � =
Pnk�1

c=k �c.
For vector m 2 Rd, we use diag(m) 2 Rd⇥d to denote the matrix whose diagonal entries correspond
to the coordinates of m and the rest of the entries are zeros.

Computing �̄. First, we compute �̄. To ensure that our estimator bx(Rand-Proj-Spatial(Max)) is unbiased,
we need �̄E[S†

Sx] = x. Consequently,
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where in (a), m 2 Rd such that

mi =

⇢
1 if ⇤jj > 0
0 else.

Also, by construction of S, rank(diag(m))  nk. Further, (b) follows by symmetry across the d
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Computing the MSE. Next, we use the value of �̄ in Eq. 20 to compute MSE.
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Sxk22]� kxk22 (Using unbiasedness of bx(Rand-Proj-Spatial(Max)))

= �̄
2xTE[ST (S†)TS†

S]x� kxk22. (22)

Using S
† = U⇤†

U
T ,

E[ST (S†)TS†
S] = E[U⇤UT

U⇤†
U

T
U⇤†

U
T
U⇤UT ]

= E[U⇤(⇤†)2⇤UT ]

=
X

U=�

UE[⇤(⇤†)2⇤]UT · Pr[U = �]

=
X

U=�

U

h
(1� �)

nk

d
Id +

nk�1X

c=k

�c
c

d
Id

i
U

T · Pr[U = �]

=
h
(1� �)

nk

d
+

nk�1X

c=k

�c
c

d

i
·
X

U=�

UU
T · Pr[U = �]

=
h
(1� �)

nk

d
+

nk�1X

c=k

�c
c

d

i
Id

=
1

�̄
Id (23)
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Substituting Eq. 23 in Eq. 22, we get

MSE(Rand-Proj-Spatial(Max)) = �̄
2xT 1

�̄
Idx� kxk22 = (�̄ � 1)kxk22


h

d

(1� �)nk + �k
� 1

i
kxk22,

where the inequality is by Eq 21.

C.2 Comparing against Rand-k

Next, we compare the MSE of Rand-Proj-Spatial(Max) with the MSE of the baseline Rand-k
analytically in the full-correlation case. Recall that in this case,

MSE(Rand-k) =
1

n
(
d

k
� 1)kxk22.

We have

MSE(Rand-Proj-Spatial(Max))  MSE(Rand-k)

, d

(1� �)nk + �k
� 1  1

n
(
d

k
� 1)

, d

k

n� (1� �)n� �

n((1� �)n+ �)
 1� 1

n

, d

k
· � � �/n

(1� �)n+ �
 n� 1

n

, d�(1� 1

n
)n  k(n� 1) · ((1� �)n+ �)

, d�  k · ((1� �)n+ �)

, d� + kn� � k�  kn

, �  kn

d+ kn� k

, �  1
d
kn + 1� 1

n

Since nk  d, for n � 2, the above implies when

�  1

1 + 1
2

=
2

3
,

the MSE of Rand-Proj-Spatial(Max) is always less than that of Rand-k.

C.3 S has full rank with high probability

We empirically verify that � ⇡ 0. With d 2 {32, 64, 128, . . . , 1024} and 4 different nk value such
that nk  d for each d, we compute rank(S) for 105 trials for each pair of (nk, d) values, and plot
the results for all trials. All results are presented in Figure 7. As one can observe from the plots,
rank(S) = nk with high probability, suggesting � ⇡ 0.

This implies the MSE of Rand-Proj-Spatial(Max) is

MSE(Rand-Proj-Spatial(Max)) ⇡ (
d

nk
� 1)kxk22,

in the full correlation case.

C.4 Proof of Theorem 4.4

Theorem 4.4 (MSE under No Correlation). Consider n clients, each holding a vector xi 2 Rd,
8i 2 [n]. Suppose we set T ⌘ 1, �̄ = d2

k in Eq. 5, and the random linear map Gi at each client to be
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Figure 7: Simulation results of rank(S), where S =
Pn

i=1 G
T
i Gi, with Gi being SRHT. With

d 2 {32, 64, 128, . . . , 1024} and 4 different nk values such that nk  d for each d, we compute
rank(S) for 105 trials for each pairs of (nk, d) values and plot the results for all trials. When d = 32
and nk = 32 in the first plot, rank(S) = 31 in 2100 trials, and rank(S) = nk = 32 in all the rest
of the trials. For all other (nk, d) pairs, S always has rank nk in the 105 trials. This verifies that
� = Pr[rank(S) < nk] ⇡ 0.

an SRHT matrix. Then, for nk  d,

E
h
kbx(Rand-Proj-Spatial) � x̄k22

i
=

1

n2

⇣
d

k
� 1

⌘ nX

i=1

kxik22.

Proof. When the client vectors are all orthogonal to each other, we define the transformation function
on the eigenvalue to be T (�) = 1, 8� � 0. We show that by considering the above constant T ,
SRHT becomes the same as rand k. Recall S =

Pn
i=1 G

T
i Gi and let GT

G = U⇤UT be its
eigendecompostion. Then,

T (S) = UT (⇤)UT = UIdU
T = Id.

Hence, (T (S))† = Id. And the decoded vector for client i becomes

bxi = �̄

⇣
T (GT

G)
⌘†

G
T
i Gixi = �̄G

T
i Gixi = �̄

1

d
DiH

T
E

T
i EiHDixi,

bx =
1

n

nX

i=1

bxi =
1

n
�̄

nX

i=1

1

d
DiH

T
E

T
i EiHDixi

(24)
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Di is a diagonal matrix. Also, ET
i Ei 2 Rd⇥d is a diagonal matrix, where the i-th entry is 0 or 1.

Computing �̄. To ensure that bx is an unbiased estimator, from Eq. 24
xi = �̄E[GT

i Gi]xi

=
�̄

d
E[DiH

T
E

T
i EiHDi]xi

=
�̄

d
EDi

h
DiH

T E[ET
i Ei]| {z }

=(k/d)Id

HDi

i
xi (* Ei is independent of Di)

=
�̄

d
kEDi

⇥
D

2
i

⇤
xi (* H

T
H = dId)

=
�̄k

d
xi (* D

2
i = I is now deterministic.)

) �̄ =
d

k
. (25)

Computing the MSE.

MSE = E
���bx� x̄

���
2

2

= E
���
1
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1

d
DiH

T
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���
2

2
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T
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2

2
+
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D
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nX
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1

d
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T
E

T
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nX
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1
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1

d
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T
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T
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���
2

2
�

���
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i=1
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���
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)
(* E[bx] = x̄)

=
1
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(
nX

i=1

�̄
2
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E
���DiH

T
E

T
i EiHDixi

���
2

2
�

nX

i=1

���xi

���
2

2
(26)

+2
nX

i=1

nX

l=i+1

�̄
2

d2

D
E[DiH

T
E

T
i EiHDixi],E[DlH

T
E

T
l ElHDlxl]

E
� 2

nX

i=1

nX

l=i+1

D
xi,xl

E)
.

Note that in Eq. 26

E
���DiH

T
E

T
i EiHDixi

���
2

2
= E[xT

i DiH
T
E

T
i EiHDiDiH

T
E

T
i EiHDixi]

= dE[xT
i DiH

T (ET
i Ei)

2
HDixi] (* D

2
i = Id;HT

H = HH
T = dId)

= dxT
i EDi

⇥
DiH

TE[ET
i Ei]HDi

⇤
xi (Ei,Di are independent; (ET

i Ei)2 = E
T
i Ei)

= kdkxik22, (27)
since E[ET

i Ei] = (k/d)Id, HT
H = dId and for i 6= l

D
E[DiH

T
E

T
i EiHDixi],E[DlH

T
E

T
l ElHDlxl]

E
=

D
kxi, kxl

E
= k

2
D
xi,xl

E
. (28)

Substituting Eq. 27, 28 in Eq. 26, we get

MSE =
1

n2

(⇣
�̄
2

d2

nX

i=1

kdkxik22 + 2
nX

i=1

nX

l=i+1

�̄
2
k
2

d2

D
xi,xl

E⌘
�

nX

i=1

���xi

���
2

2
� 2

nX

i=1

nX

l=i+1

D
xi,xl

E)

=
1

n2

⇣
d

k
� 1

⌘ nX

i=1

kxik22,

which is exactly the same as the MSE of rand k.
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C.5 Rand-Proj-Spatial recovers Rand-k-Spatial (Proof of Lemma 4.1)

Lemma 4.1 (Recovering Rand-k-Spatial). Suppose client i generates a subsampling matrix Ei =

[ei1 , . . . , eik ]
>, where {ej}dj=1 are the canonical basis vectors, and {i1, . . . , ik} are sampled

from {1, . . . , d} without replacement. The encoded vectors are given as bxi = Eixi. Given a function
T , bx computed as in Eq. 5 recovers the Rand-k-Spatial estimator.

Proof. If client i applies Ei 2 Rk⇥d as the random matrix to encode xi in Rand-Proj-Spatial, by
Eq. 5, client i’s encoded vector is now

x̂(Rand-Proj-Spatial)
i = �̄

⇣
T (

nX

i=1

E
T
i Ei)

⌘†
E

T
i Eixi (29)

Notice E
T
i Ei is a diagonal matrix, where the j-th diagonal entry is 1 if coordinate j of xi is chosen.

Hence, ET
i Eixi can be viewed as choosing k coordinates of xi without replacement, which is exactly

the same as Rand-k-Spatial’s (and Rand-k’s) encoding procedure.

Notice
Pn

i=1 E
T
i Ei is also a diagonal matrix, where the j-th diagonal entry is exactly Mj , i.e. the

number of clients who selects the j-th coordinate as in Rand-k-Spatial [12]. Furthermore, notice⇣
T (

Pn
i=1 E

T
i Ei)

⌘†
is also a diagonal matrix, where the j-th diagonal entry is 1

T (Mj)
, which recovers

the scaling factor used in Rand-k-Spatial’s decoding procedure.

Rand-Proj-Spatial computes �̄ as �̄E
h⇣

T (
Pn

i=1 E
T
i Ei)

⌘†
E

T
i Eixi

i
= xi. Since

⇣
T (

Pn
i=1 E

T
i Ei)

⌘†
and E

T
i Eixi recover the scaling factor and the encoding procedure of

Rand-k-Spatial, and �̄ is computed in exactly the same way as Rand-k-Spatial does, �̄ will be
exactly the same as in Rand-k-Spatial.

Therefore, x̂(Rand-Proj-Spatial)
i in Eq. 29 with Ei as the random matrix at client i recovers x̂(Rand-k-Spatial)

i .
This implies Rand-Proj-Spatial recovers Rand-k-Spatial in this case.
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D Additional Experiment Details and Results

Implementation. All experiments are conducted in a cluster of 20 machines, each of which has 40
cores. The implementation is in Python, mainly based on numpy and scipy. All code used for the
experiments can be found at https://github.com/11hifish/Rand-Proj-Spatial.

Data Split. For the non-IID dataset split across the clients, we follow [62] to split Fashion-MNIST,
which is used in distributed power iteration and distributed k-means. Specifically, the data is first
sorted by labels and then divided into 2n shards with each shard corresponding to the data of a
particular label. Each client is then assigned 2 shards (i.e., data from 2 classes). However, this
approach only works for datasets with discrete labels (i.e. datasets used in classification tasks). For
the other dataset UJIndoor, which is used in distributed linear regression, we first sort the dataset by
the ground truth prediction and then divides the sorted dataset across the clients.

D.1 Additional experimental results

For each one of the three tasks, distributed power iteration, distributed k-means, and distributed linear
regression, we provide additional results when the data split is IID across the clients for smaller n, k
values in Section D.1.1, and when the data split is Non-IID across the clients in Section D.1.2. For
the Non-IID case, we use the same settings (i.e. n, k, d values) as in the IID case.

Discussion. For smaller n, k values compared to the data dimension d, there is less information or
less correlation from the client vectors. Hence, both Rand-k-Spatial and Rand-Proj-Spatial perform
better as nk increases. When n, k is small, one might notice Rand-Proj-Spatial performs worse than
Rand-k-Wangni in some settings. However, Rand-k-Wangni is an adaptive estimator, which optimizes
the sampling weights for choosing the client vector coordinates through an iterative process. That
means Rand-k-Wangni requires more computation from the clients, while in practice, the clients often
have limited computational power. In contrast, our Rand-Proj-Spatial estimator is non-adaptive and
the server does more computation instead of the clients. This is more practical since the central server
usually has more computational power than the clients in applications like FL. See the introduction
for more discussion.

In most settings, we observe the proposed Rand-Proj-Spatial has a better performance compared
to Rand-k-Spatial. Furthermore, as one would expect, both Rand-k-Spatial and Rand-Proj-Spatial
perform better when the data split is IID across the clients since there is more correlation among the
client vectors in the IID case than in the Non-IID case.

D.1.1 More results in the IID case

Distributed Power Iteration and Distribued K-Means. We use the Fashion-MNIST dataset for
both distributed power iteration and distributed k-means, which has a dimension of d = 1024. We
consider more settings for distributed power iteration and distributed k-means here: n = 10, k 2
{5, 25, 51}, and n = 50, k 2 {5, 10}.
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Figure 8: More results of distributed power iteration on Fashion-MNIST (IID data split) with
d = 1024 when n = 10, k 2 {5, 25, 51} and when n = 50, k 2 {5, 10}.

Figure 9: More results on distributed k-means on Fashion-MNIST (IID data split) with d = 1024
when n = 10, k 2 {5, 25, 51} and when n = 50, k 2 {10, 51}.28



Distributed Linear Regression. We use the UJIndoor dataset distributed linear regression, which
has a dimension of d = 512. We consider more settings here: n = 10, k 2 {5, 25} and n = 50, k 2
{1, 5}.

Figure 10: More results of distributed linear regression on UJIndoor (IID data split) with d = 512,
when n = 10, k 2 {5, 25} and when n = 50, k 2 {1, 5}. Note when k = 1, the Induced estimator is
the same as Rand-k.
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D.1.2 Additional results in the Non-IID case

In this section, we report results when the dataset split across the clients are Non-IID, using the same
datasets as in the IID case. We choose exactly the same set of n, k values as in the IID case.

Distributed Power Iteration and Distributed K-Means. Again, both distributed power iteration
and distributed k-means use the Fashion-MNIST dataset, with a dimension d = 1024. We consider
the following settings for both tasks: n = 10, k 2 {5, 25, 51, 102} and n = 50, k 2 {5, 10, 20}.

Figure 11: Results of distributed power iteration when the data split is Non-IID. n = 10, k 2
{5, 25, 51, 102} and n = 50, k 2 {5, 10, 20}.

Distributed Linear Regression. Again, we use the UJIndoor dataset for distributed linear
regression, which has a dimension d = 512. We consider the following settings: n = 10, k 2
{5, 25, 50} and n = 50, k 2 {1, 5, 50}.
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Figure 12: Results of distributed k-means when the data split is Non-IID. n = 10, k 2
{5, 25, 51, 102} and n = 50, k 2 {5, 10, 20}.
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Figure 13: Results of distributed linear regression when the data split is Non-IID. n = 10, k 2
{5, 25, 50} and n = 50, k 2 {1, 5, 50}.
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