OCRBench v2: An Improved Benchmark for
Evaluating Large Multimodal Models on Visual Text
Localization and Reasoning

A Technical Appendices and Supplementary Material

This supplementary material contains the following content:

* Sec.[A.T} Comparison experiments between LMMs and some text-centric expert models.
* Sec.[A.2} Data collection.

» Sec.[A.3} Task definitions.

* Sec.[A.4 Additional statistics of OCRBench v2.

* Sec.[A.5 Evaluation metrics.

* Sec.[A.6; Experimental setting for the evaluation process.
* Sec.[A.7} Compute resources for the evaluation process.
» Sec.[A.8 Evaluation results for LMMs on OCRBench v2.
* Sec.[A.9 Potential factors affecting OCR capabilities

* Sec.[A.T0} Visualization samples for task examples.

* Sec.[A.I1} Visualization samples for failure cases.

* Sec.[A.12} Discussion of broader impacts.

*» Sec.[A. 13} Discussion of limitations.

A.1 Comparison with LMMs and Text-centric Expert Models

Comparison with text recognizers. We compare LMMs with several representative scene text
recognizers, including CRNN [1]], ABINet [2], ASTER [3]], MASTER [4], and SVTR [5], on the
text recognition task. The weights of these models are loaded from mmoct'| The results are shown
in Tab. E], where we selected 5 representative LMMs, including Qwen2.5VL-7B [6], InternVL3-
14B [7], GPT4o [8]], Geminil.5-Pro [9], and Step-1V [10]. The results demonstrate that LMMs
exhibit remarkable text recognition capabilities, validating our motivation to evaluate LMMs on more
challenging OCR-related tasks.

Comparison with text spotters. We also compare LMMs with ABCNet series [I11, [12]] and
TESTR [[13] on the text spotting task. The ABCNet series utilize the official Weight and TESTR
is also initialized with its publicly released checkpoinﬂ These models were fine-tuned with Total-
Text [14]. The results are shown in Tab.[2] Although LMMs demonstrate promising capabilities in
text recognition, there remains notable potential for improvement in the text spotting task.

Comparison with GOT. We notice a recent work, GOT [15]], that can parse the textual elements
within images. We conduct comparison experiments between GOT and some representative LMMs,
and the results are shown in Tab. [3] We observe that LMMs show advantages in general text
recognition, while GOT demonstrates better performance in the document parsing task.

'https://github.com/open-mmlab/mmocr
“https://github.com/aim-uofa/AdelaiDet
*https://github.com/mlpc-ucsd/TESTR
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Method Accuracy

CRNN (1] 38.1
ABINet [2] 62.4
ASTER [3] 50.0
MASTER [4] 54.1
SVTR [5] 57.8

Qwen2.5VL-7B [6] 73.0
InternVL3-14B [7] 71.1

GPT4o [8]] 74.1
Geminil.5-Pro [9]] 64.1
Step-1V [10] 75.4

Table 1: Comparison between LMMs and text recognizers.

Method F1 score
ABCNet [11]] 322
ABCNetV2 [12] 44.2
TESTR [13] 51.8

Qwen2.5VL-7B [6] 1.2
InternVL3-14B [7]] 11.2

Geminil.5-Pro [9] 13.5
GPT4o [8]] 0
Step-1V [10] 7.2

Table 2: Comparison between LMMs and text spotters.

A.2 Data Collection

Text Recognition. The data for text recognition task are sampled from ICDAR2013 [16]], SVT [[17],
IITSK [18]], ICDAR2015 [19], SCUT-CTW 1500 [20], COCO-Text [21], CUTESO [22]], TotalText,
SVTP [23], WordArt [24], NonSemanticText [25], [AM [26]], ORAND-CAR-2014 [27], HOST [28]],
and WOST [28]. Meanwhile, CAPTCHA (Completely Automated Public Turing Test to Tell Hu-
mans Apart) images are sourced from a CAPTCHA dataseﬂ and a number CAPTCHA dataseﬂ
Additionally, dot matrix images in the text recognition task are manually collected from the web
page.

Fine-grained Text Recognition. In the fine-grained text recognition task, images are sampled from
the test sets of Fox [29], Totaltext, COCO-Text, CTW1500 [30], and ICDAR2015. We use the
original annotations for Fox, while the other datasets are manually re-annotated.

Full-page OCR. The data sources for full-page OCR task include Fox, HierText [31], CTW [32],
RCTW-17 [33]], ReCTS [34]], LSVT2019 [35], M6Doc [36], and CDLAE}

Text Grounding. The images for the text grounding task are sampled from testset of Totaltext,
COCO-Text, CTW1500, and ICDAR2015. QA pairs and bounding boxes annotations are based on
their official OCR annotations.

VQA with Position. The images used for VQA with position task are sampled from the test sets
of TextVQA [37] and RICO [38]], with QA pairs and bounding box annotations derived from their
original datasets.

Text Spotting. The data sources for the text spotting task include Totaltext, COCO-Text, CTW 1500,
and ICDAR2015.

Key Information Extraction. The data sources for key information extraction task include
FUNSD [39], SROIE [40], POIE [41]], M6Doc, XFUND [42], ICDAR2023-SVRD [43], and a
private dataset of photographed receipts.

Key Information Mapping. The data sources for the key information mapping task include FUNSD
and POIE.

*https://aistudio.baidu.com/datasetdetail/159309
Shttps://www.heywhale.com/mw/dataset/5e5e56b6b8df ce002d7ee42c/file
Shttps://github.com/buptlihang/CDLA
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Method Rec FG-Rec Full-Rec Doc-Parse

GOT [15] 64.1 529 73.3 53.9
Qwen2.5VL-7B [6] 73.0 36.4 84.2 39.1
InternVL3-14B [7] 71.1 36.4 83.0 36.9
GPT4o [8] 74.1 13.8 54.1 359
Geminil.5-Pro [9]  64.1 22.9 83.9 40.5
Step-1V [10] 76.8 24.8 74.8 36.0

Table 3: Comparison between LMMs and GOT [15].

Handwritten Content Extraction. This task’s data is our private data, which contains real exam
paper data with student information removed and manually annotated QA pairs.

Table Parsing. The images for table parsing task are selected from MMTab [44], WTW [45]],
TabRecSet [46] and flush table recognition competitionﬂ

Chart Parsing. The data sources for the chart parsing task come from OneChart [47] and MMC [48]].

Document Parsing. The data sources for document parsing task come from DoTA [49],
DocVQA [50], M6Doc, and CDLA.

Formula Recognition. The data sources for the formula Recognition task includes HME100K [51]],
IM2LATEX-100K [52], M2E [53]], MathWriting [54]], MLHME-38Kﬂ CASIA-CSDB [55]], and
some private data.

Math QA. The data sources for the math QA task includes MathMatics [56]], MathVerse [57],
MathVision [52]], and MathVista [58]].

Text Counting. The data for the text counting task are collected from IIIT5SK, SVT, ICDAR2013,
HierText, and TotalText.

Cognition VQA. The data sources for the cognition VQA task include EST-VQA [59],
OCRVQA [60], ST-VQA [61], TEXTVQA, DIR300 [62], ChartQA [63], DVQA [64], PlotQA [65],
InfoVQA [66], WTW, PubTabNet [67], WTQ [68], CORD [69], LLaVAR [70], WebSRC [71]],
DocVQA, M6Doc, XFUND, Publaynet [72]], RVL-CDIP [73]], ScreenQA [74], SlideVQA [75], a
movie poster collection dataseﬂ a website screenshot collection datasetm, and a private receipt
photograph dataset.

Diagram QA. The data sources for the diagram QA task include AI2D [76] and TextBookQA [77].

Document Classification. The images for the document classification task are collected from
RVL-CDIP.

Reasoning VQA. The reasoning VQA task shares some common data sources with the cognition
VQA task. Additionally, portions of the reasoning VQA dataset are drawn from MMSI [78]] and
CMMMU [79].

Science QA. The images and annotations of the science QA task are collected from ScienceQA [80]
and MMMU-Pro [81]]

APP Agent. The data source of the APP agent task is RICO.
ASCII Art Classification. The data sources for the ASCII art classification task is ASCIIEval [82].

Text Translation. The datasets collected for text translation task includes memeq] MSRA-
TD500 [83)], MTWI2018 [84], M6Doc, ICDAR2023-SVRD, EST-VQA, RCTW17 [85],

"https://github.com/10jqka-aicubes/table-recognition

$https://ai.100tal.com/icdar

https://www.kaggle.com/datasets/nehal703/movie-genre-from-its-poster

"Unttps://huggingface.co/datasets/Zexanima/website_screenshots_image_dataset/tree/
main

"https://wuw.kaggle.com/datasets/dvishal485/meme-challenge?resource=download
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Scene Number Scene Number Scene Number

Schematic diagram 1238 Scientific paper 799 Word 728
Table(filled) 705 Chart 620 Receipts 609
Questions 581 Mathematical formula 475 Product labels 434
Phone screenshot 431 Indoor scenes 395 Industry research reports 343
Poster 264 Street scene 224 ASCII Art 199
Shop sign 189 Financial reports 153 Chemical formula 149
Textbook 148 Magazine 146 Email 111
Web screenshot 99 Details page 95 Verification code 87
Resumes 67 Illustration 61 Newspaper 52
Road signs 43 Menus 31 Notify 30
Questionnaire 29

Table 4: The number of images included in each scene category in public data.

DAST1500 [86], XFUND, ArT2019 [87], ChartQA, CDLA, ICDAR2015, SlideVQA, Fintabnet [88]],
ScienceQA, InfoVQA, COMICS—DialogueEl and ExpressExpense SRIj]El

A.3 Task Definitions

In this section, we introduce the definition of each task, and the visualizations for each task can be
found in Sec.[A.10|

Text Recognition. Text recognition refers to the fundamental OCR ability on text image patches,
which asks LMMs to read the text content. To comprehensively evaluate LMMs’ text recognition
ability across diverse scenarios, our collection incorporates various text types, including regular text,
irregular text, artistic text, handwriting text, digit string text, non-semantic text, occluded text, doc
matrix text, and CAPTCHA text.

Fine-grained Text Recognition. This task requires LLMs to read and comprehend textual content
within the given region. It evaluates LLMSs’ fine-grained perception capabilities in understanding text
in natural scenes and documents.

Full-page OCR. Full-page OCR [29] task requires LMMs to extract and recognize all text content
from the given images. Converting text into digital format facilitates subsequent processing and
analysis of text images.

Text grounding. In this task, users would provide a text string and require LMM:s to locate its specific
location, evaluating LMMs’ fine-grained perception capabilities.

VQA with Position. For VQA with position task, LMMs need to not only respond to the question but
also provide the exact position coordinates that directly correspond to the answer. We ask LMMs to
output both information in JSON format for convenient evaluation, and the coordinates are required
to be normalized with image sizes and scaled to the range of [0, 1000].

Text Spotting. Text spotting task needs LMMs to output the localization and content of all appeared
text simultaneously. Due to the interference of background elements and the large number of text
instances, this task demands high fine-grained perception capabilities from the model. Besides, the
coordinates are required to be normalized with image sizes and scaled to the range of [0, 1000].

Key Information Extraction. The key information extraction task is to extract the necessary
information from densely arranged text. In this task, we provide some desired entities as keys and
demand LMMs to output the corresponding values to form the output JSON string.

Key Information Mapping. In this task, we provide a set of entity keys and their corresponding
values in the prompt. The LMMs are then asked to match and pair these keys with their respective
values into groups.

Zhttps://huggingface.co/datasets/lmms-1lab/M4- Instruct-Data
Phttps://expressexpense.com/blog/free-receipt-images-ocr-machine-learning-dataset/
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Figure 1: Overview of the eight testable text-reading capabilities and associated tasks in
OCRBench v2. Each color represents a distinct capability type.
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Figure 2: The quantity distribution of English tasks of public data.

Handwritten Content Extraction. To investigate the information extraction capabilities of LMMs in
educational scenarios, we collect some Chinese examination papers, containing both printed question
text and handwritten student responses. There are four types of questions in these examination papers,
including single-choice, multiple-choice, true or false, and brief response questions. The prompts
require LMMs to extract the handwritten content for specific questions.

Table Parsing. Table parsing task requires LMMs to parse the given table into structured text,
including Markdown and HTML format.

Chart Parsing. Apart from tables, charts can also be converted to structured information. In this
task, LLMs are required to transform visual charts into JSON format.

Document Parsing. In the document parsing task, both text and the complex elements, including
charts, tables, and formulas, are required to be parsed.

Formula Recognition. This task asks LMMs to recognize the given formula in the LaTeX format.
The collection includes mathematical and chemical formulas.

Math QA. Math QA task evaluates the LMMs’ mathematical calculation ability. In particular, we

render the mathematical problem description and related figures into images and ask LMMs to answer
the questions within the images.

Text Counting. Text counting task is built to evaluate the quantity property perceiving ability of
LMMs, including the character frequency in words and the word counting in the given image.

Cognition VQA. In OCRBench v2, we split text-centric VQA instructions into cognition VQA and
Reasoning VQA based on whether the answers can be directly found in the images. Cognition VQA
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Figure 4: The OCR lines distribution of English tasks of public data.

task refers to the instructions where answers are explicitly present in the given image. This task
evaluates the fundamental text-centric question-answering ability based on visual content.

Diagram QA. In the diagram QA task, LMMs need to respond to the question about the given
diagrams, reflecting LMMs’ ability to understand the relationship between the visual elements.

Document Classification. Document classification task asks LMMs to classify the category of the
given document image. The included categories are letters, forms, emails, handwritten documents,
advertisements, scientific reports, scientific publications, specifications, file folders, news articles,
budgets, invoices, presentations, questionnaires, resumes, and memos.

Reasoning VQA. In reasoning VQA tasks, the answers often do not directly appear in the image.
This forces LMM:s to perform logical reasoning to respond to questions based on visual information.

Science QA. In the Science QA task, LMMs are required to respond to the scientific problem. We use
PaddleOCRl-ﬂ to extract text from the collected images and filter out those with fewer than four OCR
results. Additionally, when extra subject-related knowledge is provided by the source, we incorporate
it by rendering it into the images.

APP Agent. For the APP agent task, LMMs need to understand the relationship between textual
content, icons, and world knowledge to respond to the question from the user, simulating the real-
world application scene.

“https://github.com/PaddlePaddle/Padd1e0CR
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Figure 5: The OCR lines distribution of Chinese tasks of public data.

ASCII Art Classification. We incorporate a recent image classification task that uses images
composed purely of ASCII characters [82]]. This task is included in OCRBench v2 to evaluate LMMs’
ability to assess LMMs’ pattern recognition and visual abstraction abilities.

Text Translation. In the text translation task, LMMSs need to execute translation between Chinese
and English texts, evaluating LMMSs’ semantic understanding abilities.

A.4 Additional Statistics of OCRBench v2

Scene Coverage. Our dataset can be divided into 31 classic scenes according to the scene of the
image. The specific scenes and the corresponding number of pictures are shown in Tab. ]

Statistics of each task. Fig.[T|shows an overview of each task in OCRBench v2.The distribution of
23 tasks in OCRBench v2 is displayed in Fig. [2]and Fig.[3] Additionally, we calculate and present the
average number of OCR text lines per task in Fig. [ and Fig.[5} As illustrated in these figures, the task
distribution is well-balanced, with each task containing adequate textual information for analysis.

A.5 Evaluation Metrics

Parsing Type. We use Tree-Edit-Distance-based Similarity (TEDS) [89] to evaluate parsing tasks,
which require LMMs to transform the images to structured formats. Tree Edit Distance (TED) refers
to the minimum number of edits to transform one tree into another. TEDS is based on TED to
calculate the similarity of two trees. Assuming 77 and T5 are two different trees, T'E D (Ty,T3) refers
to their TED, and the TEDS is defined as:

TED(T,Ts)

TEDS(T). To)=1— —MmM——=~_
T ) =1 = L )

ey

where |T1| and |T5| is the number of nodes of trees, TED(T1,T5) can be calculated by dynamic
programming algorithm. If 7} and 75 are identical, then their TEDS equals 1. As the structural
difference between two trees increases, their TED value becomes larger, resulting in the TEDS
approaching 0.

Localization Type. In the text referring and spotting tasks, LMMs are required to provide regression
bounding boxes of target objects. IoU score is adopted to measure the distance between the predicted
regions and the ground truth.

Intersect(By, Bs)

1oU(B1, Bs3) =
oU(B1, Bs) Union(By, B2)

@

where Intersect(By, By) refers to the overlap area of bounding box B; and By, while
Union(By, By) refers to their union area.
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Extraction Type. The F1 score is used to evaluate LMMs’ relation extraction capability. Given the
predicted and ground truth Key-Value pairs, the F1 score is formulated as follows:

N;
Precision = =2 3
rectsion ) s ( )

N:
Recall = Fj’ 4

P 2 x Precision *x Recall )
mean =
Precision + Recall ’

where N7, No, and N3 denote the number of ground-truth Key-Value pairs, predicted Key-Value
pairs, and correctly matched Key-Value pairs, respectively.

Long Reading Type. To evaluate LMMs’ ability to recognize text across entire paragraphs or pages,
BLEU [90], METEOR [91]], F1 score, and normalized edit distance are employed. And the final
score is the average value of these metrics.

BLEU evaluates prediction quality by comparing n-gram match rates between the prediction and
ground truth sequences. For each n-gram type, precision is calculated as the ratio of matching n-grams
to total predicted n-grams. The final BLEU score is the geometric mean of these precision values
multiplied by a penalty B P, which is defined as:

N
BLEU = BP * exp(z wy, 1og pr), 6)
n=1
1 L,>L
BP=1¢ (w7, (7)
e’ Lo’ L,<L,

where p,, represents the precision of n-grams, L, represents the length of prediction sequence,
L, represents the length of ground truth sequence, w,, is weight factor, usually evenly distributed
(wn = 3. Typically, N is set to 4.

METEOR employs a semantic-aware matching strategy with four levels. 1) Exact Match: words
in the prediction that are identical to the ground truth. 2) Stem match: matching words that have
the same word stem. 3) Synonym Match: matching words based on synonymous relationships. 4)
Paraphrase Match: Matching similar phrases at the phrase level. These matches are combined to
calculate precision and recall, from which a weighted harmonic mean F1 score is derived as:

N, match

Pme eor — Tx7 (8)
’ Npred
Nmatch
Rme eor — ) (9)
t Ny,

10 = Pmeteor * Rmet(zor

F, r = 1
meteo Prcteor + 9 * Roeteor (10)

where Nyatch, Nprea, and Ng; represent the number of matched items, words in prediction, and
words in ground truth, respectively. The final METEOR score is obtained by multiplying the F},,ctcor
by the penalty adjustment factor. The calculation is formulated as follows:

METEOR = Fmeteor * (1 - Bpmeteor)a (11)
Nchunk:

BPpeteor = 0.5 * , (12)
! Nmatch

where N¢p i refers to the number of contiguous matching phrases. More chunks indicate greater
word order differences, resulting in a heavier penalty.
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The calculation method of the F1 score in long reading metrics follows the same approach as discussed
in extraction metrics, as shown in Equations [3] 4} [5]

Normalized Edit Distance (NED) measures string similarity by computing the minimum number of
operations needed to transform one string into another. And then NED is normalized by the length of
the longer string. The calculation is formulated as follows:

ED(Sq,52)
max(len(Sh), len(S2))

NED(S,,852) = (13)

where ED(Sy, S2) represents the edit distance between the prediction string .57 and the ground truth
Sa. The N ED value of 0 indicates identical strings, while 1 indicates completely different strings.

Counting Type. In OCRBench v2, character frequency counting and word counting tasks are included.
For character frequency, we use exact match evaluation since the answers are typically single-digit
integers. For word counting, we evaluate using the L1 distance between predicted and ground truth
counts, normalized to [0, 1] based on the ground truth. This can be formulated as follows:

0 Cp'r'ed <0
score = 1— W) 0 < Cpreda <2%Cgy (14)
0 Cpred Z 2% th

where Cy,,..q and Cg; denote the predicted count and ground truth count, respectively.

Basic VQA Type. The remaining tasks in OCRBench v2 are basic VQA types, and we employ
different evaluation metrics based on question types. For multiple-choice questions, we use exact
matching between predictions and answer options. In other cases, we check whether the ground truth
is contained in the prediction for answers shorter than 5 words, and use ANLS for longer answers.

A.6 Experimental setting

The detailed public data construction are shown in Sec. and Sec. Private data consists of
unlabeled images collected manually from websites and real life. At the same time, we annotated and
checked the private test set to ensure the quality. The environment configuration of each open-source
model experiment strictly complies with the official version and uses the official pre-trained model
and inference code. The model parameters of the open-source model and the API parameters of the
closed-source model use the official default parameters for fair. Specifically, we use the official API
versions: GPT-4o (gpt-40-2024-08-06), GPT-40-mini (gpt-40-mini-2024-07-18), and Gemini 1.5 Pro
(geminil.5-pro-002).

A.7 Compute resources

Evaluations of open-source models were conducted on 8xNVIDIA GeForce RTX 4090 (24GB) and a
NVIDIA H800 Tensor Core GPU (80GB). The closed-source experiments obtained the results by
calling the official APL

A.8 Results and Discussions

Tab. [5] Tab.[6] Tab.[7] and Tab. [§]exhibit the results of 39 open-source models and 5 closed-source
models on the public and private test sets of OCRBench v2

Evaluation results on public data are shown in Tab. [5|and Tab. [6] Most LMMs performed well in
tasks such as Understanding, Recognition, Extraction, which shows that current models have basic
OCR capabilities. However, they performed poorly in tasks such as Referring, Spotting, Parsing, and
Calculation. The scores of all models are basically below 50 points, which shows that the models still
lack the ability in text localization, logical reasoning, and understanding complex elements.

Evaluation results on private data are shown in Tab.|7|and Tab. 8| The performance trends of the
models on private and public datasets are consistent. In addition, most models perform worse on
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Method Recognition ~ Referring Spotting Extraction Parsing Calculation  Understanding Reasoning Average

Open-source LMMs

LLaVA-Next-8B [92] 41.3 18.8 0 49.5 21.2 17.3 55.2 48.9 31.5
LLaVA-OV-7B [93] 46.0 20.8 0.1 58.3 253 23.3 64.4 53.0 36.4
Monkey [94] 35.2 0 0 16.6 16.3 14.4 59.8 42.3 23.1
TextMonkey [93] 39.1 0.7 0 19.0 12.2 19.0 61.1 40.2 23.9
XComposer2-4KHD [96] 45.1 21.8 0.1 159 11.7 15.7 66.8 459 279
Molmo-7B [97] 52.4 21.3 0.1 455 7.6 28.5 65.3 55.0 34.5
Cambrian-1-8B [98] 453 21.5 0 53.6 19.2 19.5 63.5 55.5 34.7
Pixtral-12B [99] 48.9 21.6 0 66.3 355 29.8 66.9 53.7 40.3
EMU2-chat [100] 42.1 0.2 0 12.5 8.1 11.2 42.7 334 18.8
mPLUG-Ow13 [101] 41.6 14.0 0.6 244 10.9 11.1 522 46.0 25.1
CogVLM-chat [102] 50.9 0 0 0.2 8.4 15.0 58.1 41.7 21.8
Qwen-VL [103] 34.6 7.5 0 18.2 20.0 8.1 57.2 41.1 23.3
Qwen-VL-chat [103] 345 4.1 0 25.9 14.0 13.8 55.7 39.5 23.4
Qwen2-VI-7B [6] 72.1 479 17.5 82.5 25.5 25.4 78.4 61.5 514
Qwen2.5-VL-7B [104] 68.8 25.7 1.2 80.2 304 38.2 73.2 56.2 46.7
InternVL2-8B [105] 49.9 23.1 0.5 65.2 24.8 26.7 73.5 52.9 39.6
InternVL2-26B [105] 63.4 26.1 0 76.8 37.8 323 794 58.9 46.8
InternVL2.5-8B [7] 59.0 25.0 14 71.5 35.1 29.4 753 57.2 45.0
InternVL2.5-26B [7] 65.6 26.1 1.6 86.9 36.2 374 78.3 62.9 494
InternVL3-8B [7] 68.6 30.4 8.8 85.3 34.0 27.1 71.5 60.3 49.0
InternVL3-14B [7] 67.3 36.9 11.2 89.0 38.4 38.4 79.2 60.5 52.6
Deepseek-VL-7B [106] 37.1 15.4 0 23.5 14.6 20.8 53.3 52.9 27.2
Deepseek-VL2-Small [107] 62.7 28.0 0.1 71.5 32.7 14.3 77.1 53.9 433
MiniCPM-V-2.6 [108] 66.8 6.0 0.8 62.0 28.8 324 73.7 52.1 40.3
MiniCPM-0-2.6 [108] 66.9 29.5 0.5 70.8 334 31.9 69.9 57.9 45.1
GLM-4V-9B [109] 61.8 22.6 0 71.7 31.6 22.6 72.1 58.4 42.6
VILA1.5-8B [110] 353 15.5 0 21.1 12.7 17.3 46.3 40.3 23.6
LLaVAR [70] 37.3 0 0 1.0 9.9 12.3 34.6 27.0 15.3
UReader [111] 22.4 0.1 0 0 9.2 79 41.0 29.1 13.7
DocOwl2 [112] 24.0 9.7 0 13.4 13.5 8.8 53.7 32.0 19.4
Yi-VL-6B [113] 28.9 2.9 0 9.7 12.9 15.8 36.1 32.0 17.3
Janus-1.3B [114] 46.1 0 0 0.2 14.5 13.5 36.0 39.1 18.7
Eagle-X5-7B [115] 34.7 17.8 0 21.7 20.6 21.5 61.0 42.6 27.5
Idefics3-8B [116] 23.8 13.2 0 63.2 23.8 23.0 65.8 449 322
Phi-4-MultiModal [117] 63.7 16.4 0 40.4 19.1 18.3 69.8 53.9 35.2
SAIL-VL-1.6-8B [118] 67.7 28.6 2.8 70.5 259 29.5 73.9 59.7 44.8
Kimi-VL-A3B-16B [119] 56.5 13.8 0 59.2 33.8 329 75.5 56.7 41.1
Ovis1.6-3B [120] 59.2 14.3 0 65.0 32.1 29.0 69.8 56.8 40.8
Ovis2-8B [120] 73.2 24.6 0.7 62.4 44.8 40.6 727 62.6 47.7
Closed-source LMMs
GPT-4o [8] 61.2 26.7 0 71.5 36.3 434 71.1 55.5 46.5
GPT-40-mini [121] 57.9 23.3 0.6 70.8 31.5 38.8 65.9 55.1 43.0
Gemini-Pro [9] 61.2 39.5 135 79.3 39.2 47.7 75.5 59.3 519
Claude3.5-sonnet [122] 62.2 28.4 1.3 56.6 37.8 40.8 73.5 60.9 452
Step-1V [10] 67.8 31.3 72 73.6 37.2 27.8 69.8 58.6 46.7

Table 5: Evaluation of existing LMMs on English tasks of OCRBench v2’s public data. “Recog-
nition”, “Referring”, “Spotting”, “Extraction”, “Parsing”, “Calculation”, “Understanding”, and
“Reasoning” refer to text recognition, text referring, text spotting, relation extraction, element parsing,
mathematical calculation, visual text understanding, and knowledge reasoning, respectively. Higher
values indicate better performance. Best performance is in boldface, and the second best is underlined.
The notations apply to all subsequent figures.

private datasets than on public datasets, which shows that private data may be more challenging for
LMMs due to the lack of training, and also reflects the importance of private data construction.

A.9 Potential Factors Affecting OCR Capabilities

High-Res Visual Encoders. Since text often appears small in images, the resolution setting of the
visual encoder could be a key factor affecting the text perception ability [94]. Here we change the
input resolution of the LMMs and observe the performance changes. In particular, InternVL2-8B is
chosen, and the resolution setting includes 448, 896, and dynamic. Tab. E]lists the results. Indeed,
when the input resolution increases from 448 to 896, the performance increases by 4.1%.

Pre-provided OCR Information. To study the impact of OCR information, we use PaddleOCRE] to
pre-extract OCR results and incorporate them with prompts. Tab.|[10[shows the results. We observe
that adding OCR information does not help much. This suggests that OCRBench v2 evaluates LMMs
capabilities across multiple dimensions, rather than solely focusing on text recognition abilities.

“https://github.com/PaddlePaddle/Padd1e0CR
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264
265
266

267

274

Method LLM Size Recognition Extraction Parsing Understanding Reasoning Average
Open-source LMMs

LLaVA-Next-8B [92] 8B 5.7 2.9 12.2 7.5 17.2 9.1

LLaVA-OV-7B [93] 8B 14.8 15.7 13.7 16.0 28.7 17.8
Monkey [94] 8B 4.6 11.2 8.4 21.5 20.0 13.1
TextMonkey [95] 8B 23.5 14.8 8.4 19.9 12.2 15.8
XComposer2-4KHD [96] 7B 16.7 18.8 12.1 27.5 2.3 15.5
Molmo-7B [97] 8B 7.1 15.0 9.2 9.0 23.7 12.8
Cambrian-1-8B [98] 8B 5.3 14.9 12.6 8.5 8.1 9.9
Pixtral-12B [99] 12B 13.4 10.9 21.0 7.0 20.7 14.6
EMU2-chat [[100] 37B 2.3 0.5 8.5 1.0 7.3 3.9
mPLUG-Ow13 [101] 8B 6.6 17.9 9.7 6.0 26.1 13.3
CogVLM-chat [102] 7B 5.5 10.0 9.8 1.5 2.5 5.9
Qwen-VL [103] 8B 7.2 53 10.7 11.5 11.2 9.2
Qwen-VL-chat [103] 8B 9.5 8.2 9.3 11.0 21.1 11.8
Qwen2-VI1-7B [6] 7B 51.3 51.4 21.6 52.5 37.5 429
Qwen2.5-VL-7B [104] 7B 75.3 61.4 41.8 59.3 40.4 55.6
InternVL2-8B [105] 8B 20.6 45.2 23.2 54.4 38.1 36.3
InternVL2-26B [105] 26B 21.9 46.0 34.8 50.9 34.8 37.7
InternVL2.5-8B [7] 8B 52.8 52.8 28.6 56.4 40.5 46.2
InternVL2.5-26B [7] 26B 324 56.1 32.6 56.3 43.6 44.2
InternVL3-8B [7] 8B 68.9 62.0 31.6 57.9 47.3 53.5
InternVL3-14B [7] 14B 66.2 64.8 33.5 63.4 50.6 55.7
Deepseek-VL-7B [106] 7B 8.0 13.3 15.7 5.5 18.5 12.2
Deepseek-VL2-Small [107] 16B 60.9 50.6 28.3 53.0 20.5 42.7
MiniCPM-V-2.6 [108] 8B 51.0 29.9 21.2 34.0 33.6 33.9
MiniCPM-0-2.6 [108] 7B 53.0 49.4 27.1 435 32.7 41.1
GLM-4V-9B [109] 9B 24.4 60.6 20.4 52.8 25.2 36.6
VILA1.5-8B [110] 8B 54 8.8 8.5 3.0 15.5 8.2
LLaVAR [70] 13B 2.3 1.7 8.9 0 2.5 3.1

UReader [111] 7B 6.8 2.7 8.4 2.5 7.2 5.5

DocOw12 [112] 7B 4.2 10.3 8.6 4.0 9.6 7.3

Yi-VL-6B [113] 6B 4.8 4.4 8.5 4.0 25.0 9.4
Janus-1.3B [114] 1.3B 7.6 8.7 11.4 4.5 10.7 8.6
Eagle-X5-7B [115] 8B 7.5 12.0 11.6 5.0 19.2 11.1
Idefics3-8B [116] 8B 7.0 15.5 15.9 9.0 18.1 13.1
Phi-4-MultiModal [117] 5.6B 51.5 323 12.1 344 23.0 30.7
SAIL-VL-1.6-8B [118] 8B 31.2 40.0 23.9 423 35.0 34.5
Kimi-VL-A3B-16B [119] 16B 57.2 54.7 31.5 52.5 314 45.5
Ovis1.6-3B [120] 3B 11.5 23.7 22.8 28.8 18.9 21.1
Ovis2-8B [120] 7B 72.2 50.8 37.7 479 37.4 49.2

Closed-source LMMs

GPT-4o0 [8] - 21.6 53.0 29.8 38.5 18.2 322
GPT-40-mini [121] - 13.1 38.9 27.2 28.8 16.9 25.0
Gemini-Pro [9] - 52.5 473 30.9 51.5 33.4 43.1
Claude3.5-sonnet [[122] - 21.0 56.2 352 55.0 30.5 39.6
Step-1V [10] - 56.7 41.1 37.6 38.3 39.2 42.6

Table 6: Evaluation of existing LMMs on Chinese tasks of OCRBench v2. “LLM Size” indicates
the number of parameters of the language model employed in each method.

Connection Between OCR and LLMs. We further explore a direct pipeline by first extracting OCR
information and then by feeding it directly into Qwen2.5. Unlike LMMEs, this pipeline separates
OCR and language modeling into distinct stages. The results shown in Tab. [I0|suggest that Qwen2-
VL-7B outperforms Qwen2.5 with OCR information, demonstrating LMMSs’ remarkable ability to
incorporate both textual and visual features efficiently.

A.10 Samples for Each Task

As show in Fig.[6]to Fig.[T4], there are 23 OCR tasks included in OCRBench v2. Among them, Fig. [6]
to Fig. [I2] present examples of English tasks, including text recognition, diagram QA, text counting,
formula recognition, math QA, VQA with position, ASCII art classification, reasoning VQA, text
translation, APP agent, table parsing, cognition VQA, document classification, science QA, chart
parsing, key information extraction, full-page OCR, text spotting, fine-grained text recognition, text
grounding, key information mapping, and document parsing. These figures show corresponding
images and QA pairs for each of the 23 tasks. Fig. [I3]to Fig.[T4]provide examples of Chinese tasks,
including key information extraction, text translation, formula recognition, reasoning VQA, cognition
VQA, handwritten content extraction, document parsing, full-page OCR, and table parsing, along
with their associated images and QA pairs.
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279
280
281
282
283
284
285
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287

289
290
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292
293
294
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296

Method Recognition ~ Referring Spotting Extraction Parsing Calculation  Understanding Reasoning Average

Open-source LMMs

LLaVA-Next-8B [92] 41.4 17.0 0 49.0 12.9 16.1 60.9 30.5 28.5
LLaVA-OV-7B [93] 454 18.5 0 60.0 15.5 32.0 59.0 39.3 33.7
Monkey [94] 31.5 0.1 0 34.4 26.3 17.7 61.4 22.4 24.2
TextMonkey [93] 39.8 1.6 0 27.6 24.8 10.2 62.3 21.2 234
XComposer2-4KHD [96] 39.5 12.0 0 69.7 26.0 20.2 68.2 35.8 339
Molmo-7B [97] 40.8 19.5 0 51.7 10.0 339 67.0 48.0 339
Cambrian-1-8B [98] 44.0 19.0 0 52.3 19.0 20.7 64.0 39.3 32.3
Pixtral-12B [99] 45.1 21.8 0 71.6 21.7 30.4 77.3 39.5 38.4
EMU2-chat [100] 34.3 0 0 20.4 21.3 20.3 47.1 18.3 20.2
mPLUG-Ow13 [101] 349 17.0 0 12.0 14.9 24.1 50.7 25.5 224
CogVLM-chat [102] 40.8 0 0 1.6 18.6 10.9 60.2 26.8 19.9
Qwen-VL [103] 359 4.2 0 38.7 28.5 13.8 60.1 16.9 24.8
Qwen-VL-chat [103] 34.1 12.6 0.1 42.6 19.5 18.4 58.3 20.3 25.7
Qwen2-VI-7B [6] 47.0 42.0 1.5 90.2 13.7 36.4 71.1 36.6 423
Qwen2.5-VL-7B [6] 51.5 24.5 3.1 64.8 13.1 53.3 78.6 455 41.8
InternVL2-8B [105] 43.0 21.6 0 70.2 19.2 35.6 65.9 33.6 36.1
InternVL2-26B [103] 56.0 21.2 0 80.5 239 40.3 72.1 40.7 41.8
InternVL2.5-8B [7] 48.9 21.2 0 82.1 20.3 41.2 67.8 423 40.5
InternVL2.5-26B [7] 53.5 21.4 0 84.0 21.4 51.5 67.5 41.5 42.6
InternVL3-8B [7] 49.7 22.3 0.2 86.8 22.4 57.0 70.7 53.0 453
InternVL3-14B [7] 55.8 24.5 2.1 89.3 21.0 59.5 72.0 50.0 46.8
Deepseek-VL-7B [106] 335 13.7 0 19.1 11.7 24.8 60.5 325 24.5
Deepseek-VL2-Small [107] 56.6 23.7 0 86.4 18.9 30.6 722 39.5 41.0
MiniCPM-V-2.6 [108] 52.2 18.6 0.3 45.8 19.6 20.9 68.9 37.3 33.0
MiniCPM-0-2.6 [108] 54.1 24.7 0.3 74.4 17.6 39.2 75.7 47.0 41.6
GLM-4v-9B [109] 52.7 20.6 0 79.4 15.9 21.5 74.7 32.0 37.1
VILA1.5-8B [110] 36.0 14.5 0 26.0 17.4 20.3 44.7 27.0 23.2
LLaVAR [70] 13.8 0 0 8.3 15.2 44 424 15.0 124
UReader [111] 20.9 0 0 0 20.7 11.3 39.0 20.8 14.1
DocOwl2 [112] 254 7.5 0 47.1 26.2 8.3 52.8 19.5 23.4
Yi-VL-6B [113] 31.1 4.0 0 234 22.5 18.1 43.0 15.5 19.7
Janus-1.3B [114] 32.6 0 0 0.3 13.0 18.4 32.1 17.9 14.3
Eagle-X5-7B [115] 34.6 18.5 0 9.7 18.5 24.0 63.1 37.0 25.7
Idefics3-8B [116] 374 13.0 0 28.9 19.4 21.1 65.4 21.8 26.0
Phi-4-MultiModal [117] 58.4 19.0 0 53.5 38.7 28.7 66.8 39.8 38.1
SAIL-VL-1.6-8B [118] 56.7 24.1 22 79.3 22.8 454 69.2 453 43.1
Kimi-VL-A3B-16B [119] 49.1 13.5 0 28.8 21.9 37.6 69.4 36.2 32.1
Ovis1.6-3B [120] 48.5 19.5 0 69.2 20.7 22.1 74.6 49.5 38.0
Ovis2-8B [120] 54.2 20.9 0 83.6 24.2 54.7 74.1 57.3 46.1
Closed-source LMMs
GPT-4o [8] 58.6 234 0 87.4 23.1 51.6 74.4 62.3 47.6
GPT-40-mini [121] 55.3 21.8 0 85.4 20.6 452 75.5 49.0 44.1
Geminil.5-Pro [9] 59.1 41.2 6.6 89.5 22.4 54.7 78.8 60.3 51.6
Claude3.5-sonnet [122] 529 249 2.5 86.9 23.8 614 744 53.0 47.5
Step-1V [10] 56.7 27.4 2.6 86.3 333 42.6 76.6 48.7 46.8

Table 7: Evaluation of existing LMMs on English tasks of OCRBench v2’s private data.

A.11 Samples for LMMs’ Limitations

Fig.[15]to Fig. [I7] provide examples corresponding to the findings discussed in Sec. 5.3 of the main
text, which show error results of GPT-40 [8], Monkey [94], and Qwen2VL-8B on various tasks
in OCRBench v2. These examples highlight the current limitations of LLMs on OCR tasks. For
instance, LLLMs exhibit poor recognition of less frequently encountered texts, struggle to accurately
locate text in tasks involving text and coordinates, and demonstrate insufficient perception of text in
complex layouts such as rotated texts. Additionally, their logical reasoning abilities are limited when
addressing mathematical problems, and their analysis of complex elements in charts remains weak.
These are the capabilities of LLMs in OCR tasks that require further improvement.

A.12 Broader Impacts

Our benchmark aims to enhance the evaluation of LMMs in text-oriented visual comprehension tasks.
By establishing comprehensive benchmarks that reveal deficiencies in models’ OCR capabilities,
we provide insights for improving model performance. This advancement will elevate processing
efficiency across scenarios such as document automation, assisted reading tools, and complex layout
analysis, thereby benefiting applications in domains like healthcare and education. However, enhanced
OCR functionality also introduces risks of misuse, including unauthorized extraction of sensitive
information from images, surveillance-related applications, or generation of forged documents. To
mitigate these risks, we restrict the use of this benchmark solely to research purposes and urge the
community to prioritize privacy and fairness considerations in future model development.
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Method LLM Size Recognition Extraction Parsing Understanding Reasoning Average

Open-source LMMs

LLaVA-Next-8B [92] 8B 2.8 0.9 14.9 20.0 7.4 9.2
LLaVA-OV-7B [93] 8B 54 13.6 20.3 34.0 13.6 17.4
Monkey [94] 8B 1.5 28.4 29.1 40.0 8.3 21.5
TextMonkey [95] 8B 10.5 15.2 30.2 44.0 7.6 21.5
XComposer2-4KHD [96] 7B 12.9 38.6 375 60.0 13.1 324
Molmo-7B [97] 8B 34 29.8 6.6 24.0 11.1 15.0
Cambrian-1-8B [98] 8B 24 19.8 26.7 36.0 7.6 18.5
Pixtral-12B [99] 12B 6.2 22.3 114 26.0 14.0 16.0
EMU2-chat [100] 37B 1.2 3.0 29.3 4.0 3.6 8.2
mPLUG-OwI3 [101] 8B 1.6 27.4 27.3 16.0 10.0 16.5
CogVLM-chat [102] 7B 2.4 16.2 22.5 20.0 3.1 12.8
Qwen-VL [103] 8B 4.3 0 30.6 38.0 5.1 15.6
Qwen-VL-chat [103] 8B 9.1 3.6 18.9 44.0 7.1 16.5
Qwen2-VI-7B [6] 7B 23.7 63.5 27.9 80.0 28.5 447
Qwen2.5-VL-7B [6] 8B 24.4 78.9 33.1 82.0 29.0 49.5
InternVL2-8B [105] 8B 35.2 42.8 26.1 78.0 24.4 41.3
InternVL2-26B [105] 26B 20.4 50.7 29.0 76.0 14.5 38.1
InternVL2.5-8B [7] 8B 42.8 47.9 27.3 80.0 23.5 44.3
InternVL2.5-26B [7] 26B 40.2 42.7 25.6 74.0 27.0 41.9
InternVL3-8B [7] 8B 57.7 55.8 29.9 72.0 29.4 49.0
InternVL3-14B [7] 14B 62.1 59.5 33.2 80.0 29.2 52.8
Deepseek-VL-7B [106] 7B 32 14.7 10.7 30.0 9.8 13.7
DeepSeek-VL2-Small [107] 16B 51.6 56.3 27.8 79.6 25.3 48.1
MiniCPM-V-2.6 [108] 8B 53.1 53.2 32.8 76.0 23.4 47.7
MiniCPM-0-2.6 [108] 7B 54.0 62.4 24.1 68.0 29.8 47.7
GLM-4v-9B [109] 9B 60.6 65.2 324 82.0 18.2 51.7
VILA1.5-8B [110] 8B 1.4 9.1 22.2 16.0 6.4 11.0
LLaVAR [70] 13B 2.2 2.0 27.1 10.0 1.9 8.6
UReader [111] 7B 0.3 2.0 28.1 12.0 24 9.0
DocOwI2 [112] 7B 1.0 17.8 29.4 20.0 39 14.4
Yi-VL-6B [113] 6B 1.6 6.4 28.8 10.0 53 10.4
Janus-1.3B [114] 1.3B 4.1 2.2 10.4 14.0 6.7 7.5
Eagle-X5-7B [115] 8B 1.9 16.1 13.6 22.0 8.1 12.3
Idefics3-8B [116] 8B 2.9 29.0 12.3 26.0 7.9 15.6
Phi-4-MultiModal [117] 5.6B 30.5 40.5 42.7 56.0 16.9 37.3
SAIL-VL-1.6-8B [118] 8B 35.8 41.5 35.7 76.0 23.9 42.6
Kimi-VL-A3B-16B [119] 16B 54.0 71.1 32.5 84.0 28.7 54.1
Ovis1.6-3B [120] 3B 22.5 33.3 31.5 54.0 17.0 31.7
Ovis2-8B [120] 7B 61.0 67.7 43.6 82.0 25.6 56.0
Closed-source LMMs
GPT-4o [8] - 41.7 52.1 29.0 76.0 29.4 45.7
GPT-40-mini [121] - 20.0 53.6 27.9 66.0 19.6 374
Geminil.5-Pro [9] - 714 63.8 30.5 82.0 29.9 55.5
Claude3.5-sonnet [122] - 34.2 62.5 35.2 78.0 322 48.4
Step-1V [10] - 65.2 64.9 33.1 78.0 25.5 53.4

Table 8: Evaluation of existing LMMs on Chinese tasks of OCRBench v2’s private data.

Method Resolition ~ Recognition Referring Spotting Extraction Parsing Calculation  Understanding Reasoning Average
448 47.3 19.1 0.1 52.8 27.3 25.4 61.1 49.1 35.3
InternVL2-8B [105] 896 48.7 23.0 0.5 66.2 26.2 25.9 732 51.9 39.4
dynamic ~ 49.9 23.1 0.5 65.2 24.8 26.7 73.5 52.9 39.6

Table 9: Evaluation of InternVL2-8B with different resolution settings on the English tasks of
OCRBench v2’s public data.

Method Recognition  Referring Spotting Extraction Parsing Calculation ~ Understanding Reasoning Average
Qwen2-VL-7B [6] 72.1 47.9 17.5 82.5 255 254 78.4 61.5 514
Qwen2-VL-7B+OCR  69.8 50.4 20.1 79.1 29.4 28.0 711 60.0 51.8
Qwen2.5-8B+OCR 28.6 13.8 0 459 242 31.3 61.1 40.5 30.7

Table 10: Evaluation of Qwen2-VL-7B and Qwen2.5-7B with pre-provided OCR information on
English tasks of OCRBench v2’s public data.
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Text Recognition

8 What is written in the image?
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-1 avenue

Text Counting

@ Character Counting ! ® Word Counting
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& 'é Plankton
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Formula Recognition :
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IT [w] | [4i] [z] | additional explanation. H
1

'

'

'

'

'

1

'

'

@ "answers": "WILD BOAR™
- "bbox": [609,708,698,745] {== = | | ~~~~~~~~~ |
/00--000"™ -00---00-" | &, train

Reasoning VGA f

Please translate the text shown in the
image to Chinese. Please provide the
translated content directly.

‘Which way is it to the museum?

right

Figure 6: Samples for each task.

A.13 Limitations

One challenge we encountered is that LMMs sometimes produce responses that deviate from the
given instructions, making it difficult to extract the desired answers. In future work, we plan to
develop a more objective assessment framework to address this issue.

Another limitation arises when evaluating commercial LMMs, as some models occasionally refuse to
answer certain questions due to safety filters or unclear content policies. This can lead to incomplete
or biased performance assessments compared to open-source models that do not exhibit such behavior.
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TGO ¥ ni

<« My Recipes
b - ‘ 5 8 What's the name of the chef who received four and a
] half stars on the recipe?

i
H

H

H

H

H

H

H

H

H

H

H

H

1

H

H

H

H

H

i

H

H .

H -
' Healthy Carrot Cake
! lard: . N
: Ak Ak
H

1

i

1

H

H

H

H

H

H

H

H

H

H

H

H

H

1

H

H

1

@ oorsorarne
Y - sberenter
o

e 8
Recognize the table in the presented picture and
L i represent it in the markdown-format.
Aot Anost (%)
(inhousens, exceptpecetzges
Interestncome. $0,182 $13281 16901 127
e epme §13 % (0% @ |y b
Oterincomefexpese et $1460 e 0T ) | aoo .
Fiscal years ended July 31, | | | [\n| - | === | - | == | == [\n|
| 2019|2018 | Change | |\n| | Amount | Amount | ($) | (%)
|\n| | | (In thousands, except percentages) | | [\n| Interest
income | $30,182 | $13,281 | 16,901 | 127 [\n| Interest
expense | $(17,334) | $(6,442) | (10,892) | 169 |\n| Other
income (expense), net | $(1,867) | $509 | (2,376) | (467) |

Table Parsing

MPG in highway?

.
- ‘ ’_ﬁ What car should I look at that has a fuel economy of 30

2021 Toyota GR Supra 3.0 Premium Auto (Natl)

Figure 7: Samples for each task.
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Document Classification

‘What type of document is the image? Here is the options:

5 -6 E sssni letter, form, email, handwritten, advertisement, scientific
[ ST o T WO R T report, scientific publication, specification, file folder, news
[ QP — article, budget, invoice, presentation, questionnaire, resume,

¥ “z G i B memo. Directly output the results without any additional
0 i explanation.

T T e e

ek 6 % mon s £ 37 s . e . B . 5
oI b it s s o s i et (9000, i ot Questionnaire
s Tt o s M SRR RN
s '

T e

b

Science QA

Natty Bumppo Danler Boone

Based on the information from the provided image, answer the
following question: Based on the Venn diagram, what do Natty
Bumppo and Daniel Boone have in common? Here are the
choices: 'Both fought in the French and Indian War.', 'Both were
created by writer James Fenimore Cooper.'. Please output the
answer directly.

® character from
adventure
stories

© fought in the
French and
Indian War

@ real-life pioneer

created by
writer James
Fenimore
Cooper

© American
frontiersman
in the late
1700s

‘al Both fought in the French and Indian War.
::::1 gr:phll: organizers aD
plllc onf:mur is a chart or picture that shows how ideas, facts, or

et to one another. When you read, look for graphic
organizers included n the text. You can use these images to find key

information that you've read. Doing this can help you think about the ideas
in the text and easily review them. When you write, you can use graphic
organizers to organize your thoughts and plan your writing.

Figure 8: Samples for each task.
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8 Convert the key information in the chart into a nested python dict.

&

tm {'title": 'Exploring Delicacies Around the World',
) 'source': 'Source: Food and Travel Magazine',
'x_title': 'None',
'y_title'": ['None', 'None'],
'values": {
'Cuisine Varieties': {
'Africa': '150",
'Asia': '180,
'Europe': 200",
'North America": '240',
'South America': '300'

1
'Growth Rate': {
'Africa': '10.0%',
'Asia'; '12.0%',
'Europe': '15.0%,
"North America': '18.0%,
'South America': '20.0%'

'Local Preference': {
'Africa': '25.0%,
'Asia": '30.0%),
'Europe': '35.0%',
'North America": '40.0%',
'South America': '45.0%’} } }

Key Information Extraction

Find out the value of 'Serving Size', 'Calories/Energy per serving',
'Total Fat per serving', 'Total Fat % daily value/intake', 'Sodium
per serving', 'Sodium % daily value/intake', 'Carbohydrate per
serving', 'Carbohydrate % daily value/intake', 'Protein per serving'
stated in the image. Extract the required information using the text
in the image directly, and return the result in a dict with keys 'SS',
'CE-PS', 'TF-PS', 'TF-D', 'SO-PS', 'SO-D', 'CAR-PS', 'CAR-D/,
'PRO-PS'.

"Ea {ss ['1/2 cup (122g)']
'SS': ['1/2 cup (122¢)],
an 'CE-PS"; [90],
“TF-PS': ['0g’],
“TE-D": ['0%"],
'SO-PS": [0mg’],
'SO-D': ['0%],
'CAR-PS'; [21g’],
'CAR-D': ['7%],
'PRO-PS": ['less than 1g’]

Figure 9: Samples for each task.
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)

Read all the text in the image. Directly output the content and
split the texts with space.

SURREALISM, ABSTRACTION\n& THE UNCONSCIOUS\nIn
the 1920s, while a student at Yale, Rothko took\nphilosophy and
psychology classes that led to his\ninterest in the unconscious and
eventually to Sigmund\nFreud's The Interpretation of Dreams. Then,
in the '40s,\nlike many American artists, he came under the
influence\nof European Surrealist artists and writers living in
New\nYork. Many artists also found inspiration in the Museum\nof
Modern Art's influential 1936 exhibition, Fantastic Art,\nDada and
Surrealism.\nBy the mid-1940s, Rothko loosened up his
technique,\ninspired by the Surrealist method of
automatism\n(\"automatic\" drawing or writing). Unlike
some\nSurrealist artists, such as Salvador Dali, who

\"pictured\" ious dreams in painti Surrealists
using\nautomatism tried to access the unconscious by letting\nthe
brush meander freely without planning or control.\nRothko
experimented with the fluidity of watercolor and\nsoon realized he
could achieve similar luminous effects\nin oil paint by diluting the
pigment and applying color in\nthin washes, one on top of another.
Rothko's imagery also\nchanged. Many works suggest
paleontology and geology\nand evoke a vision of primordial life.
Water seems to be\na primal element in which biomorphic shapes
proliferate.\nSome compositions include stacked horizontal zones
that\nmay stand for layers of the unconscious.

Spotting all the text in the image with word-level. Output the
normalized coordinates of the left-top and right-bottom corners of
the bounding box and the text content. The coordinates should be
normalized ranging from 0 to 1000 by the image width and
height.\nYour answer should be in the following format:

[(x1, y1, X2, y2, text content), (x1, y1, X2, y2, text content)...] #
The normalized coordinates and the content of the text in the
image.

543, 770, 589, 794, 49-0223A,

545, 731, 580, 760, 502,

309, 594, 666, 641, YELLOWSTONE,
417, 160, 554, 198, TOUR

Figure 10: Samples for each task.
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Recognize the text within the [192, 223, 332, 346] of the i
image. The coordinates have been normalized ranging from 0 i
to 1000 by the image width and height. i

DIOS LE ABRE CAMINO\\n
AL HOMBRE\\n
QUE SABE A DONDE VA

Where is the region of the text 'COMNAM'? Output the i
normalized coordinates of the left-top and right-bottom E
corners of the bounding box. The coordinates should be '
normalized ranging from 0 to 1000 by the image width and E
height. 1
Your answer should be in the following format: i
(x1, yl, x2, y2) # xI, yl, x2, y2 are the normalized H
coordinates of the bounding box. ;

[126,537,248,624]

According to the information in the image, please pair the
corresponding keys and values below: Keys that need to be paired
are 'Serving Size', 'Calories/Energy per 100g/ml', 'Carbohydrate
per serving', 'Protein per 100g/ml', 'Total Fat per serving',
'Carbohydrate per 100g/ml', 'Total Fat per 100g/ml', 'Protein per
serving'. Values that need to be paired are '0.8 g', '11.0 g', '200ml
(1 cup)', '10.0 g, '1.6 g, '49 keal(206 kJ),'5.0 g, '5.5 g'.

{"Calories/Energy per 100g/ml": "49 kcal(206 kJ)"
"Protein per serving": "10.0 g"
"Protein per 100g/ml": "5.0 g"
"Total Fat per serving": "1.6 g"
"Total Fat per 100g/ml": "0.8 g"
"Carbohydrate per serving": "11.0 g"
"Carbohydrate per 100g/ml": "5.5 g"
"Serving Size": "200ml (1 cup)*}

Figure 11: Samples for each task.
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We descibe a winning strategy for Alice with A(G) colours n the [B. Aledze

colouring game played on G.
“The only unsafe edesane the st edgesof pending abjets and he
Alice may arbitrarily munber the pending abjects Oy, Os...., O aud per.
7 with only

small extensions, as described n the ollowing,

o 16 Bob colours the matching edge of the pending object 0, then, if this
Alie col

with the same colour (if possible,or a new colour otherwise): otherwise,
Alice colours a star edge of the pending object 01 s - with the
same colour, if possible, I i is ot possible, she wses & new colour for
such a sar edge

o 16 Bob colouss thefrst star e of the pending object 0; and there i stil
 pending object with only uncoloured star edges, then Alice colours the

matching edge of the pending bject Oy o . with the same colonr.
17 the matching odge i already cloured, then Alico misses her .

o If Bob colons the first star odge of the pending object O, and ther is
10 pending object with uly uncolonre st s ft, then Alice colours
e with a new colour (i vz s sl uncoloured) or mises ber tu (f e i
aleady coloured).

o 16 Bob colours the edge vz, an edge vz or the second star edge of the
pending object (a trimngle) O, then Alce misses her turn,
16 Bob colons an odge 2u,, then Alie colours vz (i v2 s still ucoloned)
or misses her turn (otherwisc)
“This strategy bas the same propertcs s the strategy for the single galasy
in the proof of Lemma 67, and, in addition, it guarantess that the cdge vz is
coloured before it s in danger to be infeasible for any colour o

5.4 Permitted for game [, 4]

69 (full ree). Let g € K. An (g, m)-fll tre s based
o path Py, where there are my (rspeetiely, n, m) eos attached it three
vtices, ., the graph s the vertex set
{wn, v b U [1<ESm}uy; [1€5<nju{z|1€i<m)
and the cdge set
{une v U [ 1€ €m)U ey |15 <) Uz [ 1€ <o

A full tee s an (s, ma)- 6l tre for some n, my, m € 1.

o

%

Convert the privided document into markdown format.

‘We describe a winning strategy for Alice with \\(\\Delta(G)\\)
colours in the \\([B,A]\\)-edge colouring game played on
\\(G\\).\n\nThe only unsafe edges are the star edges of pending
objects and the edge \\(vz\\). Alice may arbitrarily number the
pending objects W(O_{1},0_{2},\\ldots,0_{k+\ell}\\) and
performs basically the same pairing strategy as in the proof of
Lemma 67 with only small extensions, as described in the
following.\n\n* If Bob colours the matching edge of the pending
object \(O_{j}\), then, if this was the first such move and the
edge \\(vz\)) is still uncoloured, Alice colours \\(vz\\) with the
same colour (if possible, or a new colour otherwise); otherwise,
Alice colours a star edge of the pending object

W(O_{j+1\\mod {k+\\ell} }\\) with the same colour, if possible. If it
is not possible, she uses a new colour for such a star edge.\n* If
Bob colours the first star edge of the pending object \\(O_ {j}\\)
and there is still a pending object with only uncoloured star edges,
then Alice colours the matching edge of the pending object
W(O_{j-1\\mod {k+\\ell} }\\) with the same colour. If the matching
edge is already coloured, then Alice misses her turn.\n* If Bob
colours the first star edge of the pending object \W(O_{j}\\) and
there is no pending object with only uncoloured star edges left,
then Alice colours \\(vz\\) with a new colour (if \\(vz\\) is still
uncoloured) or misses her turn (if \\(vz\\) is already coloured).\n*
If Bob colours the edge \\(vz\), an edge \\(vx_{j}\\) or the second
star edge of the pending object (a triangle) \\(O_{j}\\), then Alice
misses her turn.\n* If Bob colours an edge \\(zu_{i}\\), then Alice
colours \\(vz\\) (if \\(vz\\) is still uncoloured) or misses her turn
(otherwise).\n\nThis strategy has the same properties as the
strategy for the single galaxy in the proof of Lemma 67, and, in
addition, it guarantees that the edge \\(vz\\) is coloured before it is
in danger to be infeasible for any colour. \n\n### Permitted for
game \\([A,a]\\)\n\n**Definition 69** (full tree).: Let
\(n,m_{1},m_{2}\\in{\\mathbb{N}}\\). An
_\((,m_{1},m_{2})\\)-full tree_ is based on a path \\(P_{3}\\),
where there are \\(m_{1}\\) (respectively, \\(n\\), \\(m_{2}\\)) leafs
attached its three vertices, i.e., the graph has the vertex
setm\n\\\W{w_{1},v,w_{2}\P\eup\\{x_{i}\\mid 1\\leq i\\leq
m_{1\Peup\\{y_{j}\\mid 1\\leq j \leq n\\}\\cup\\{z_{i}\\mid
1\\leq i\\leq m_{2}\\}\\]\n\nand the edge

set\n\nW\W{w_{1}v,vw_ {23\ \\eup\\{w_{1}x_{i}\\mid 1\\leq
iNMeq m_{1}\\}\eup\\{vy_{j}\\mid 1 \\leq j\\leq
n\\eup\\{w_{2}z_{i}\\mid 1\\leq i\leq m_{2}\\}.\\|\n\nA _full
tree_ is an \\((n,m_{1},m_{2})\\)-full tree for some
W(n,m_{1},m_{2}\\in{\\mathbb{N} }\\).«

Figure 12: Samples for each task.
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& Please translate the text shown in
the image to English.

8 MEIREL: R, FHiZjsont&ztizE]

'él {RZERET" 144011972082}

B

Beijing Meteorological Bureau

8 ;wavam? EFN=ANER, A

B smemsristsemaems i T
€ D. K758
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Hg' — Hgt#

p=ni iy
Ay

&
YEm  Wm(H(g (Y xrightarmow(l k_(QI JH{GH +1AkE)
as

A

e

BV ST F | @RiENA BmA R | REBANNSS, LES
ERRID A R RS, BEXF AT WA BE

Hrie B 1D RIS 8
BERHSREA?

B zetm mmwsrg B xmmE Y‘El BRIERNE, #AAmie, NERMSHNEIRERL

0, RE@E, MBI, EREAE, | BEIES, REEE. P—3
EmiaE SEEARERH

weg
IR AT

o

o AamREEEAEC \DCD

et 8 HESTEEAB6sHh, EELTNFERS
R 40 E SHA? ERATLES, RS EERN

B 0 5 C R D. T RIS E i Fﬁﬁiﬁlﬁ

5.
66, KR4 AR

EiE A B O
A AREHRES B ARERMAR 2 CHRIT TR RREH
o R R TR R B R A THR S
BB ABBIAR MBI, WL AGL A0 g ok
R e C ARt
iy — e
o8, A RARIEELE C o, (DG
St . e . | i ABCDE
R, SRS tﬂ:!.
ao

C AR D6 © A

Figure 13: Samples for each task.
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& Parse the document image in Markdown format.

& i
U mREMAYEESAISY  \nEl-5 2ED020112FARIS 5
O |GBTIRAEEHISYIEIR AIZREIEE  \na)STYIE b)PIEREE :
\ni4-5 2ED020112FARLEIGBTIRZH IR 3 31 i

B2 \n<table> <tr> <td>3|HIFEE </td> <td>BFR

</td> <td>IfRE

</td> </tr> <tr> <td>2</td> <td>INHS+ </td> <td>JEfz
HEIRENRS NS

</td> </tr> <tr> <td>3</td> <td>INHS-</td> <td> R [[
IRFNBEMAN SR </td> </tr> <tr><td>7

</td> <td>VCCTHS </td > <td > IEFE Bt N\ i

-
o nu son st e </td></tr> <tr><td>12</td> <td>INLS+</td> <td>3E
T v [SABIRERR N

v A </td> </tr> <tr><td>13</td> <td>INLS-</td> <td > 248
n s VRRAAR IRFNBSMA (K </td> </tr> </table> \n\n44  \n(C)1994-
LN L] 2020 China Academic Joumal Electronic Publishing

House.All rights reserved.http://www.cnki.net

Read all the text in the image .

EDITE LBERIREERX,
12T iR A ERREE R ORI,
Nt R E R IRIARTERIR.

Table Parsing

8 Parse the HTML-formatted structural information of all the
tables in the image.

-
tﬂx <table><tr><td> 2H</td><td> —</td><td>
D Z<hd><td> =<id><td> PU</td><td> F</td>
<Jtr> <tr><td> BB </d><td>

+H4</td><td> +4.5</td><td> -1</td><td> -
2.5</td><td> -6</td> </tr></table>

Figure 14: Samples for each task.
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Limited recognition on less frequently encountered texts

9 What is written in the image?

22
e

unanswerable

red

)

The image shows a 5x7
LED matrix displaying
the letter \"H\"

Limited fine-grained spatial perception

) Where is the region of the text'CHEESE'?
Output the normalized coordinates of the left-
top and right-bottom corners of the bounding
box.

[164,191,677,275]

‘_‘ (0.00, 0.00, 0.00, 0.00)

(156, 100, 695, 183)

)

> (354, 188, 1062, 313)

Figure 15: Samples for LMM’S Limitations. The portion of LLM’s response marked in red is
incorrect content, and the content in the red dashed box is missing information.
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Insufficient layout perception

»

rst Wisconsin Bank of Wausau

ausau, Wisconsin:

;

osostIEs0Z

™  What is the name of the bank where
the check was issued?

-
*  First Wisconsin Bank of
Wausau Wausau, Wisconsin

USAA Federal
Savings Bank

Wausau L |

@ First Wisl_consin Bank of

by Bank of New York
in Milwaukee.

Limited logical reasoning

As shown in the figure, AB is tangent to
circle 0 at point B, if angle A = 36.0, then
angle C is equal to () A. 36° B. 54° C. 60°
D. 27° Answer with the option's letter from
the given choices directly.

( |

Please use the information from the provided
image to directly answer the mathematical
question described in the image.

N

D

3 ;f’j;

)

B. 54°

Figure 16: Samples for LMM’S Limitations. The portion of LLM’s response marked in red is
incorrect content, and the content in the red dashed box is missing information.
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Weak analytics for complex elements

D Convert the key information in the chart
into a python dict.

Annual Revenue of the Education Industry '1 {'title": 'Annual Revenue of the Education Industry', 'source':

"  Revenue @ Growth Rate . 'Data Source: Government Reports, Deloitte', 'x_title": 'None’,
e roe 'y_title': ['/RMB Billion', 'None’],
. w B ‘values": {'Revenue': {'2015":'1200', '2016': '1400', '2017": '1500',
o % '2018'": '1700', '2019': '1800", '2020": '2000', '2021": 2200’ },

'Growth Rate': {2015": '4.0%', '2016": '2.0%', '2017": '7.0%",

. - '2018"'6.0%', '2019': '5.0%, '2020": '6.0%', '2021": '8.0%'} } }
ey -
100
) 2%
" {'2015": 1000, '2016" 1000, '2017": 1000, '2018": 1000, '2019": 1000,
) '2020': 1000, '2021': 1000, '2022": 1000, '2023": 1000, '2024": 1000,
B R

o 2025 1000, 2026 1000, '2027": 1000, 2028': 1000, '2029': 1000,
2030": 1000, '2031': 1000, '2032': 1000, 2033': 1000, '2034': 1000,
Data Source: Government Reports, Deloitte 2035": 1000, '2036": 1000, '2037": 1000, 2038': 1000, '2039': 1000,

'2040'": 1000, '2041": 1000, '2042": 1000, '2043': 1000, '2044'": 1000,
'2045': 1000, '2046': 1000, '2047': 1000, '2048'": 1000, '2049": 1000,
'2050': 1000, '2051": 1000, '2052": 1000, '2053": 1000, '2054": 1000,
'2055': 1000, '2056': 1000, '2057": 1",}

"\ RevenueT™ [
{\"year\": \"2015\", \"value\": 1200},
{\"year\": \"2016\", \"value\": 1400 },
{\"year\": \"2017\", \"value\": 1500},
{\"year\": \"2018\", \"value\": 1700},
{\"year\": \"2019\", \"value\": 1800},
{\"year\": \"2020\", \"value\": 2000},
{\"year\": \"2021\", \"value\": 2200}],
\"Growth Rate\": [
{\"year\": \"2015\", \"value\": 4},
{\"year\": \"2016\", \"value\": 2},
{\"year\": \"2017\", \"value\": 7},
{\"year\": \"2018\", \"value\": 6},
{\"year\": \"2019\", \"value\": 5},
{\"year\": \"2020\", \"value\": 8},
{\"year\": \"2021\", \"value\": 8}]}}

I‘mztrrsmmvauav 200, " Growih Ratev T4 %"},
\"2016\": {\"Revenue\": 1400, \"Growth Rate\": \"2%\"},
\"2017\": {\"Revenue\": 1500, \"Growth Rate\": \"7%\"},
\"2018\": {\"Revenue\": 1700, \"Growth Rate\": \"6%\"},
\"2019\": {\"Revenue\": 1800, \"Growth Rate\": \"5%\"},
\"2020\": {\"Revenue\": 2000, \"Growth Rate\": \"6%\"},
\"2021\": {\"Revenue\": 2200,\"Growth Rate\": \"8%\"} }

Figure 17: Samples for LMM’S Limitations. The portion of LLM’s response marked in red is
incorrect content, and the content in the red dashed box is missing information.
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