
A MORE DETAILS ABOUT BLENDSEARCH

We provide detailed pseudocode of the sub-algorithms used in our framework.

Algorithm 1 SelectThread
Inputs: Framework-level state F which keeps a list of candidate search thread F .S and a pri-
ority function F .Priority.

1: S̃ = arg maxS∈F.S F .Priority(S)

2: S̃bak =

{
arg maxS∈(F.S\S0) F .Priority(S) F .S \ S0 6= ∅
S0 F .S \ S0 = ∅,

Outputs: S̃, S̃bak

Algorithm 2 BookKeeping
Inputs: Search thread S, one entry of observation x, l, c generated by S, and F .

1: S.c← S.c+ c
2: if S is a local search thread then Update {S.xmin

i }i∈[d], and {S.xmax
i }i∈[d]

3: if l < S.l1st then
4: S.l2nd, S.c2nd ← S.l1st, S.c1st; S.l1st, S.c1st ← l, S.c; and S.xbest ← x
5: if l < F .l∗ then F .l∗ ← l

Algorithm 3 InitializeSearchThread
Inputs: Search method L or G, problem P and initial point (x, l, c).

1: S.π = L.π or G.π
2: Initialize bookkeeping information of S: S.l1 = S.l2 = l, S.c1st = S.c2nd = S.c = c, and
S.xmin

i = S.xmax
i = xi for i ∈ P.D

Choice of L.∆ used in constructing the ‘admissible’ region F .R. We normalize each numeric
hyperparameter into [0,1]. The setting of L.∆ is decided by the local search method. For the local
search method we chose, L.∆ is a constant corresponding to the initial stepsize (fixed as 0.1).

Definition of ReachableInOneStep in Alg 5. We define local search thread S1 to be reachable
by S2 if the distance between their incumbents is no larger than the maximal distance between the
next proposal of S2 and the incumbent of S2. In the local search method we used, the incumbent is
the currently best config, and the maximal distance is equal to the stepsize.

B MORE DETAILS ABOUT EXPERIMENTS AND ADDITIONAL RESULTS

B.1 EXPERIMENT SETUP

Settings of BO and LS. For BO, we use implementation from Optuna 2.0.0 (https://optuna.
readthedocs.io/en/stable/index.html) with default settings for TPE sampler. For
LS, we follow the implementation guidelines from Wu et al. (2021). After a local search thread
is created from a particular starting point, we fix the categorical dimensions and only search for
numerical dimensions in that local search thread. A local search thread S is considered to have
converged (corresponding to S.converged() in Algorithm 5) once the stepsize of the local search
thread is smaller than a lower bound introduced by Wu et al. (2021).

Experiments in tuning XGBoost and LightGBM. The XGBoost and LightGBM experiments are
performed in a server with Intel Xeon E5-2690 v4 2.6GHz, and 256GB RAM. A full list of hyperpa-
rameters tuned and their ranges can be found in Table 3 and Table 2. The search space for numerical
hyperparameters aligns with the search space used in (Wu et al., 2021). On the same fold, the same
random seed is used for LS, BO and BS. Experiments on different folds use different random seeds.

Experiments in NLP model fine tuning. For ASHA, we set min and max epochs as 1 and 16, and
reduction factor 4.

1

https://optuna.readthedocs.io/en/stable/index.html
https://optuna.readthedocs.io/en/stable/index.html

Algorithm 4 CreateNewLSCondition
Inputs: l,F .
Outputs: |F .S| = 1 or l ≤ Median({S.l1st}S∈F.S\S0

)

Algorithm 5 DeleteAndMergeLS
Inputs: S,F

1: if S.converged() then
2: F .S← F .S \ S,
3: F .R.xmin

i ← F .R.xmin
i − L.∆, and F .R.xmax

i ← F .R.xmax
i + L.∆, ∀i ∈ D′

4: else
5: for ∀S′ ∈ F .S \ S do
6: if S ∈ S′.ReachableInOneStep() & S′.l < S.l then
7: F .S← F .S \ S
8: break
9: else if S′ ∈ S.ReachableInOneStep() & S.l < S′.l then F .S← F .S \ S′

Result aggregation details. Aggregated rank in Figure 4(a)&(c) and 12(c) is calculated as follows:
(1) per dataset per fold, the method is ranked based on the loss on validation set at each second
(x-axis), starting from when there is at least one finished config evaluation in any method; (2) the
rank is then averaged across datasets per fold; (3) we finally compute the average rank (line) and
confidence interval (shaded area) across 10 folds. Scaled loss in Figure 4(b) is calculated similarly.
Per dataset per fold, min-max scaling is applied on each method using the maximum and minimum
loss along the whole performance curve across all methods.

B.2 ADDITIONAL EXPERIMENTAL RESULTS ON LIGHTGBM AND XGBOOST

More performance curves on LightGBM and XGBoost. The performance curves for tuning
LightGBM on 3 representative datasets with an 1h budget are shown in Figure 7. We observe that
the performance of LS is quite good (comparing to BO), especially on large datasets. This result is
consistent with the results reported in (Wu et al., 2021), where all the hyperparameters for tuning are
numerical. In our experiment of XGBoost tuning, we include categorical hyperparameters. LS per-
forms worse in this case because the introduction of categorical hyperparameters amplifies the local
search method’s limitation of being trapped in local optima. The observations about BlendSearch
for LightGBM are similar to XGBoost tuning. The performance curves on the three large datasets
with a 4h budget are shown in Figure 8 and 9, where similar conclusions can be drawn.

Multi-fidelity. We compare BO and BlendSearch with the multi-fidelity baseline ASHA for
tuning LightGBM and XGBoost in Figure 10. In this experiment, we tried two choices of fidelity
dimensions with ASHA, including number of iterations and sample size (the sample size begins with
10K, so small datasets are excluded) respectively. The results show that the multi-fidelity baseline
overall perform no better than BO and are significantly worse than BlendSearch.

Table 2: Hyperparameters tuned in LightGBM.

hyperparameter type range init
tree num int [4, min(32768, # instance)] 4
leaf num int [4, min(32768, # instance)] 4

min child weight float [0.001, 20] 20
learning rate float [0.01, 0.1] random

subsample float [0.6, 1.0] random
reg alpha float [1e-10, 1.0] random

reg lambda float [1e-10, 1.0] random
max bin int [7, 1023] random

colsample by tree float [0.7, 1.0] random

2

Table 3: Hyperparameters tuned in XGBoost.

hyperparameter type range init
tree num int [4, min(32768, # instance)] 4
leaf num int [4, min(32768, # instance)] 4

min child weight float [0.001, 20] 20
learning rate float [0.01, 0.1] random

subsample float [0.6, 1.0] random
reg alpha float [1e-10, 1.0] random

reg lambda float [1e-10, 1.0] random
colsample by level float [0.6, 1.0] random
colsample by tree float [0.7, 1.0] random

booster categorical {gbtree, gblinear} gblinear
tree method categorical {auto, approx, hist} random

Table 4: Hyperparameters tuned in DeepTables.

hyperparameter type range init
early stopping rounds int [1, max(min(1.5M/# instance),150),10)] 10

batch size int [16, 1024] 512
dropout float [0, 0.5] 0.1

learning rate float [1e-4, 3e-2] 3e-4
dense dropout float [0, 0.5] 0.1

net categorical {DCN, dnn nets} random
auto discrete boolean {False, True} random

apply gbm features boolean {False, True} random
fixed embedding dim boolean {False, True} random

Table 5: Hyperparameters tuned in fine-tuning Turing language model.

hyperparameter type range init
learning rate float [1e-6, 1e-3] random

hidden dropout probability float [0.05, 0.4] random
warmup proportion float [0.2, 0.4] random

batch size categorical {16, 32} 32
epochs int [1, 16] 1

learning rate scheduler categorical {Warmup linear decay polynomial,
Warmup linear, Warmup linear decay
exponential}

random

0 1000 2000 3000
time (s)

2.1 × 10 1

2.2 × 10 1

2.3 × 10 1

2.4 × 10 1

2.5 × 10 1

2.6 × 10 1

lo
ss

(a) blood, loss = 1 - auc

0 1000 2000 3000
time (s)

4.65 × 10 1

4.7 × 10 1

4.75 × 10 1

4.8 × 10 1

4.85 × 10 1

4.9 × 10 1

4.95 × 10 1

5 × 10 1

lo
ss

BlendSearch
BO
LS
BOwLS

(b) numerai28.6, loss = 1 - auc

0 1000 2000 3000
time (s)

2.4 × 10 1

2.5 × 10 1

2.6 × 10 1

2.7 × 10 1

2.8 × 10 1

2.9 × 10 1

3 × 10 1

3.1 × 10 1

lo
ss

(c) Albert, loss = 1 - auc

Figure 7: Optimization performance curve for LightGBM (1h).

3

0 2500 5000 7500 10000 12500
time (s)

100

3 × 10 1

4 × 10 1

6 × 10 1

lo
ss

(a) Fashion-MNIST, loss = log-loss

0 2500 5000 7500 10000 12500
time (s)

10 1lo
ss

BlendSearch
BO
LS
BOwLS

(b) dilbert, loss = log-loss

0 2500 5000 7500 10000 12500
time (s)

10 1

100

lo
ss

(c) Covertype, loss = log-loss

Figure 8: Optimization performance curve for LightGBM (4h).

0 2500 5000 7500 10000 12500
time (s)

100

4 × 10 1

6 × 10 1lo
ss

(a) Fashion-MNIST, loss = log-loss

0 2500 5000 7500 10000 12500
time (s)

10 1

lo
ss

BlendSearch
BO
LS
BOwLS

(b) dilbert, loss = log-loss

0 2500 5000 7500 10000 12500
time (s)

10 1

100

lo
ss

(c) Covertype, loss = log-loss

Figure 9: Optimization performance curve for XGBoost (4h).

101 102 103

time (s)
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ra
nk

(a) Average rank

101 102 103

time (s)
10 2

10 1

100

Sc
al

ed
 L

os
s

BlendSearch
BO
PruneWithSample
PruneWithIter

(b) Scaled loss

Figure 10: Aggregated results on LightGBM and XGBoost. ‘PurneWithSample’ and ‘PruneWith-
Iter’ represent ASHA using sample size and iteration number as resource dimension respectively.
BO and BlendSearch are the same as those in Figure 4.

4

2 × 103 3 × 103

time (s)
1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Ra
nk

BlendSearch
BO

LS

(a) Average rank

2 × 103 3 × 103

time (s)
10 2

10 1

100

Sc
al

ed
 L

os
s

BlendSearch
BO

LS

(b) Scaled loss

Figure 11: Aggregated rank and scaled loss on LightGBM with random initialization.

0 1000 2000 3000
time (s)

100

3 × 10 1

4 × 10 1

6 × 10 1

lo
ss

BOHB
Hyperband
ASHA
BlendSearch-BOHB
BlendSearch-Hyperband
BlendSearch-ASHA

(a) vehicle, loss = log-loss

103

time (s)

2

3

4

5

6

Ra
nk

(b) Aggregated rank

103

time (s)
10 2

10 1

100

Sc
al

ed
 L

os
s

(c) Aggregated scaled loss

Figure 12: Performance curves on cane, aggregated rank and aggregated loss on DeepTables.

Ablation study on the low-cost initialization. In this work, we use low-cost initialization for
the controlled dimensions of the hyperparameters. Although such information is fairly easy to ob-
tain, we investigate our method’s robustness when no controlled dimension is provided. We test
BlendSearch in a controlled dimension agnostic setting: there are still hyperparameters with het-
erogeneous cost, but the controlled dimensions and a low-cost initial point is not specified as input.
In such scenarios, BlendSearch will use random initialization and the config validator always
returns ‘yes’. We compare BlendSearch with local search and BO under such a setting using
the same random initial point. In Figure 11 we report the results including the aggregated rank and
scaled loss on LightGBM across half of the datasets mentioned in Section 4.1 in Figure 11(a) & (b).
The results show that even if BlendSearch is agnostic to the controlled dimensions and a random
initialization is used, it is still able to outperform both the local search method and BO.

B.3 TUNING DEEPTABLES.

In this experiment, we tune 9-dimensional hyperparameters (5 numerical and 4 categorical as
detailed in Table 4) in DeepTables. Since the training of deep neural networks are more
time-consuming than that of XGBoost, we run experiments for DeepTables on the datasets
where they are worse than the best known performance in the benchmark, including ‘shut-
tle’,‘cnae’,‘mfeat’,‘vehicle’,‘phoneme’, ‘kc1’. All experiments for DeepTables are performed in
a server with the same CPU, 110GB RAM, and one Tesla P100 GPU. A full list of hyperparameters
tuned and their ranges can be found in Table 4.

Recall that we mentioned multi-fidelity pruning strategies could be incorporated into
BlendSearch in the config evaluator component. In this experiment, we are particularly in-
terested showing the performance of BlendSearch when combined with multi-fidelity methods.
To this end, we include the three state-of-the-art multi-fidelity methods, including BOHB (Falkner

5

et al., 2018), ASHA (Li et al., 2020), and asynchronous HyperBand (Li et al., 2017; 2020)
which are shown efficient for tuning deep neural networks and the BlendSearch based on each
of them. We use the following libraries for baselines: For BOHB, we use HpBandSter 0.7.4
(https://github.com/automl/HpBandSter). For ASHA and asynchronous HyperBand,
we use implementations from Optuna 2.0.0. In all the methods compared, including both existing
methods and variants of BlendSearch, the number of training epochs is used as the fidelity di-
mension, with maximum epochs set to be 1024, reduction factor set to be 3, and minimum epochs
4. For ASHA, we set the minimum early stopping rate to be 4 (we adopted this setting as it yields
better performance comparing to the default setting, i.e., 0). The number of training epochs is used
as the fidelity dimension.

BlendSearch incorporates existing multi-fidelity methods in the following way: Each config,
either proposed by global search or local search, uses the same schedule to increase the fidelity
and check its pruning condition. For example, when ASHA (Li et al., 2020), i.e., asynchronous
successive halving, with a reduction factor of η, is used as the pruning strategy, after each config
is evaluated by a certain fidelity, it is compared with other configs already evaluated by the same
fidelity. The config will be pruned if its loss is ranked in the worst 1/η. Otherwise, the fidelity is
multiplied by η. In addition to the original pruning conditions specified by the multi-fidelity method,
a configuration will also be pruned at a particular fidelity level where no pruning is performed
yet, and the configuration does not yield superior performance (comparing to the currently-best
performance) when evaluated at that fidelity level.

We present the performance of all compared methods for tuning DeepTables in Figure 12. Fig-
ure 12(a) shows the learning curves on dataset cane with budget 1h. Figure 12(b) and (c) show the
aggregated rank and loss on all the 6 datasets within budget 1h. The performance of multi-fidelity
methods are significantly improved when used in our BlendSearch framework.

6

https://github.com/automl/HpBandSter

	More details about BlendSearch
	More details about experiments and additional results
	Experiment setup
	Additional experimental results on LightGBM and XGBoost
	Tuning DeepTables.

