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Abstract

Distributional reinforcement learning (RL) is a class of state-of-the-art algorithms1

that estimate the whole distribution of the total return rather than only its expec-2

tation. The representation manner of each return distribution and the choice of3

distribution divergence are pivotal for the empirical success of distributional RL.4

In this paper, we propose a new class of Sinkhorn distributional RL (Sinkhorn-5

DRL) algorithm that learns a finite set of statistics, i.e., deterministic samples,6

from each return distribution and then leverages Sinkhorn iterations to evaluate7

the Sinkhorn distance between the current and target Bellman distributions. Re-8

markably, Sinkhorn divergence interpolates between the Wasserstein distance and9

Maximum Mean Discrepancy (MMD). This allows our proposed SinkhornDRL10

algorithm to find a sweet spot leveraging the geometry of optimal transport based11

distance and the unbiased gradient estimates of MMD. Finally, experiments on12

the suit of 55 Atari games reveal the competitive performance of SinkhornDRL13

algorithm as opposed to existing state-of-the-art algorithms.14

1 Introduction15

Classical reinforcement learning (RL) algorithms are normally based on the expectation of discounted16

cumulative rewards that an agent observes while interacting with the environment. Recently, a new17

class of RL algorithms called distributional RL estimates the full distribution of total returns and has18

exhibited the state-of-the-art performance in a wide range of environments [2, 8, 7, 24, 26, 17].19

From the literature of distributional RL, it is easily recognized that algorithms based on either20

Wasserstein distance or MMD have gained great attention due to their superior performance. As such,21

their mutual connection from the perspective of mathematical properties intrigues us to explore further22

in order to design new algorithms. Particularly, Wasserstein distance, long known to be a powerful23

tool to compare probability distributions with non-overlapping supports, has recently emerged as an24

appealing contender in various machine learning applications. It is known that Wasserstein distance25

was long disregarded because of its computational burden in its original form to solve an expensive26

network flow problem. However, recent works [21, 14] have shown that this cost can be largely27

mitigated by settling for cheaper approximations through strongly convex regularizers. The benefit of28

this regularization has opened the path to wider applications of the Wasserstein distance in relevant29

learning problems, including the design of distributional RL algorithms.30

The Sinkhorn divergence [21] introduces the entropic regularization on the Wassertein distance,31

allowing it tractable for the evaluation especially in high-dimensions. It has been successfully applied32

in numerous crucial machine learning developments, including the Sinkhorn-GAN [14] and Sinkhorn-33

based adversarial training [23]. More importantly, it has been shown that Sinkhorn divergence34

interpolates Wasserstein ditance and MMD, and their equivalence form can be well established in the35

limit cases [11, 18, 17]. However, a Sinkhorn-based distributional RL algorithm has not yet been36
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formally proposed and its connection with algorithms based on Wasserstein distance and MMD is37

also less studied. Therefore, a natural question is can we design a new class of distributional RL38

algorithms via Sinkhorn divergence, thus bridging the gap between existing two main branches of39

distributional RL algorithms? Moreover, the dominant quantile-based algorithms, e.g., QR-DQN [8],40

aimed at approximating Wasserstein distance, suffers from the non-crossing issue in the quantile41

estimation [26], while sample-based Sinkhorn algorithm can naturally circumvent this problem.42

In this paper, we propose a novel distributional RL algorithm based on Sinkhorn divergence. Firstly,43

we point out the key roles of distribution divergence and representation of value distribution in the44

design of distributional RL. After a detailed introduction of our proposed SinkhornDRL algorithm,45

we theoretically analyze its convergence guarantee and moment matching behavior of distributional46

Bellman operators under Sinkhorn divergence. Thus, a regularized MMD equivalence form of47

Sinkhorn divergence is derived, interpreting the emprical success of our algorithms in real applications.48

Finally, we compare the performance of our SinkhornRL algorithm with typical baselines on 55 Atari49

games, verifying the competitive performance of our proposal. Our approach inspires researchers50

to find a trade-off that simultaneously leverages the geometry of the Wasserstein distance and the51

favorable unbiased gradient estimate property of MMD while designing new distributional RL52

algorithms in the future.53

2 Preliminary Knowledge54

2.1 Distributional Reinforcement Learning55

In the classical RL setting, an agent interacts with an environment via a Markov decision pro-56

cess (MDP), a 5-tuple (S,A, R, P, γ), where S and A are the state and action spaces, respectively. P57

is the environment transition dynamics, R is the reward function and γ ∈ (0, 1) is the discount factor.58

From Value function to Value distribution. Given a policy π, the discounted sum of future59

rewards is a random variable Zπ(s, a) =
∑∞
t=0 γ

tR(st, at), where s0 = s, a0 = a, st+1 ∼60

P (·|st, at), and at ∼ π(·|st). In the control setting, expectation-based RL is based on the action-61

value function Qπ(s, a), which is the expectation of Zπ(s, a), i.e., Qπ(s, a) = E [Zπ(s, a)]. By62

contrast, distributional RL focuses on the action-value distribution, the full distribution of Zπ(s, a),63

and the incorporation of additional distributional knowledge intuitively interprets its empirical success.64

Distributional Bellman operators. For the policy evaluation in expectation-based RL, the action-65

value function is updated via the Bellman operator T πQ(s, a) = E[R(s, a)] + γEs′∼p,π [Q (s′, a′)].66

In distributional RL, the action-value distribution of Zπ(s, a) is updated via the distributional Bellman67

operator Tπ68

TπZ(s, a) = R(s, a) + γZ (s′, a′) , (1)

where s′ ∼ P (·|s, a) and a′ ∼ π (·|s′). The equality in Eq. 1 implies that random variables of69

both sides are equal in distribution. The distributional Bellman operator Tπ is contractive under70

certain distribution divergence metrics, but the distributional Bellman optimality operator T can only71

converge to a set of optimal non-stationary value distributions in a weak sense [9].72

2.2 Divergences between Measures73

Optimal Transport (OT) and Wasserstein Distance The optimal transport (OT) metric between74

two probability measures (µ, ν) supported on two metric spaces is defined as the solution of the linear75

program:76

min
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y), (2)

where c is the cost function and Π is the joint distribution with marginals (µ, ν). Wasserstein distance77

(a.k.a. earth mover distance) is a special case of optimal transport with the Euclidean norm as the78

cost function. In particular, given two scalar random variables X and Y , p-Wasserstein metric Wp79

between the distributions of X and Y can be simplified as80

Wp(X,Y ) =

(∫ 1

0

∣∣F−1
X (ω)− F−1

Y (ω)
∣∣p dω)1/p

, (3)
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where F−1 is the inverse cumulative distribution function of a random variable. The desirable81

geometric property of Wasserstein distance allows it to recover full support of measures, but it suffers82

from the curse of dimension [13, 1].83

Maximum Mean Discrepancy The squared Maximum Mean Discrepancy (MMD) MMD2
k with84

the kernel k is formulated as85

MMD2
k = E [k (X,X ′)] + E [k (Y, Y ′)]− 2E [k(X,Y )] , (4)

where k(·, ·) is a continuous kernel on X . X ′ (resp. Y ′) is a random variable independent of X86

(resp. Y ). If k is a trivial kernel, MMD degenerates to the energy distance. Mathematically, the “flat”87

geometry that MMD induces on the space of probability measures does not faithfully lift the ground88

distance [11], but MMD is cheaper to compute than OT and has a smaller sample complexity, i.e.,89

approximating the distance with samples of measures [13]. We provide the detailed introduction of90

more distribution divergences in Appendix A.91

3 Roles of Distribution Divergence and Representation in distributional RL92

3.1 Distributional RL: From Neural Q-Fitted Iteration to Neural Z-Fitted Iteration93

Neural Q-Fitted Iteration. It is known that Deep Q Learning [16] can be simplified into Neural94

Q-Fitted Iteration [10] under tricks of experience replay and the target network Qθ∗ , where we update95

parameterized Qθ(s, a) in each iteration k:96

Qk+1
θ = argmin

Qθ

1

n

n∑
i=1

[
yi −Qkθ (si, ai)

]2
, (5)

where the target yi = r(si, ai) + γmaxa∈AQ
k
θ∗ (s′i, a) is fixed within every Ttarget steps to update97

target network Qθ∗ by letting θ∗ = θ and the experience buffer induces independent samples98

{(si, ai, ri, s′i)}i∈[n]. In an ideal case that neglects the non-convexity and TD approximation errors,99

we have Qk+1
θ = T Qkθ , which is exactly equivalent to updating under Bellman optimality operator.100

Neural Z-Fitted Iteration. Analogous to neural Q-fitted iteration, we can also simplify value-based101

distributional RL methods based on a parameterized Zθ into a Neural Z-fitted Iteration as102

Zk+1
θ = argmin

Zθ

1

n

n∑
i=1

dp(Yi, Z
k
θ (si, ai)), (6)

where the target Yi = R(si, ai) + γZkθ∗ (s′i, πZ(s′)) with πZ(s′) = argmaxa′ E
[
Zkθ∗(s

′, a′)
]

is103

fixed within every Ttarget steps to update target network Zθ∗ , and dp is a divergence metric between104

two distributions.105

3.2 Key Roles of dp and Zθ106

Within the Neural Z-fitted Iteration framework proposed in Eq. 6, we observe that the choice of107

representation manner on Zθ and the metric dp are pivotal for the distributional RL algorithms. For108

instance, QR-DQN [8] approximates Wasserstein distance Wp, which leverages quantiles to represent109

Algorithm dp Distribution Divergence Representation Zθ Convergence Rate of Tπ Sample Complexity of dp
C51 [2] Cramér distance Histogram

√
γ

QR-DQN [8] Wasserstein distance Quantiles γ O(n−
1
d )

MMDDRL [17] MMD Samples γα/2 with kernel kα O(1/n)

SinkhornDRL
(ours) Sinkhorn divergence Samples

γ (ε→ 0)
γα/2 (ε→∞)

O(n
e
κ
ε

εbd/2c
√
n ) (ε→ 0)

O(n−
1
2 ) (ε→∞)

Table 1: Comparison between typical distributional RL algorithms under different distribution
divergences and represention of Zθ. kα = −‖x− y‖α in MMDDRL, d is the sample dimension and
κ = 2βd+ ‖c‖∞, where the cost function c is β-Lipschitz [13]. Sample complexity of MMD can be
improved to O(1/n) using kernel herding technique [5].
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the distribution of Zθ. C51 [2] represents Zθ via a categorical distribution under the convergence of110

Cramér distance [3, 19], while MMD distributional RL (MMDDRL) [17] learns samples to represent111

the distribution of Zθ based on MMD. We compare characteristics of these distribution divergence,112

including the convergence rate and sample complexity, in Table 1. Theoretical results regarding113

Sinkhorn divergence is based on [13] and the detailed convergence proof of other distances is also114

provided in Appendix A. In summary, we argue that dp and Zθ are two crucial factors in distributional115

RL design, based on which we introduce our Sinkhorn distributional RL.116

4 Sinkhorn Distributional RL (SinkhornDRL)117

In this section, we firstly introduce Sinkhorn divergence and apply it in distributional RL. Next, we118

conduct a theoretical analysis about the convergence speed and a new moment matching manner of119

our algorithm under the Sinkhorn divergence. Finally, a practical Sinkhorn iteration algorithm is120

introduced to evaluate the Sinkhorn divergence.121

4.1 Sinkhorn Divergence and Genetic Algorithm122

We design Sinkhorn distributional RL algorithm via Sinkhorn divergence. Sinkhorn divergence [21] is123

a tractable loss to approximate the optimal transport problem by leveraging an entropic regularization124

to turn the original Wasserstein distance into a differentiable and more robust quantity. The resulting125

loss can be computed using Sinkhorn fixed point iterations, which is naturally suitable for modern deep126

learning frameworks. In particular, the entropic smoothing generates a family of losses interpolating127

between Wasserstein distance and Maximum Mean Discrepancy (MMD). As such, it allows us to find128

a sweet trade-off that simultaneously leverages the geometry of Wasserstein distance on the one hand,129

and the favorable high-dimensional sample complexity and unbiased gradient estimates of MMD. We130

introduce the entropic regularized Wassertein distanceWc,ε(µ, ν) as131

min
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y) + εKL(Π|µ⊗ ν), (7)

where KL(Π|µ⊗ ν) =
∫

log
(

Π(x,y)
dµ(x)dν(y)

)
dΠ(x, y) is a strongly convex regularization. The impact132

of this entropy regularization is similar to `2 ridge regularization in linear regression. Next, the133

sinkhorn loss [11, 14] between two measures µ and ν is defined as134

Wc,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν). (8)

As demonstrated by [11], the Sinkhorn divergenceWc,ε(µ, ν) is convex, smooth and positive definite135

that metrizes the convergence in law. In statistical physics, Wc,ε(µ, ν) can be re-factored as a136

projection problem:137

Wc,ε(µ, ν) := min
Π∈Π(µ,ν)

KL (Π|K) , (9)

where K is the Gibbs distribution with the density function satisfies dK(x, y) = e−
c(x,y)
ε dµ(x)dν(y).138

This problem is often referred to as the “static Schrödinger problem” [15, 20] as it was initially139

considered in statistical physics.140

Distributional RL with Sinkhorn Divergence and Particle Representation. The key of apply-141

ing Sinkhorn divergence in distributional RL is to simply leverage the Sinkhorn lossWc,ε to mea-142

sure the distance between the current action-value distribution Zθ(s, a) and the target distribution143

TπZθ(s, a), yieldingWc,ε(Zθ(s, a),TπZθ(s, a)) for each s, a pairs. In terms of the representation144

for Zθ(s, a), we employ the unrestricted statistics, i.e., deterministic samples, due to its superiority in145

MMDDRL [17], instead of using predefined statistic functionals, e.g., quantiles in QR-DQN [8] or146

histogram partitions in C51 [2]. More concretely, we use neural networks to generate samples that147

approximate the value distribution. This can be expressed as Zθ(s, a) := {Zθ(s, a)i}Ni=1, where N148

is the number of generated samples. We refer to the samples {Zθ(s, a)i}Ni=1 as particles. Then we149

leverage the Dirac mixture 1
N

∑N
i=1 δZθ(s,a)i to approximate the true density function of Zπ(s, a),150

thus minimizing the Sinkhorn divergence between the approximate distribution and its distributional151

Bellman target. A detailed and generic distributional RL algorithm with Sinkhorn divergence and152

particle representation is provided in Algorithm 1.153
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Algorithm 1 Generic Sinkhorn distributional RL Update
Require: Number of generated samples N , the cost function c and hyperparameter ε.
Input: Sample transition (s, a, r′, s′)

1: if Policy evaluation then
2: a∗ ∼ π(·|s′).
3: else
4: a∗ ← arg maxa′∈A

1
N

∑N
i=1 Zθ (s′, a′)i

5: end if
6: TZi ← r + γZθ∗ (s′, a∗)i ,∀1 ≤ i ≤ N

Output: Wc,ε

(
{Zθ(s, a)i}Ni=1 , {TZθ(s, a)j}Nj=1

)

Remark. By comparing the state-of-the-art MMDDRL algorithm [17], our Sinkhorn distributional154

RL simply modifies the distribution divergence. Hence, we can also easily extend our generic155

Sinkhorn algorithm to DQN-like architecture as well as IQN [7] and FQF [24]. A following question156

is whether there is any theoretical connection between Sinkhorn distributional RL and algorithms157

based on MMD and Wasserstein distance. We provide this crucial analysis in Section 4.2158

4.2 Theoretical Analysis under Sinkhorn Divergence159

Convergence Analysis. Firstly, we denote the supreme form of Sinkhorn divergence asW∞c,ε(µ, ν):160

161

W∞c,ε(µ, ν) = sup
(x,a)∈S×A

Wc,ε(µ(x, a), ν(x, a)). (10)

We will useW∞c,ε(µ, ν) to establish the convergence of Tπ in Theorem 1.162

Theorem 1. If we leverage Sinkhorn loss Wc,ε(µ, ν) in Eq. 8 as the distribution divergence in163

distributional RL, and choose the unrectified kernel kα := −‖x− y‖α as −c (α > 0), it holds that164

(1) As ε→ 0,Wc,ε(µ, ν)→ 2Wα(µ, ν). When ε = 0, Tπ is a γ-contraction underW∞c,ε.165

(2) As ε→ +∞,Wc,ε(µ, ν)→ MMD2
kα(µ, ν). When ε = +∞, Tπ is γα/2-contractive underW∞c,ε.166

(3) For any ε ∈ (0,+∞), Tπ is a closely non-expansive operator underW∞c,ε, and the difference167

term ∆(γ)→ 0 as γ → 1.168

Proof is provided in Appendix B. Theorem 1 (1) and (2) are follow-up conclusions in terms of the169

convergence behavior of Tπ based on the interpolation relationship between Sinkhorn divergence with170

Wasserstein distance and MMD [14]. Our key theoretical contribution is for the general ε ∈ (0,∞),171

the convergence behavior is determined by the “joint” KL divergence in Eq. 9 between the optimal172

joint distribution Π∗ and the Gibbs distribution associated with the cost function c. We conclude173

that Tπ is a close non-expansive operator and the different term ∆(γ)→ 0 as γ → 1. Note that γ is174

normally very close to 1 in practice, and this is beneficial for the convergence of Tπ underW∞c,ε.175

Remark on Theorem 1 (3). If we consider to use Gaussian kernel, we can not guarantee Tπ is176

closely non-expansive for any ε ∈ (0,∞). This conclusion is consistent with those discussed177

in MMDDRL [17], where Tπ is generally not a contraction operator under MMD equipped with178

Gaussian kernels as a counterexample has been pointed out in MMDDRL (when ε→ +∞). When179

ε → 0, the γ-contractive Tπ under Wasserstein distance is also not contradictory to Theorem 1180

(3). Moreover, although we can only obtain that Tπ is closely non-expansive, the expectation of181

Zπ remains a γ-contraction (see Appendix B). In experiments, we thereby use kα and we can also182

demonstrate the appealing empirical performance of our SinkhornDRL algorithm in Section 5.183

Regularized Moment Matching under Sinkhorn Divergence. We further examine the potential184

reason behind the empirical success for SinkhornDRL, although only a non-expansive contraction185

can be guaranteed for the general case when ε ∈ (0,+∞) as shown in Theorem 1. Inspired by the186

similar manner in MMDDRL [17], we find that the Sinkhorn divergence with the Gaussian kernel187

can also promote to match all moments between two distributions. More specifically, the Sinkhorn188

divergence can be rewritten as a regularized moment matching form in Proposition 1.189
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Proposition 1. For ε ∈ (0,+∞), Sinkhorn divergenceWc,ε(µ, ν) associated with Gaussian kernels190

k(x, y) = exp(−(x− y)2/(2σ2)) as −c, can be equivalent to191

Wc,ε(µ, ν) :=

∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2

+ εE
[
log

(Π∗ε(X,Y ))2

Π∗ε(X,X
′)Π∗ε(Y, Y

′)

]
, (11)

where Π∗ε denotes the optimal Π determined by ε by evaluating the Sinkhorn divergence via192

minΠ∈Π(µ,ν)Wc,ε(µ, ν). M̃n(µ) = Ex∼µ
[
e−x

2/(2σ2)xn
]
, and similarly for M̃n(ν).193

We provide the proof of Proposition 1 in Appendix C. Similar to MMDDRL associated with a194

Gaussian kernel [17], Sinkhorn divergence approximately performs a regularized moment matching195

scaled by e−x
2/(2σ2). This similar moment matching impact intuitively explains the empirical success196

of SinkhornDRL as MMDDRL, although the contraction of both MMD with Gaussian kernel [17]197

and Sinkhorn divergence for general ε ∈ (0,+∞) may not be guaranteed.198

Equivalence to Regularized MMD distributional RL. Based on Proposition 1, we can immedi-199

ately establish the connection between Sinkhorn divergence and MMD in Corollary 1, indicating that200

minimizing Sinkhorn divergence between two distributions is equivalent to minimizing a regularized201

squared MMD.202

Corollary 1. For ε ∈ (0,+∞) and denote Π∗ε as the optimal Π by evaluating the Sinkhorn divergence,203

it holds that204

Wc,ε := MMD2
−c(µ, ν) + εE

[
log

(Π∗ε(X,Y ))2

Π∗ε(X,X
′)Π∗ε(Y, Y

′)

]
, (12)

where we useWc,ε to replaceWc,ε(µ, ν) for short.205

Proof of Corollary 1 is provided in Appendix C. It is worthy of noting that this equivalence is206

established for the general case when ε ∈ (0,+∞), and it does not hold in the limit cases when207

ε→ 0 or +∞. For example, when ε→ +∞, the second part including ε in Eq. 12 is not expected to208

dominate. This is owing to the fact that the regularization term would be 0 as Π∗ε → µ ⊗ ν when209

ε→ +∞. In summary, even though the Sinkhorn divergence was initially proposed to serve as an210

entropy regularized Wasserterin distance, it turns out that it is equivalent to a regularized MMD, as211

revealed in Corollary 1. This connection provides strong evidence for our empirical results, in which212

SinkhornDRL achieves competitive performance as opposed to MMDDRL.213

4.3 Distributional RL via Sinkhorn Iterations214

The theoretical analysis in Section 4.2 sheds light on the behavior of distributional RL with Sinkhorn215

divergence, but another crucial issue we need to address is how to evaluate the Sinkhorn loss216

effectively. Due to the advantages of Sinkhorn divergence that both enjoys geometry property of217

optimal transport and the computational effectiveness of MMD, we can utilize Sinkhorn’s algorithm,218

i.e., Sinkhorn Iterations [21, 14], to evaluate the Sinkhorn loss. Notably, Sinkhorn iteration with219

L steps yields a differentiable and solvable efficiently loss function as the main burden involved220

in it is the matrix-vector multiplication, which streams well on the GPU with simply adding extra221

differentiable layers on the typical deep neural network, such as a DQN architecture.222

Specifically, given two sample sequences {Zi}Ni=1 , {TZj}
N
j=1 in the distributional RL algorithm, the223

optimal transport distance is equivalent to the form:224

min
P∈RN×N+

{
〈P, ĉ〉;P1N = 1N , P

>1N = 1N
}
, (13)

where the empirical cost function ĉi,j = c(Zi,TZj). By adding entropic regularization on optimal225

transport distance, Sinkhorn divergence can be viewed to restrict the search space of P in the226

following scaling form:227

Pi,j = aiKi,jbj , (14)
where Ki,j = e−ĉi,j/ε is the Gibbs kernel defined in Eq. 9. This allows us to leverage iterations228

regarding the vectors a and b. More specifically, we initialize b0 = 1N , and then the Sinkhorn229

iterations are expressed as230

al+1 ←
1N
Kbl

and bl+1 ←
1N
K>al+1

, (15)
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Algorithm 2 Sinkhorn Iterations to ApproximateWc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)
Input: Two samples sequences {Zi}Ni=1 , {TZj}

N
j=1, number of Sinkhorn iterations L and hyperpa-

rameter ε.
1: ĉi,j = c(Zi,TZj) for ∀i = 1, ..., N, j = 1, ..., N
2: Ki,j = exp(−ĉi,j/ε)
3: b0 ← 1N
4: for l = 1, 2, ..., L do
5: al ← 1N

Kbl−1
, bl ← 1N

Kal
6: end for
7: Ŵc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)
= 〈(K � ĉ)b, a〉

Return: Ŵc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)

where ·· indicates an entry-wise division. It has been proven that Sinkhorn iteration asymptotically231

converges to the true loss in a linear rate [14, 12, 6]. We provide a detailed algorithm description of232

Sinkhorn iterations in Algorithm 2. With the efficient and differential Sinkhorn iterations, we can233

easily evaluate the Sinkhorn divergence and thus let our algorithm enjoy its theoretical advantages. In234

practice, we need to choose L and ε, and we conduct a rigorous sensitivity analysis in Section 5.235

5 Experiments236

We demonstrate the effectiveness of SinkhornDRL as described in Algorithm 1 on the full 55 Atari237

2600 games. Specifically, we leverage the same architecture as QR-DQN [8], and replace the quantiles238

output with N particles, i.e., samples. In contrast to MMDDRL, SinkhornDRL only changes the239

distribution divergence from MMD to Sinkhorn divergence, and therefore the potential superiority in240

the performance can be attributed to the advantages of Sinkhorn divergence. In Section 5.1, we make241

a rigorous comparison between SinkhornDRL with other typical distributional RL algorithms from242

the perspectives of learning curves and final ratio improvement of returns. An extensive sensitivity243

analysis in terms of multiple hyperparameters in SinkhornDRL is provided in Section 5.2.244

Baselines. Due to the interpolation characteristic of Sinkhorn divergence between Wassertein245

distance and MMDDRL, we choose three typical distributional RL algorithms as classic baselines,246

including QR-DQN [8] that approximates the Wasserstein distance, C51 [2] and MMDDRL [17], as247

well as DQN [16]. MMDDRL algorithm is implemented with the same architecture as QRDQN, and248

leverages Gaussian kernels kh(x, y) = exp(−(x− y)2/h) with the kernel mixture trick covering a249

range of bandwidths h, which is same as the basic setting in the original MMDDQN paper [17]. We250

deploy all algorithms on 55 Atari 2600 games, and reported results are averaged over 3 seeds with251

the shade indicating the standard deviation.252

Hyperparameter settings. For a fair comparison with QR-DQN, C51 and MMDDRL, we used253

the same hyperparamters: the number of generated samples N = 200, Adam optimizer with254

lr = 0.00005, εAdam = 0.01/32. We used a target network to compute the distributional Bellman255

target, which fits well in the neural Z-fitted iteration framework. In addition, we choose number of256

Sinkhorn iterations L = 10 and smoothing hyperparameter ε = 10.0 in Section 5.1 as they are not257

sensitive within a proper interval as demonstrated in Section 5.2. We choose the unrectified kernel as258

the cost function, i.e.,−c = kα, and select α = 2 in kα in our SinkhornDRL algorithm.259

5.1 Performance of SinkhornDRL260

Figure 1 illustrates that SinkhornDRL can achieve the competitive performance across 55 Atari games261

compared with various baseline algorithms with different metrics dp and representation manners on262

Zθ. On a large number of games, e.g., Tennis, Seaquest and Atlantis, SinkhornDRL can significantly263

outperform other baselines, especially on Tennis where other algorithms even fail to converge. The264

improvement of SinkhornDRL over MMDDRL empirically verifies the regularization advantage of265

the Sinkhorn as analyzed in Corollary 1. On some games, e.g., Breakout, Pong and SpaceInvaders,266
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Figure 1: Learning curves of SinkhornDRL algorithm compared with DQN, C51, QR-DQN and
MMD, on nine typical Atari games over 3 seeds.

SinkhornDRL is on par with MMDDRL and other baselines, while on the last row in Figure 1,267

SinkhornDRL is slightly inferior to the state-of-the-art algorithm. We provide learning curves of all268

typical distributional RL algorithms on all 55 Atari games in Appendix E, where SinkhornDRL still269

achieves the competitive performance in general.270

To further demonstrate theoretical properties of SinkhornDRL in Theorem 1, we conduct a ratio im-271

provement comparison across 55 Atari games between SinkhornDRL with QRDQN and MMDDRL,272

respectively. Figure 2 showcases that by comparing with QRDQN (left), SinkhornDRL achieves273

better performance across more than half of considered games. More importantly, the superiority274

of SinkhornDRL is significant across a large amount of games, including Venture, Seaquest, Tennis275

and Phoenix. This empirical outperformance verifies the effectiveness and potential of smoothing276

Wassertein distance in distributional RL, e.g., Sinkhorn divergence. In contrast with MMDDRL, the277

superiority of SinkhornDRL is reduced with the performance improvement only on a small proportion278

of games, while a remarkable boost of performance for SinkhornDRL on a large amount of games279

can be easily observed. We also report mean and median of best human-normalized scores in Table 2280

of Appendix D, where SinkhornDRL achieves almost state-of-the-art performance as MMDDRL on281

average.282

Therefore, we conclude that SinkhornDRL is competitive with the state-of-the-art distributional283

RL algorithms, e.g., MMDDRL, and can be extremely superior over existing algorithms on a large284

proportion of games. This empirical success can be owing to theoretical advantage of Sinkhorn285

divergence that simultaneously makes full use of the data geometry from Wasserstein distance and286

the unbiased gradient estimate property from MMD, which coincides with results in Theorem 1.287

5.2 Sensitivity Analysis and Computational Cost288

Figure 3 (a) suggests the performance of our algorithm is robust to ε in a certain range, e.g., [1, 500],289

facilitating its deployment in practice. If we increase ε, SinkhornDRL’s performance tends to MMD,290
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(a) Sinkhorn vs QRDQN
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(b) Sinkhorn vs MMDDRL

Figure 2: Ratio improvement of return for Sinkhorn distributional RL algorithm over QRDQN (left)
and MMDDRL (right) over 3 seeds. For example, the ratio improvement is calculated by (Sinkhorn -
QRDQN) / QRDQN in the left.

while if we gradually decline ε, SinkhornDRL’s performance tends to QR-DQN. It is also noted that291

Sinkhorn iterations in Algorithm 2 will suffer from the numerical instability issue under an overly292

small or large ε. More results with the discussion are provided in Appendix F. It is also illustrated293

that our algorithm is insensitive to the number of iterations L and samples N as well, but an overly294

large N can slightly worsen the performance of SinkhornDRL, and at the same time increases the295

computational burden. Therefore, a proper number of samples, e.g., 200, is sufficient to attain an296

appealing performance with the computational effectiveness.297

For the computation cost, SinkhronDRL indeed increases around 50% computation cost compared298

with QR-DQN and C51, but only slightly increases the cost (by around 20%) in contrast to MMDDRL.299

Detailed comparison is given in Appendix F.300
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Figure 3: Sensitivity analysis of SinkhornDRL on Breakout regarding ε, number of samples, and
number of iteration L. Learning curves are reported over 3 seeds.

6 Discussions and Conclusion301

The main limitation of our proposal is that the superiority over existing state-of-the-art algorithms may302

not be sufficiently significant. To extend our algorithm for better performance, implicit generative303

models, including parameterizing the cost function in Sinkhorn loss, can be further incorporated. We304

leave it as the future work. Moreover, other divergences, e.g., thoses that can also smooth Wassertein305

distance, can also be applied into the design of distributional RL algorithms in the future.306

In this paper, a novel family of distributional RL algorithms based on Sinkhorn Divergence is proposed307

that accomplishes a competitive performance compared with the-state-of-the-art distributional RL308

algorithms on 55 Atari games. Theoretical analysis about the convergence and moment matching309

behavior is provided along with a rigorous empirical verification. Albeit being associated with MMD310

algorithm, distributional RL with Sinkhorn divergence is complementary to previous algorithms,311

leading to an important contribution among the research community.312

9



References313

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial314

networks. In International conference on machine learning, pages 214–223. PMLR, 2017.315

[2] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-316

ment learning. International Conference on Machine Learning (ICML), 2017.317

[3] Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,318

Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to biased wasserstein319

gradients. arXiv preprint arXiv:1705.10743, 2017.320

[4] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G Bellemare.321

Dopamine: A research framework for deep reinforcement learning. CoRR abs/1812.06110,322

2018.323

[5] Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. UAI, 109–116.324

AUAI Press, 2012.325

[6] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in326

neural information processing systems, 26, 2013.327

[7] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for328

distributional reinforcement learning. International Conference on Machine Learning (ICML),329

2018.330

[8] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement331

learning with quantile regression. Association for the Advancement of Artificial Intelligence332

(AAAI), 2018.333

[9] Odin Elie and Charpentier Arthur. Dynamic Programming in Distributional Reinforcement334

Learning. PhD thesis, Université du Québec à Montréal, 2020.335

[10] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep336

q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR, 2020.337

[11] Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and338

Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences.339

In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2681–2690.340

PMLR, 2019.341

[12] Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra342

and its applications, 114:717–735, 1989.343

[13] Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample344

complexity of sinkhorn divergences. In The 22nd International Conference on Artificial345

Intelligence and Statistics, pages 1574–1583. PMLR, 2019.346

[14] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn347

divergences. In International Conference on Artificial Intelligence and Statistics, pages 1608–348

1617. PMLR, 2018.349

[15] Christian Léonard. A survey of the schr\" odinger problem and some of its connections with350

optimal transport. arXiv preprint arXiv:1308.0215, 2013.351

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G352

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.353

Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.354

[17] Thanh Tang Nguyen, Sunil Gupta, and Svetha Venkatesh. Distributional reinforcement learning355

with maximum mean discrepancy. Association for the Advancement of Artificial Intelligence356

(AAAI), 2020.357

[18] Aaditya Ramdas, Nicolás García Trillos, and Marco Cuturi. On wasserstein two-sample testing358

and related families of nonparametric tests. Entropy, 19(2):47, 2017.359

10



[19] Mark Rowland, Marc Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh. An analysis360

of categorical distributional reinforcement learning. In International Conference on Artificial361

Intelligence and Statistics, pages 29–37. PMLR, 2018.362

[20] Ludger Rüschendorf and Wolfgang Thomsen. Closedness of sum spaces andthe generalized363

schrödinger problem. Theory of Probability & Its Applications, 42(3):483–494, 1998.364

[21] Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums.365

The American Mathematical Monthly, 74(4):402–405, 1967.366

[22] Gábor J Székely. E-statistics: The energy of statistical samples. Bowling Green State University,367

Department of Mathematics and Statistics Technical Report, 3(05):1–18, 2003.368

[23] Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein adversarial examples via projected369

sinkhorn iterations. In International Conference on Machine Learning, pages 6808–6817.370

PMLR, 2019.371

[24] Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully parameterized372

quantile function for distributional reinforcement learning. Advances in neural information373

processing systems, 32:6193–6202, 2019.374

[25] Shangtong Zhang. Modularized implementation of deep rl algorithms in pytorch. https:375

//github.com/ShangtongZhang/DeepRL, 2018.376

[26] Fan Zhou, Jianing Wang, and Xingdong Feng. Non-crossing quantile regression for distri-377

butional reinforcement learning. Advances in Neural Information Processing Systems, 33,378

2020.379

[27] Florian Ziel. The energy distance for ensemble and scenario reduction. arXiv preprint380

arXiv:2005.14670, 2020.381

Checklist382

1. For all authors...383

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s384

contributions and scope? [Yes]385

(b) Did you describe the limitations of your work? [Yes] We provide the discussion about386

the limitation of our proposal in Section 6.387

(c) Did you discuss any potential negative societal impacts of your work? [N/A]388

(d) Have you read the ethics review guidelines and ensured that your paper conforms to389

them? [Yes]390

2. If you are including theoretical results...391

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please refer to392

Appendix B and C.393

(b) Did you include complete proofs of all theoretical results? [Yes] Please refer to394

Appendix B and C.395

3. If you ran experiments...396

(a) Did you include the code, data, and instructions needed to reproduce the main experi-397

mental results (either in the supplemental material or as a URL)? [Yes]398

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they399

were chosen)? [Yes] Our implementation is adapted from Pytorch distributional RL400

modules [25].401

(c) Did you report error bars (e.g., with respect to the random seed after running experi-402

ments multiple times)? [Yes]403

(d) Did you include the total amount of compute and the type of resources used (e.g., type404

of GPUs, internal cluster, or cloud provider)? [Yes] We provide the comparison of405

computational cost in Figure 12 of Appendix F.406

11

https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL


4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...407

(a) If your work uses existing assets, did you cite the creators? [N/A]408

(b) Did you mention the license of the assets? [N/A]409

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]410

411

(d) Did you discuss whether and how consent was obtained from people whose data you’re412

using/curating? [N/A]413

(e) Did you discuss whether the data you are using/curating contains personally identifiable414

information or offensive content? [N/A]415

5. If you used crowdsourcing or conducted research with human subjects...416

(a) Did you include the full text of instructions given to participants and screenshots, if417

applicable? [N/A]418

(b) Did you describe any potential participant risks, with links to Institutional Review419

Board (IRB) approvals, if applicable? [N/A]420

(c) Did you include the estimated hourly wage paid to participants and the total amount421

spent on participant compensation? [N/A]422

12



A Definition of distances and Contraction423

Definition of distances. Given two random variables X and Y , p-Wasserstein metric Wp between424

the distributions of X and Y is defined as425

Wp(X,Y ) =

(∫ 1

0

∣∣F−1
X (ω)− F−1

Y (ω)
∣∣p dω)1/p

= ‖F−1
X − F−1

Y ‖p, (16)

which F−1 is the inverse cumulative distribution function of a random variable with the cumulative426

distribution function as F . Further, `p distance [9] is defined as427

`p(X,Y ) :=

(∫ ∞
−∞
|FX(ω)− FY (ω)|p dω

)1/p

= ‖FX − FY ‖p (17)

The `p distance and Wassertein metric are identical at p = 1, but are otherwise distinct. Note that428

when p = 2, `p distance is also called Cramér distance [3] dC(X,Y ). Also, the Cramér distance has429

a different representation given by430

dC(X,Y ) = E|X − Y | − 1

2
E |X −X ′| − 1

2
E |Y − Y ′| , (18)

where X ′ and Y ′ are the i.i.d. copies of X and Y . Energy distance [22, 27] is a natural extension of431

Cramér distance to the multivariate case, which is defined as432

dE(X,Y) = E‖X−Y‖ − 1

2
E‖X−X′‖ − 1

2
E‖Y −Y′‖, (19)

where X and Y are multivariate. Moreover, the energy distance is a special case of the maximum433

mean discrepancy (MMD), which is formulated as434

MMD(X,Y; k) = (E [k (X,X′)] + E [k (Y,Y′)]− 2E[k(X,Y)])
1/2 (20)

where k(·, ·) is a continuous kernel on X . In particular, if k is a trivial kernel, MMD degenerates435

to energy distance. Additionally, we further define the supreme MMD, which is a functional436

P(X )S×A × P(X )S×A → R defined as437

MMD∞(µ, ν) = sup
(x,a)∈S×A

MMD∞(µ(x, a), ν(x, a)) (21)

We further present the convergence rate under different distribution divergences.438

• T π is γ-contractive under the supreme form of Wassertein distance Wp.439

• T π is γ1/p-contractive under the supreme form of `p distance.440

• T π is γα/2-contractive under MMD∞ with the kernel kα(x, y) = −‖x− y‖α,∀α > 0.441

Proof of Contraction.442

• Contraction under supreme form of Wasserstein diatance is provided in Lemma 3 [2].443

• Contraction under supreme form of `p distance can refer to Theorem 3.4 [9].444

• Contraction under MMD∞ is provided in Lemma 6 [17].445

B Proof of Theorem 1446

Proof. 1. As ε → 0 and c = −kα, it is obvious to observe that Sinkhorn loss degenerates to the447

wasserstein distance. We also have the conclusion that the distributional Bellman operator Tπ is448

γ-contractive under the supreme form of Wasserstein diatance, the proof of which is provided in449

Lemma 3 [2]. Since the above conclusion is made directly based on the limiting case when ε = 0, for450

an unspecified ε, we need a more rigorous proof. We show that their distance difference is at most451

an infinitesimal δ.452
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Firstly, as Wc,ε → Wα and the regularization term is non-negative, using the language of (ε, δ)453

definition, we have: for ∀δ, there exists a small positive constant a, such thatWc,ε −Wα < δ when454

ε ≤ a. Based on that, we have the contraction conclusion:455

W∞−κα,ε(T
πZ1,T

πZ2) =W∞−κα,ε(T
πZ1,T

πZ2)−W∞α (TπZ1,T
πZ2) +W∞α (TπZ1,T

πZ2)

≤ δ +W∞α (TπZ1,T
πZ2),

(22)
where the second term W∞α (TπZ1,T

πZ2) is contractive, and thus for the unspecified ε, the only456

difference from the limting ε = 0 is an infinitesimal δ, which will vanish as ε→ 0 or (a→ 0).457

2. As ε→∞, our complete proof is inspired by [18, 14]. Recap the definition of squared MMD is

E [k (X,X′)] + E [k (Y,Y′)]− 2E[k(X,Y)]

When the kernel function k degenerates to a unrectified kα(x, y) := −‖x− y‖α for α ∈ (0, 2), the
squared MMD would degenerate to

E‖X−X′‖α + E‖Y −Y′‖α − 2E‖X−Y‖α

On the other hand, we have the Sinkhorn loss as

Wc,∞(µ, ν) = 2Wc,∞(µ, ν)−Wc,∞(ν, ν)−Wc,∞(µ, ν)

Denoting Πε be the unique minimizer forWc,ε, it holds that Πε → µ ⊗ ν as ε → ∞. That being
said,Wc,∞(µ, ν) →

∫
c(x, y)dµ(x)dν(y) + 0 =

∫
c(x, y)dµ(x)dν(y). If c = −kα = ‖x − y‖α,

we eventually haveW−kα,∞(µ, ν)→
∫
‖x− y‖αdµ(x)dν(y) = E‖X−Y‖α. Finally, we can have

W−kα,∞ → 2E‖X−Y‖α − E‖X−X′‖α − E‖Y −Y′‖α

which is exactly the form of squared MMD. Now the key is prove that Πε → µ⊗ ν as ε→∞.458

Firstly, it is apparent thatWc,ε(µ, ν) ≤
∫
c(x, y)dµ(x)dν(y) as µ ⊗ ν ∈ Π(µ, ν). Let {εk} be a

positive sequence that diverges to∞, and Πk be the corresponding sequence of unique minimizers for
Wc,ε. According to the optimality condition, it must be the case that

∫
c(x, y)dΠk + εkKL(Πk, µ⊗

ν) ≤
∫
c(x, y)dµ⊗ ν + 0 (when Π(µ, ν) = µ⊗ ν). Thus,

KL (Πk, µ⊗ ν) 6
1

εk

(∫
c dµ⊗ ν −

∫
c dΠk

)
→ 0.

Besides, by the compactness of Π(µ, ν), we can extract a converging subsequence Πnk → Π∞.
Since KL is weakly lower-semicontinuous, it holds that

KL (Π∞, µ⊗ ν) 6 lim inf
k→∞

KL (Πnk , µ⊗ ν) = 0

Hence Π∞ = µ⊗ ν. That being said that the optimal coupling is simply the product of the marginals,459

indicating that Πε → µ⊗ ν as ε→∞. As a special case, when α = 1,W−k1,∞(u, v) is equivalent460

to the energy distance461

dE(X,Y) := 2E‖X−Y‖ − E‖X−X′‖ − E‖Y −Y′‖. (23)

In summary, if the cost function is the rectified kernel kα, it is the case thatW−kα,ε converges to the462

squared MMD as ε→∞. According to [17], Tπ is γα/2-contractive in the supreme form of MMD463

with the rectified kernel kα.464

For the unspecified ε, we can get the similar result to the case of ε→ 0. For ∀δ, there exists a large465

positive constant M , such that MMD2
kα − Wc,ε < δ when ε ≥ M . Based on that, we have the466

contraction conclusion:467

W∞−κα,ε(T
πZ1,T

πZ2) =W∞−κα,ε(T
πZ1,T

πZ2)−MMD2
∞(TπZ1,T

πZ2) + MMD2
∞(TπZ1,T

πZ2)

≤ MMD2
∞(TπZ1,T

πZ2)− δ,
(24)

where the first term MMD2
∞(TπZ1,T

πZ2) is γ
α
2 }-contractive, and thus for the unspecified ε, the468

only difference from the limiting ε = ∞ is an infinitesimal δ, which will vanish as ε → +∞ or469

(M → +∞).470
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3. For ε ∈ (0,+∞), a key observation for the analysis is that the Sinkhorn divergence would471

degenerate to a two-dimensional KL divergence, and therefore embraces a similar convergence472

behavior to KL divergence. Concretely, according to the equivalent form ofWc,ε(µ, ν) in Eq. 9, it473

can be expressed as the KL divergence between an optimal joint distribution and a Gibbs distribution474

associated with the cost function:475

Wc,ε(µ, ν) := KL (Π∗(µ, ν)|K(µ, ν)) , (25)

where Π∗ is the optimal joint distribution. Thus, the total Sinkhorn divergence is expressed as476

Wc,ε(µ, ν) := 2KL (Π∗(µ, ν)|K(µ, ν))− KL (Π∗(µ, µ)|K(µ, µ))− KL (Π∗(ν, ν)|K(ν, ν)) .
(26)

Due to the form of Wc,ε(µ, ν), the convergence behavior is determined by Wc,ε(µ, ν), which is477

similar to the behavior of KL divergence. Thus, we will focus on the convergence analysis of478

Wc,ε(µ, ν). We firstly elaborate a Lemma regarding to the convergence under KL divergence.479

Lemma 1. Denote the supreme of DKL as D∞KL, we have: (1) Tπ is a non-expansive operator under480

D∞KL, i.e., D∞KL(TπZ1,T
πZ2) ≤ D∞KL(Z1, Z2), (2) the expectation of Zπ is still γ-contractive under481

D∞KL, i.e., ‖ETπZ1 − ETπZ2‖∞ ≤ γ ‖EZ1 − EZ2‖∞.482

Proof. (1) We recap three crucial properties of a divergence metric. The first is scale sensitive (S)483

(of order β, β > 0), i.e., dp(cX, cY ) ≤ |c|βdp(X,Y ). The second property is shift invariant (I),484

i.e., dp(A + X,A + Y ) ≤ dp(X,Y ). The last one is unbiased gradient (U). We use p and q to485

denote the density function of two random variables X and Y , and thus DKL(X,Y ) is defined as486

DKL(X,Y ) =
∫∞
−∞ p(x)p(x)

q(x) dx. Firstly, we show that DKL(X,Y ) is NOT scale sensitive:487

DKL(aX, aY ) =

∫ ∞
−∞

1

a
p(
x

a
) log

1
ap(

x
a )

1
aq(

x
a )

dx

=

∫ ∞
−∞

p(y) log
p(y)

q(y)
dy

= DKL(X,Y ), with β = 0

(27)

We further show that DKL(X,Y ) is shift invariant:488

DKL(A+X,A+ Y ) =

∫ ∞
−∞

p(x−A) log
p(x−A)

q(x−A)
dx

=

∫ ∞
−∞

p(y) log
p(y)

q(y)
dy

= DKL(X,Y )

(28)

Moreover, it is well-known that KL divergence has unbiased sample gradients [3]. The supreme DKL489

is a functional P(X )S×A × P(X )S×A → R defined as490

D∞KL(µ, ν) = sup
(x,a)∈S×A

DKL(µ(x, a), ν(x, a)) (29)

Therefore, we prove Tπ is at best a non-expansive operator under the supreme form of DKL:491

D∞KL(TπZ1,T
πZ2)

= sup
s,a

DKL(TπZ1(s, a),TπZ2(s, a))

= sup
s,a

DKL(R(s, a) + γZ1(S′, A′), R(s, a) + γZ2(S′, A′))

= DKL(Z1(S′, A′), Z2(S′, A′))

≤ sup
s′,a′

DKL(Z1(s′, a′), Z2(s′, a′))

= D∞KL(Z1, Z2)

(30)
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There we have D∞KL(TπZ1,T
πZ2) ≤ D∞KL(Z1, Z2), implying that Tπ is a non-expansive operator492

under D∞KL.493

(2) This statement is an immediate conclusion based on the Lemma 4 in [2]. We give the proof for494

the completeness. This conclusion holds because the Tπ degenerates to T π regardless of the metric495

dp. Specifically, due to the linearity of expectation, we obtain that496

‖ETπZ1 − ETπZ2‖∞ = ‖T πEZ1 − T πEZ2‖∞ ≤ γ‖EZ1 − EZ2‖∞. (31)

This implies that the expectation of Z under DKL exponentially converges to the expectation of Z∗,497

i.e., γ-contraction.498

499

We show thatWc,ε(µ, ν) is NOT scale sensitive. Firstly, we denote Π2 as the optimal joint distribution500

for (U, V ) and thus we write the explicit form of Sinkhorn divergence Wc,ε(U, V ) between two501

random variables U and V :502

***503

Wc,ε(U, V ) = KL(Π2||K) (32)

=

∫ ∞
−∞

∫ ∞
−∞

Π2(x, y) log
Π2(x, y)

1
Z2
e−

c(x,y)
ε µ(x)ν(y)

dxdy, (33)

***504

where the normalization factor Z2 for the Gibbs kernel K is Z2 =
∫∞
−∞

∫∞
−∞ e−

c(x,y)
ε µ(x)ν(y)dxdy505

and µ(x), ν(y) are the marginal density funtion of U and V with respect to x and y. We506

also denote Π1 as the optimal joint distribution for (aU, aV ). A key proof element is about507

the Gibbs kernel K. By definition, the pdf of K(U, V ) ∝ e
−c(x,y)

ε µ(x)ν(y). After a scal-508

ing transformation, the pdf of aU and aV with respect to x and y would be 1
aµ(xa ) and509

1
aν(ya ). Thus K(2U, 2V ) ∝ e

−c(x,y)
ε

1
aµ(xa ) 1

aν(ya ). The new normalization factor Z1 is Z1 =510 ∫∞
−∞

∫∞
−∞

1
a2 e
− c(x

′,y′)
ε µ(x′/a)ν(y′/a)dx′dy′ =

∫∞
−∞

∫∞
−∞ e−

c(ax,ay)
ε µ(x)ν(y)dxdy, the cost func-511

tion of which is different fromZ2. For Π2(U, V ), the scaled pdf of Π2(aU, aV ) would be 1
a2 Π2(xa ,

y
a ).512

Then we have the following results:513

***514

Wc,ε(aU, aV ) = KL(Π1||K) (34)

≤ KL(Π2||K) (35)

=

∫ ∞
−∞

∫ ∞
−∞

1

a2
Π2(

x′

a
,
y′

a
) log

1
a2 Π2(x

′

a ,
y′

a )

1
a2

1
Z1
e−

c(x′,y′)
ε µ(x

′

a )ν(y
′

a )
dx′dy′, (36)

=

∫ ∞
−∞

∫ ∞
−∞

Π2(x, y) log
Π2(x, y)

1
Z1
e−

c(ax,ay)
ε µ(x)ν(y)Z2

Z2

dxdy, (37)

=

∫ ∞
−∞

∫ ∞
−∞

Π2(x, y)(log
Π2(x, y)

1
Z1
e−

c(ax,ay)
ε µ(x)ν(y)

+ log
Z1

Z2
)dxdy, (38)

c=−kα,a≤1

≤
∫ ∞
−∞

∫ ∞
−∞

Π2(x, y) log
Π2(x, y)

1
Z1
e−

c(x,y)
ε µ(x)ν(y)

dxdy + log
Z1

Z2
· 1, (39)

=Wc,ε(U, V ) + ∆c
µ,ν(a), (40)

***515

where the second positive term ∆c
µ,ν(a) = log Z1

Z2
satisfies ∆c

µ,ν(a) → 0 as a → 1 (in practice γ516

is very close to 1). The second inequality holds for the general ε because for the unrectified kernel517

kα = −‖x− y‖α with a ≤ 1, for any ε and x, y we have518

(ax−ay)α ≤ |a|α(x−y)α ≤ (x−y)αe−
c(ax,ay)

ε ≥ e−
c(x,y)
ε ⇒ e−

c(ax,ay)
ε µ(x)ν(y) ≥ e−

c(x,y)
ε µ(x)ν(y)
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However, under this condition, Z1 ≥ Z2 and thus ∆c
µ,ν(a) ≥ 0, but ∆c

µ,ν(a) → 0 as a → 1 (in519

practice γ is very close to 1). We think there is indeed a gap between a (close) non-expansion property520

of Sinkhorn divergence and the empirical success of SinkhornDRL algorithm. The inequality is521

established based on the unrectified kernel, but it is tricky to find the contrative property for Sinkhorn522

divergence with the Gaussian kernel for any ε and x, y. Thus, it is fair that some counterexamples523

may exist for the non-contractive Tπ under Sinkhorn divergence, which is also consistent with the524

counterexample MMD with Gaussian kernel (when ε→∞).525

Now we show thatWc,ε is shift invariant:526

Wc,ε(A+X,A+ Y ) =

∫ ∞
−∞

Π∗(x−A, y −A) log
Π∗(x−A, y −A)

1
Z e
− c(x−A,y−A)

ε

dx dy

=Wc,ε(X,Y ).

(41)

According to the equation ofWc,ε, it holds the same properties asWc,ε, i.e., shift invariant and scale527

sensitive. Thus, we derive the convergence of distributional Bellman operator Tπ under the supreme528

form ofWc,ε, i.e.,W∞c,ε:529

W∞c,ε(TπZ1,T
πZ2)

= sup
s,a
Wc,ε(T

πZ1(s, a),TπZ2(s, a))

=Wc,ε(R(s, a) + γZ1(s′, a′), R(s, a) + γZ2(s′, a′))

≤ Wc,ε(Z1(s′, a′), Z2(s′, a′)) + ∆−kαs′,a′,s,a(γ)

≤ sup
s′,a′
W−kα,ε(Z1(s′, a′), Z2(s′, a′)) + sup

s,a,s′,a′
∆−kαs′,a′,s,a(γ)

=W∞−kα,ε(Z1, Z2) + ∆(γ)

(42)

where the first inequality comes from the scale sensitivity proof, and we denote530

sups,a,s′,a′ ∆
−kα
s′,a′,s,a(γ) = ∆(γ) for short. Since ∆(γ) → 0 as γ → 1, we can conclude that531

Tπ is closely a non-expansive operator regardless of the cost function form c when ε ∈ (0,∞). The532

γ-contraction of the expectation of Zπ can be similarly proved as the KL divergence in Lemma 1.533

C Proof of Proposition 1 and Corollary 1534

Proof. As we leverage Π∗ to denote the optimal Π by evaluating the Sinkhorn divergence via535

minΠ∈Π(µ,ν)Wc,ε(µ, ν; k), the Sinkhorn divergence can be composed in the following form:536

Wc,ε(µ, ν; k)

= 2KL (Π∗(µ, ν)|K−k(µ, ν))− KL (Π∗(µ, µ)|K−k(µ, µ))− KL (Π∗(ν, ν)|K−k(ν, ν))

= 2(EX,Y [log Π∗(µ, ν)]) +
1

ε
EX,X′ [c(X,Y )])− (EX,X′ [log Π∗(µ, ν)]) +

1

ε
EX,Y [c(X,Y )])

− (EY,Y ′ [log Π∗(ν, ν)]) +
1

ε
EY,Y ′ [c(Y, Y ′)])

= EX,X′,Y,Y ′
[
log

(Π∗(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
+

1

ε
(EX,X′ [k(X,X ′)] + EY,Y ′ [k(Y, Y ′)]− 2EX,X′ [k(X,Y )])

= EX,X′,Y,Y ′
[
log

(Π∗(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
+

1

ε
MMD2

−c(µ, ν)

(43)
where the cost function c in the Gibbs distribution K is minus Gaussian kernel, i.e., c(x, y) =537

−k(x, y) = e−(x−y)/(2σ2). Till now, we have shown the result in Corollary 1.538
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Next, we use Taylor expansion to prove the moment matching of MMD. Firstly, we have the following539

equation:540

MMD2
−c(µ, ν) = EX,X′ [k(X,X ′)] + EY,Y ′ [k(Y, Y ′)]− 2EX,X′ [k(X,Y )]

= EX,X′
[
φ(X)>φ(X ′)

]
+ EY,Y ′

[
φ(Y )>φ(Y ′)

]
− 2EX,X′

[
φ(X)>φ(Y )

]
= E‖φ(X)− φ(Y )‖2

(44)

We expand the Gaussian kernel via Taylor expansion, i.e.,541

k(x, y) = e−(x−y)2/(2σ2)

= e−
x2

2σ2 e−
y2

2σ2 e
xy

σ2

= e−
x2

2σ2 e−
y2

2σ2

∞∑
n=0

1√
n!

(
x

σ
)n

1√
n!

(
y

σ
)n

=

∞∑
n=0

e−
x2

2σ2
1√
n!

(
x

σ
)ne−

y2

2σ2
1√
n!

(
y

σ
)n

= φ(x)>φ(y)

(45)

Therefore, we have542

MMD2
−c(µ, ν) =

∞∑
n=0

1

σ2nn!

(
Ex∼µ

[
e−x

2/(2σ2)xn
]
− Ex∼ν

[
e−y

2/(2σ2)yn
])2

=

∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2
(46)

M̃n(µ) = Ex∼µ
[
e−x

2/(2σ2)xn
]
, and similarly for M̃n(ν). The conclusion is the same as the543

moment matching in [17]. Finally, due to the equivalence ofWc,ε(µ, ν) after multiplying ε, we have544

Wc,ε(µ, ν; k) := MMD2
−c(µ, ν) + εE

[
(Π∗(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
=

∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2

+ εE
[

(Π∗(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
,

(47)

This result is also equivalent to Theorem 1, where Π∗ would degenerate to µ⊗ ν as ε → +∞. In545

that case, the first regularization term would vanish, and thus the Sinkhorn divergence degrades to a546

MMD loss, i.e., MMD2
−c(µ, ν).547

548

D Human-normalized Scores549

Our implemnetation is based on [25] and all the experimental settings, including parameters are550

identical to the distributional RL baselines implemented by [25]. The main results about mean and551

Mean Median >Human >DQN
DQN 173 % 49 % 17 0
C51 309 % 77 % 26 42
QR-DQN-1 430 % 104 % 31 47
MMDQN 600 % 94 % 27 43
SinkhornDRL 570 % 89 % 27 42

Table 2: Mean and median of best human-normalized scores across 55 Atari 2600 games. The results
for all considered algorithms are aaveraged over 3 seeds.
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median human-normalized scores of all considered distributional RL algorithms are reported in552

Table 2. Note that our implementaion is based on Pytorch, and thus the results in Table 2 are not553

exactly same as results implemented based on Dopamine framework [4]. However, Table 2 also554

suggests that our SinkhornDRL algorithm can achieve almost state-of-the-art performance in terms555

of mean human-normalized scores. We argue that although it seems that SinkhronDRL is on par with556

MMD across all games, our algorithm significant outperforms MMDDRL on a large amount of Atari557

games, as suggested in Figure 2. The detailed comparison based on learning curves is also exhibited558

in Appendix E.559

E More experimental Results560

We provide learning curves of DQN, QRDQN, C51, MMD and SinkhornDRL algorithms on all561

55 Atari games in Figures 4 5 6 7 8 9. It illustrates that SinkhornDRL dramatically surpasses the562

other distributional RL algorithms on a large amount of environments, e.g., Venture, Atlantis, Tennis563

and SpaceInvader, and presents competitive performance or is only slightly inferior as opposed to564

the state-of-the-art baselines on other games. Note that the average improvement of SinkhornDRL565

on Venture game is significant owing to one to two times convergence of SinkhornDRL algorithm566

over 3 seeds, while the other baselines do not converge over the considered seeds. Although this567

improvement may also suffer from the instability issue, its occasional success for our SinkhornDRL568

algorithm also presents huge potential on some complicated environments. We leave the further569

exploration on the advantage and potential of SinkhornDRL algorithm as the future work.570
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Figure 4: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Breakout,
Enduro, Pong, YarRevenge, Alien, BattleZone, Berzerk, Qbert and SpaceInvader.

19



0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

5000

10000

15000

20000

25000

Av
er

ag
e 

R
et

ur
n

UpNDown
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

5000

10000

15000

20000

25000

Av
er

ag
e 

R
et

ur
n

Asterix
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

400

600

800

1000

1200

1400

1600

Av
er

ag
e 

R
et

ur
n

Asteroids
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

5000

10000

15000

20000

Av
er

ag
e 

R
et

ur
n

BeamRider
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

1000

2000

3000

4000

5000

6000

7000

8000

Av
er

ag
e 

R
et

ur
n

Centipede
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

20000

40000

60000

80000

100000

120000

140000

Av
er

ag
e 

R
et

ur
n

CrazyClimber
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

100

80

60

40

20

0

20

40

Av
er

ag
e 

R
et

ur
n

FishingDerby
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e 

R
et

ur
n

Frostbite
DQN
C51
QRDQN
MMD
Sinkhorn

0.0 0.2 0.4 0.6 0.8
Time Steps (1e7)

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

R
et

ur
n

Riverraid
DQN
C51
QRDQN
MMD
Sinkhorn

Figure 5: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on UpN-
Down, Asterix, Asteriods, BeamRider, Centipede, FishingDerby, Frostbite and Riverraid.

F Sensitivity Analysis and Computational Cost571

F.1 More results in Sensitivity Analysis572

From Figure 10 (a), we can observe that if we gradually decline ε to 0, SinkhornDRL’s performance573

tends to QR-DQN. Note that an overly small ε will lead to a trivial almost 0 Ki,j in Sinkhorn iteration574

in Algorithm 2, and will cause 1
0 numerical instability issue for al and bl in Line 5 of Algorithm 2.575

Due to this reason, the performance of SinkhornDRL with ε = 0.1 or 0.075 declines as the training576

proceeds, and eventually converges to the average return that QR-DQN achieves. In addition, we also577

conducted experiments on Seaquest, the similar result is also observed in Figure 11. The performance578

of SinkhornDRL is robust when ε = 10, 100, 500 and a small ε = 1 tends to worsen the performance.579

Moreover, for breakout, if we increase ε, the performance of SinkhornDRL tends to that of MMDDRL580

as suggested in Figure 10 (b). It is also noted that an overly large ε will let the Ki,j explode to∞.581

This also leads to numerical instability issue in Sinkhorn iteration in Algorithm 2.582

In summary, the trend of SinkhornDRL to close MMDDRL and QR-DQN if we increase or decrease ε,583

respectively, provides strong empirical evidence to demonstrate the theoretical relationships between584

Sinkhorn divergence and MMD / Wasserstein distance, although an overly large or small ε will lead585

to numerical instability issue.586

F.2 Comparison with the Computational Cost587

We evaluate the computational time every 10,000 iterations across the whole training process of588

all considered distributional RL algorithms and make a comparison in Figure 12. It suggests that589

SinkhornDRL indeed increases around 50% computation cost compared with QR-DQN and C51,590

but only slightly increases the the cost in contrast to MMDDRL on both Breakout and Qbert591
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Figure 6: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on TimePilot,
StarGuner, Seaquest, NameThisGame, Phoenix, Tennix, Tutankham, Venture and VideoPinball.

games. We argue that this additional computational burden can be tolerant in view of the significant592

outperformance of SinkhornDRL in a large amount of environments.593

In addition, we also find that the number of Sinkhorn iterations L is negligible to the computation cost,594

while an overly large samples N , e.g., 500, will lead to a large computational burden as illustrated in595

Figure 13. This can be intuitively explained as the computation complexity of the cost function ci,j is596

O(N2) in SinkhornDRL, which is particularly heavy in computation if N is large enough.597
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Figure 7: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Road-
Runner, Jamesbond, IceHockey, Hero, BankHeist, Atlantis, WizardOfWor, Amidar and Assault.
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Figure 8: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on Bowling,
Boxing, DoubleDunk, Freeway, Gravitar, Kangaroo, Krull, KunFuMaster and MontezumaRevenge.
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Figure 9: Performance of SinkhornDRL compared with DQN, C51, QRDQN and MMD on MsPac-
man, Pitfall, PrivateEye, Robotank, Skiing, Solaris, Zaxxon, ChopperCommand, Gopher and De-
monAttack.
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(a) Small ε in SinkrhornDRL vs QRDQN
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Figure 10: (Left) Sensitivity analysis w.r.t. a small level of ε SinkhornDRL to compare with QR-DQN
that approximates Wasserstein distance on Breakout. (Right) Sensitivity analysis w.r.t. a large level of
ε SinkhornDRL algorithm to compare with MMDDRL on Breakout. All learning curves are reported
over 2 seeds.
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Figure 11: Sensitivity analysis w.r.t. ε SinkhornDRL to compare with QR-DQN and MMD on
Seaquest. All learning curves are reported over 3 seeds.

DQN QR-DQN C51 MMD Sinkhorn
0

25

50

75

100

125

150

175

200

Av
er

ag
e 

C
om

pu
ta

tio
n 

Ti
m

e Breakout

DQN QR-DQN C51 MMD Sinkhorn
0

25

50

75

100

125

150

175

200

Av
er

ag
e 

C
om

pu
ta

tio
n 

Ti
m

e Qbert

Figure 12: Average computational cost per 10,000 iterations of all considered distributional RL
algorithm, where we select ε = 10, L = 10 and number of samples N = 200 in SinkhornDRL
algorithm.
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Figure 13: Average computational cost per 10,000 iterations of SinkhornDRL algorithm over different
samples.
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