
Appendix
A MORE DISCUSSIONS ON BAYESDICE

In this section, we provide more details about BayesDICE.

Remark (parametrization of q (⇣) and q (�|⇣)): We parametrize both q (⇣) (and the result-
ing q (�|⇣)) as Gaussians with the mean and variance approximated by a multi-layer perceptron
(MLP), i.e.: ⇣ = MLPw(s, a) + �w0⇠, ⇠ ⇠ N (0, 1). w and w0 denote the parameters of the MLP.

Remark (connection to Bayesian inference for stochastic processes): Recall the posterior can
be viewed as the solution to an optimization (Zellner, 1988; Zhu et al., 2014; Dai et al., 2016),

q (⇣|D) = argmin
q2P

hq (⇣) , log p (⇣,D)i+KL (q (⇣) ||p (⇣))

The (13) is equivalent to define the log-likelihood proportion to ` (⇣,D), which is a stochastic pro-
cess, including Gaussian process (GP) by setting f⇤ (�) = 1
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optimization

min
q

KL (q||p) + �

✏
EqEµ0⇡ÊD
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GP . Obviously, with different choices of f⇤ (·), the BayesDICE framework is far beyond GP .

Although the GP has been applied for RL (Engel et al., 2003; Ghavamzadeh et al., 2016; Aziz-
zadenesheli et al., 2018), they all focus on prior on value function; while BayesDICE considers
general stochastic processes likelihood, including GP , for the stationary ratio modeling, which as
we justified is more flexible for different selection criteria in downstream tasks.

Remark (auxilary constraints and undiscounted MDP): As Yang et al. (2020) suggested, the
non-negative and normalization constraints are important for optimization. We exploit positive neu-
ron to ensure the non-negativity of the mean of the q (⇣). For the normalization, we consider the
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✓⇣
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extra term �1
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i
in (13).

With the normalization condition introduced, the proposed BayesDICE is ready for undiscounted
MDP by simply setting � = 1 in (13) together with the above extra term for normalization.

Remark (variants of log-likelihood): We apply the Markov’s inequality to (12) for the upper
bound (13). In fact, the optimization with chance constraint has rich literature (Ben-Tal et al., 2009),
where plenty of surrogates can be derived with different safe approximation. For example, if the q is
simple, one can directly calculate the CDF for the probability Pq (` (⇣) 6 ✏); or one can also exploit
different probability inequalities to derive other surrogates, e.g., condition value-at-risk, i.e.,
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and Bernstein approximation (Nemirovski & Shapiro, 2007). These surrogates lead to better ap-
proximation to the chance probability Pq (` (⇣) 6 ✏) with the extra cost in optimization.

B BAYESDICE FOR EXPLORATION VS. EXPLOITATION TRADEOFF

In main text, we mainly consider exploitin BayesDICE for estimating various ranking scores for both
discounted MDP and undiscounted MDP. In fact, with the posterior of the stationary ratio computed,
we can also apply it for better balance between exploration vs. exploitation for policy optimization.

Instead of selecting from a set of policy candidates, the policy optimization is considering all fea-
sible policies and selecting optimistically. Specifically, the feasibility of the stationary state-action
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distribution can be characterized asX

a

d (s, a) = (1� �)µ0 + P⇤d (s) , 8s 2 S, (17)

where P⇤d (s) :=
P

s̄,ā T (s|s̄, ā) d (s̄, ā). Apply the feature mapping for distribution matching, we
obtain the constraint for ⇣ · ⇡ with ⇣ (s, a) := d(s)
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Then, we have the posteriors for all valid policies should satisfies

�Pq (` (⇣ · ⇡,D) 6 ✏) > ⇠, (19)

with ` (⇣ · ⇡,D) := max�2H� �>ÊD [
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� f⇤ (�). Meanwhile, we will select one posterior from among these poste-

riors of all valid policies optimistically, i.e.,
max
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Eq [U (⌧, r,D)] + �1⇠ � �2KL (q (⇣) q (⇡) ||p (⇣,⇡)) (20)

s.t. Pq (` (⇣ · ⇡,D) 6 ✏) > ⇠ (21)
where Eq [U (⌧, r,D)] denotes the optimistic policy score to capture the upper bound of the policy
value estimation. For example, the most widely used one is

Eq [U (⌧, r,D)] = EqÊD [⌧ · r] + �uEq
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where the second term is the empirical variance and usually known as one kind of “exploration
bonus”.

Then the whole algorithm is iterating between solving (20) and use the obtain policy collecting data
into D in (20).

This Exploration-BayesDICE follows the same philosophy of Osband et al. (2019); ODonoghue
et al. (2018) where the variance of posterior of the policy value is taken into account for exploration.
However, there are several significant differences: i), the first and most different is the modeling
object, Osband et al. (2019); ODonoghue et al. (2018) is updating with Q-function, while we are
handling the dual representation; ii), BayesDICE is compatible with arbitary nonlinear function
approximator, while Osband et al. (2019); ODonoghue et al. (2018) considers tabular or linear func-
tions; iii), BayesDICE is considering infinite-horizon MDP, while Osband et al. (2019); ODonoghue
et al. (2018) considers fixed finite-horizon case. Therefore, the exploration with BayesDICE pave
the path for principle and practical exploration-vs-exploitation algorithm. The regret bound is out of
the scope of this paper, and we leave for future work.

C EXPERIMENT DETAILS AND ADDITIONAL RESULTS

C.1 ENVIRONMENTS AND POLICIES.

Bandit. We create a two-armed bandit where ↵ controls the proportion of optimal arm (↵ = 0 and
↵ = 1 means never and always choosing the optimal arm respectively). Our selection experiments
are based on 5 target policies with ↵ = [0.75, 0.8, 0.85, 0.9, 0.95].

Reacher. We modify the Reacher task to be infinite horizon, and sample trajectories of length 100
in the behavior data. To obtain different behavior and target policies, We first train a deterministic
policy from OpenAI Gym (Brockman et al., 2016) until convergence, and define various policies by
converting the optimal policy into a Gaussian policy with optimal mean with standard deviation 0.4�
0.3↵. Our selection experiments are based on 5 target policies with ↵ = [0.75, 0.8, 0.85, 0.9, 0.95].

C.2 DETAILS OF NEURAL NETWORK IMPLEMENTATION

We parametrize the distribution correction ratio as a Gaussian using a deep neural network for the
continuous control task. Specifically, we use feed-forward networks with two hidden-layers of 64
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neurons each and ReLU as the activation function. The networks are trained using the Adam opti-
mizer (�1 = 0.99, �2 = 0.999) with batch size 2048.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

Figure 5: Additional k values for top-k ranking on bandit. Ranking results based on Algorithm 1
(blue lines) always perform better than using mean or high-confidence lower bound.

14



Under review as a conference paper at ICLR 2021

Figure 6: Additional k values for top-k ranking on reacher and additional scores (precision and
regret). Ranking results based on Algorithm 1 (blue lines) generally perform much better than using
mean or high-confidence lower bound for top-k accuracy and correlation. Precision and regret are
similar between posterior samples and the mean/confidence bound based ranking.
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Bandit

Figure 7: Improved regret using BayesDICE across all trajectory lengths, behavior data, and top-k
values considered for the bandit task.
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Reacher

Figure 8: Improved correlation using BayesDICE across all trajectory lengths, behavior data, and
top-k values considered for the reacher task.
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