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Abstract1

Recently the Transformer structure has shown good performances in graph learning2

tasks. However, these Transformer models directly work on graph nodes and may3

have difficulties learning high-level information. Inspired by the vision transformer,4

which applies to image patches, we propose a new Transformer-based graph neural5

network: Patch Graph Transformer (PatchGT). Unlike previous transformer-based6

models for learning graph representations, PatchGT learns from non-trainable7

graph patches, not from nodes directly. It can help save computation and improve8

the model performance. The key idea is to segment a graph into patches based on9

spectral clustering without any trainable parameters, with which the model can first10

use GNN layers to learn patch-level representations and then use Transformer to11

obtain graph-level representations. The architecture leverages the spectral infor-12

mation of graphs and combines the strengths of GNNs and Transformers. Further,13

we show the limitations of previous hierarchical trainable clusters theoretically14

and empirically. We also prove the proposed non-trainable spectral clustering15

method is permutation invariant and can help address the information bottlenecks16

in the graph. PatchGT achieves higher expressiveness than 1-WL-type GNNs, and17

the empirical study shows that PatchGT achieves competitive performances on18

benchmark datasets and provides interpretability to its predictions.19

1 Introduction20

Learning from graph data is ubiquitous in applications such as drug design [15] and social network21

analysis [37]. The success of a graph learning task hinges on effective extraction of information22

from graph structures, which often contain combinatorial structures and are highly complex. Early23

works [7] often need to manually extract features from graphs before applying learning models.24

In the era of deep learning, Graph Neural Networks (GNNs) [35] are developed to automatically25

extract information from graphs. Through passing learnable messages between nodes, they are able26

to encode graph information into vector representations of graph nodes. GNNs have become the27

standard tool for learning tasks on graph data.28

While they have achieved good performances in a wide range of tasks, GNNs still have a few29

limitations. For example, GNNs [36] suffer from issues such as inadequate expressiveness [36], over-30

smoothing [28], and over-squashing [2]. These issues have been partially addressed by techniques31

such as improving message-passing functions and expanding node features [5, 21].32

Another important progress is to replace the message-passing network with the Transformer architec-33

ture [6, 18, 24, 38]. These models treat graph nodes as tokens and apply the Transformer architecture34

to nodes directly. The main focus of these models is how to encode node information and how to35

incorporate adjacency matrices into network calculations. Without the message-passing structure,36

these models may overcome some associated issues and have shown premium performances in37

various graph learning tasks. However, these models suffer from computation complexity because of38

the global attention on all nodes. It is hard to capture the topological information of graphs.39

As a comparison, the Transformer for image data works on image patches instead of pixels [9, 22].40

While this model choice is justified by reduction of computation cost, recent work [31] shows that41
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“patch representation itself may be a critical component to the ‘superior’ performance of newer42

architectures like Vision Transformers”. One intriguing question is whether patch representation43

can also improve learning models on graphs. With this question, we consider patches on graphs.44

Patches over graphs are justified by a “mid-level” understanding of graphs: for example, a molecule45

graph’s property is often decided by some function groups, each of which is a subgraph formed by46

locally-connected atoms. Therefore, patch representations are able to capture such mid-level concepts47

and bridge the gap between low-level structures to high-level semantics.48

Motivated by our question, we propose a new framework, Patch Graph Transformer (PatchGT). It49

first segments a graph into patches based on spectral clustering, which is a non-trainable segmentation50

method, then applies GNN layers to learn patch representations, and finally uses Transformer layers to51

learn a graph-level representation from patch representations. This framework combines the strengths52

of two types of learning architectures: GNN layers can extract information with message passing,53

while Transformer layers can aggregate information using the attention mechanism. To our best54

knowledge, we firstly show several limitations of previous trainable clustering method based on GNN.55

We also show that the proposed non-trainable clustering can provide more reasonable patches and56

help overcoming information bottleneck in graphs.57

We justify our model architecture with theoretical analysis. We show that our patch structure derived58

from spectral clustering is superior to patch structures learned by GNNs [4, 13, 39]. We also propose59

a new mathematical description of the information bottleneck in vanilla GNNs and further show60

that our architecture has the ability of mitigating this issue when graphs have small graph cuts. The61

contributions of this paper are summarized as follows.62

- We develop a general framework to overcome the information bottleneck in traditional GNNs63

by applying a Transformer on graph patches in Section 3. The graph patches are from an64

unlearnable spectral clustering process.65

- We prove several new theorems for the limitations of previous pooling methods from the 1-WL66

algorithm in Theorem 1 and Theorem 2. And we theoretically prove that PatchGT is strictly67

beyond 1-WL and hence has better expressiveness in Theorem 3. Also, in Section 4.4, we68

show that the segmentations from hierarchical learnable clustering methods may aggregate69

disconnected nodes, which will definitely hurt the performance of the transformer model.70

- We demonstrate the existence of information bottleneck in GNNs in Section 4.3. When a graph71

consists of loosely-connected clusters, we make the first attempt to characterize such information72

bottleneck. And it indicates when there is a small graph cut between two clusters, the GNNs73

need to use more layers to pass signals from one group to another. And we further demonstrate74

with direct attention between groups, PatchGT could overcome such limitations.75

We run an extensive empirical study and demonstrate that the proposed model outperforms competing76

methods on a list of graph learning tasks. The ablation study shows that our PatchGT is able to77

combine the strengths of GNN layers and Transformer layers. The attention weights in Transformer78

layers also provide explanations for model predictions.79

2 Related Work80

Transformer models have gained remarkable successes in NLP applications [16]. Recently, they have81

also been introduced to vision tasks [9] and graph tasks [6, 11, 18, 20, 24, 34, 38, 40]. These models82

all treat nodes as tokens. Particularly, Memory-based graph networks[1] apply a hierarchical attention83

pooling methods on the nodes. GraphTrans [34] directly applies a GNN on all nodes, followed by84

a transformer. Therefore, they are hard to be applied to large graphs because of huge computation85

complexity.86

At the same time, image patches have been shown to be useful for Transformer models on image data87

[9, 31], so it is not surprising if graph patches are also helpful to Transformer models on graph data.88

Graph multiset pooling [3] applies trainable pooling methods on the nodes based on GNN. And then89

adopt a global attention layer on learned clusters. We will show that such trainable clustering has90

several limitations for attention mechanism in this work.91

Hierarchical pooling models [4, 12, 13, 19, 27, 39] are relevant to our work in that they also aggregate92

information from node representations in middle layers of networks. However, these methods all93

form their pooling structures based on representations learned from GNNs. As a result, these pooling94
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Figure 1: Model review. We segment a graph into several patch subgraphs by non-trainable
clustering. We first extract local information through a GNN, and the initial patch representations are
summarized by the aggregation of nodes within the corresponding patches. To further encode structure
information, we apply another patch-level GNN to update the representations of patches. Finally, we
use Transformer to extract the representation of the entire graph based on patch representations.

structures inherit drawbacks from GNNs [36]. They may also aggregate nodes that are far apart on the95

graph and thus cannot preserve the global structure of the input graph. Also such trainable clustering96

methods need much computation for training. Furthermore, our main purpose is to use non-trainable97

patches on graphs as tokens for a Transformer model, which is different from these models.98

3 Patch Graph Transformer99

3.1 Background100

In this work, we consider graph-level learning problems. Let G = (V,E) denote a graph with101

node set V and edge set E. Let A denote its adjacency matrix. The graph has both node features102

X = (xi ∈ Rd : i ∈ V ) and edge features E = (ei,j ∈ Rd′
: (i, j) ∈ E). Let y denote the label of103

graph. This work aims to learn a model that maps (A,X,E) to a vector representation g, which is104

then used to predict the graph label y.105

GNN layers. A GNN uses node vectors to represent structural information of the graph. It consists of106

multiple GNN layers. Each GNN layer passes learnable messages and updates node vectors. Suppose107

H = (hi ∈ Rd′′
: i ∈ V ) are node vectors, a typical GNN layer updates H as follows.108

h′
i = σ(W1hi +

∑
j:(i,j)∈E

W2hj +W3ei,j) (1)

Here matrices (W1,W2,W3) are all learnable parameters; and σ is the activation function. We109

denote the layer function by H′ = GNN(A,E,H). If there are no edge features, then the calculation110

can be written in matrix form.111

H′ = σ(HW⊤
1 +AHW⊤

2 ) (2)

3.2 Model design112

PatchGT has three components: segmenting the input graph into patches, learning patch represen-113

tations, and aggregating patch representations into a single graph vector. The overall architecture114

is shown in Figure 1. The second and third steps are in an end-to-end learning model. Graph115

segmentation is outside of the learning model, which will be justified by our theoretical analysis later.116

Forming patches over the graph. We first discuss how to form patches on a graph. One consideration117

is to include an informative subgraph (e.g., a function group, a motif) into a single patch instead of118
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segmenting it into pieces. A reasonable approach is to run node clustering on the input graph and119

treat each cluster as a graph patch. If a meaningful subgraph is densely connected, it has a good120

chance of being contained in a single cluster.121

In this work, we consider spectral clustering [30, 41] for graph segmentation. Let L = I −122

D−1/2AD−1/2 be the normalized Laplacian matrix of G, and its eigen-decomposition is L =123

UΛU⊤, where the eigen-values Λ = diag(λ1, . . . , λ|V |) is sorted in the ascending order. By124

thresholding eigen-values with a small threshold γ, we get k = argmaxk′ λk′ ≤ γ eigen-vectors125

U1:k, then we run k-means to get k clusters (denoted by P) of graph nodes. Here P = {Ck′ ⊂126

V : k′ = 1, . . . , k} with each Ck′ representing a cluster/patch. Note that the threshold γ is a127

hyper-parameter, and k varies depending on the underlying graph’s topology.128

Computing patch representations. When we learn representations of patches in P , we consider129

both node connections within the patch and also connections between patches. Patches form a coarse130

graph, which is also referred as a patch-level graph, by treating patches as nodes and their connections131

as edges. We first learn node representations using GNN layers. Let H0 = X denote the initial132

representations of all nodes. Then we apply L1 GNN layers to get node representations HL1 .133

Hℓ = GNN(A,E,Hℓ−1), ℓ = 1, . . . , L1 (3)

Here for easier discussion, we apply GNN layers to the entire graph. We have also tried to apply134

GNN layers within each patch only and found that the performance is similar.135

Then we read out the initial patch representation by summarizing representations of nodes within this136

patch. Let z0k′ denote the initial patch representation, then137

z0k′ =
|Ck′ |
|V |

· readout(hL1
i : i ∈ Ck′), k′ = 1, . . . , k (4)

Here hL1
i is node i’s representation in HL1 . We collectively denote these patch representations in138

a matrix Z0 = (z0k′ : k′ = 1, . . . , k). The readout function readout(·) is a function aggregating139

information from a set of vectors. Our implementation uses the max pooling. We use the factor |Ck′ |
|V |140

to assign proper weights to patch representations.141

To further refine patch representations and encode structural information of the entire graph, we apply142

further GNN layers to the patch-level formed by patches. We first compute the adjacency matrix143

Ã of the patch-level graph. If we convert the partition P to an assignment matrix S = (Si,k′ : i ∈144

V, k′ = 1, . . . k) such that Si,k′ = 1[i ∈ Ck′ ], then the adjacency matrix over patches is145

Ã = 1
[
(S⊤AS) > 0

]
. (5)

Note that Ã only has connections between patches and does not maintain connection strength.146

We then compute use L2 GNN layers to refine patch representations.147

Zℓ = GNN(Ã,0,Zℓ−1), ℓ = 1, . . . , L2 (6)

GNN layers here do not have edge features. From the last layer, we get patch representations in ZL2148

Graph representation via Transformer layers. Then we use L3 Transformer layers to extract the149

representation of the entire graph. Here we use a learnable query vector q0 to “retrieve” the global150

representation g of the graph from patch representations ZL2
.151

q′
ℓ = MHA(qℓ−1,ZL2 ,ZL2) , ℓ = 1, . . . , L3 (7)

qℓ = MLP(q′
ℓ) + qℓ−1, ℓ = 1, . . . , L3 (8)

g = LN(qL3
) (9)

Here MHA(·, ·, ·) is the function of a multi-head attention layer (please refer to Chp. 10 of [42]). Its152

three arguments are the query, key, and value. The two functions MLP(·) and LN(·) are respectively153

a multi-layer perceptron and a linear layer. Note that patch representations ZL2 are carried through154

without being updated. Only the query token is updated to query information from patch representa-155

tions. The final learned graph representation is g, from which we can perform various graph level156

tasks.157
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4 Theoretical Analysis158

In this section, we study the theoretical properties of the proposed model. To save space, we put all159

proofs in the appendix.160

4.1 Enhancing model expressiveness with patches161

On purpose we form graph patches using a clustering method that is not part of the neural network.162

An alternative consideration is to learn such cluster assignments with GNNs (e.g. DiffPool [39] and163

MinCutPool[4]. However, cluster assignment learned by GNNs inherits the limitation of GNNs and164

hinders the expessiveness of the entire model.165

Theorem 1. Suppose two graphs receive the same coloring by 1-WL algorithm, then DiffPool will166

compute the same vector representation for them.167

Although DiffPool and MinCutPool claims to cluster “similar” graph nodes into clusters during168

pooling, but these nodes may not be connected. Because of the limitation of GNNs, they may169

aggregate nodes that are far apart in the graph. For example, nodes in the same orbit always get the170

same color by the 1-WL algorithm and also the same representations from a GNN, then these nodes171

always have the same cluster assignment. Merging these nodes into the same cluster does not seem172

capture the high-level structure of a graph.173

Another prominent pooling method is the Graph U-Net [12], which has similar issues. We briefly174

introduce its calculation here. Suppose the layer input is (A,H), the model’s pooling layer projects175

H with a unit vector p and gets values v = Hp for all nodes, then it chooses the top k nodes that176

have largest values in v and keep their representations only. We will show that this approach is NOT177

invariant to node orders.178

We also consider a small variant of Graph U-Net for analysis convenience. Instead of choosing k179

nodes with top values in v, the variant uses a threshold β (either learnable or a hyper-parameter) to180

choose nodes: b = v ≥ β. Then the output of the layer is (A[b,b],H[b]). We call the model with181

the variant with thresholding as Graph U-Net-th. We show that the variant of Graph U-Net-th is also182

bounded by the 1-WL algorithm.183

Theorem 2. Suppose two graphs receive the same coloring by 1-WL algorithm, then Graph U-Net-th184

will compute the same vector representation for them.185

The two theorems strongly indicate that pooling structures learned by GNNs have the same drawback.186

We provide detailed analysis for Graph U-Net in Appendix A.3.187

In contrast, a small variant of PatchGT is more expressive than the 1-WL algorithm. Figure 7 in188

Appendix shows two graph pairs that can be distinguished by PatchGT but not the 1-WL algorithm.189

In this PatchGT variant, we only need to choose the summation operation to aggregate node represen-190

tations in the same patch and multiply a scalar to the MHA output. We put the result in the following191

Theorem.192

Theorem 3. Suppose a PatchGT uses GIN layers, uses sum-pooling as the readout function in193

Equation (4), z0k′ =
∑

i∈Ck′ h
L1
i , and multiplies the MHA output in Equation (7) with the number k194

of patches, q′
ℓ = k ·MHA(qℓ−1,ZL2

,ZL2
). Let g1 and g2 be outputs computed from two graphs195

G1 and G2 by a PatchGT model. There exists a PatchGT such that g1 ̸= g2 if G1 and G2 can be196

distinguished by the 1-WL algorithm. Furthermore, there are graph pairs G1 ̸= G2 that cannot be197

distinguished by the 1-WL algorithm, but g1 ̸= g2 from this PatchGT model.198

The first part of the conclusion is true because the patch aggregation, patch-level GNN, and the MHA199

pooling can all be bijective mapping. According to Corollary 6 of [36], the outputs of GIN layers200

have the same expressive power as the 1-WL algorithm. Such expressive power is maintained in the201

model output. However, when GIN layers on patches use extra structural information on patches, the202

model can distinguish graphs that cannot be distinguished by the 1-WL algorithm. We put the formal203

proof in Appendix A.4.204

4.2 Permutation invariance205

Our model depends on the patch structure formed by the clustering algorithm, which further depends206

on the spectral decomposition of the normalized Laplacian. Note that the spectral decomposition is207
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graph cluster to the other, but a patch-level GNN can do
so with patch representations.

not unique, but we show that the clustering result is not affected by sign variant and multiplicities208

associated with decomposition, and our model is still invariant to node permutations.209

Theorem 4. The network function of PatchGT is invariant to node permutations.210

4.3 Addressing information bottleneck with patch representations211

Alon et al. [2] recently characterize the issue of information bottleneck in GNNs through empirical212

methods. Here we consider this issue on a special case when a graph consists of loosely-connected213

node clusters. Note that molecule graphs often have this property. Here we make the first attempt214

to characterize the information bottleneck through theoretical analysis. We further show that our215

PatchGT can partially address this issue.216

For convenient analysis, we consider a regular graph with degree τ . Suppose the node set V of G217

forms two clusters S and T : V = S ∪ T, S ∩ T = ∅, and there are only m edges between S and T .218

We consider the difficulty of passing signal from S to T . Let fGNN(·) denote the network function219

of a GNN of L layers with ReLU activation σ as in (2), and input X = (xi ∈ Rd : i ∈ V ) ∈ R|V |×d,220

which contains d-dimensional feature inputs to nodes in G. Let fGNN
i (·) be the output at node i.221

We can ask this question: if we perturb the input to nodes in S, how much impact we can observe222

at the output at nodes in T . We need to avoid the case that the impact is amplified by scaling up223

network parameters. In real applications, scaling up network parameters also amplifies signals within224

T itself, and the signal from S still cannot be well received. Here we consider relative impact: the225

ratio between the impact on T from S over that from T itself.226

Let α ∈ R|V |×d be some perturbation on S such that αij ≤ ϵ if i ∈ S and αij = 0 otherwise. Here227

ϵ is the scale of the perturbation. Similarly let β ∈ R|V |×d be some perturbation on T : βij ≤ ϵ if228

i ∈ T and βij = 0 otherwise. Then the impacts on node representations fGNN
i , i ∈ T from α and β229

are respectively230

δS→T = max
α

∑
i∈T

∥fGNN
i (X+α)− fGNN

i (X)∥1 (10)

δT→T = max
β

∑
i∈T

∥fGNN
i (X+ β)− fGNN

i (X)∥1 (11)

where the maximum is also over all possible learnable parameters ∥W1∥L1→L1 , ∥W2∥L1→L1 ≤ 1231

as in (2). Then we have the following proposition to bound the ratio δS→T /δT→T .232

Proposition 1. Given a τ -regular graph G, a node subset S with its complement T such that there233

are only m edges between S and T , and a L-layer GNN, it holds that234

δS→T

δT→T
≤ 2mL

|T |
(12)

The proposition indicates that when there is a small graph cut between two clusters, then it forms235

an information bottleneck in a GNN – the network needs to use more layers to pass signal from one236

group to another. The bound is still conservative: if the signal is extracted in middle layers of the237

network, then passing the signal is even harder. The proposition is illustrated in Figure 3.238

In our PatchGT model, communication can happen at the coarse graph and thus can partially239

address this issue. The coarse graph Ã consists of two nodes (we still denote them by S, T ), and240
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Figure 4: Segmentation results from spectral clustering and trainable clustering.

there is an edge between S and T . From the output fGNN, we construct the patch representations241

(zS , zT ) = ( 1
|V |

∑
i∈S fGNN

i (X), 1
|V |

∑
i∈T fGNN

i (X)) ∈ R2×d. Then we apply a GNN layer to242

get node represents on the coarse graph (gGNN
S (X), gGNN

T (X)) ∈ R2×d:243

gGNN
S (X) = σ(zSW

⊤
1 + zTW

⊤
2 ), gGNN

T (X) = σ(zTW
⊤
1 + zSW

⊤
2 ), (13)

where W1,W2 ∈ Rd×d are learnable parameters. We consider the impact of α on our patch GT, let244

ηS→T = max
α

∥gGNN
T (X+α)− gGNN

T (X)∥1 (14)

ηT→T = max
β

∥gGNN
T (X+ β)− gGNN

T (X)∥1, (15)

Then we have the following proposition on the ratio ηS→T /ηT→T .245

Theorem 5. The ratio ηS→T

ηT→T
can be arbitrarily close to 1 in a PatchGT model, under the assumption246

of regular graphs.247

This is because S and T are direct neighbors in the coarse graph, then αS can directly impact zS ,248

which can impact gGNN
T through messages passed by GNN layers or the attention mechanism of249

Transformer layers. The right part of fig. 3 shows that patch representation can include signals from250

the other node cluster.251

4.4 Comparison for different Segmentation methods252

In the previous researches, there exist many hierarchical pooling models [4, 12, 13, 19, 27, 39]. The253

most obvious difference from the proposed method is that the pooling/segmentation is trainable.254

Particularly, the pooling is from the node respresentations learned by GNNs. In the Theorem 1 and255

Theorem 2, we prove such trainable clustering methods will compute the same representations to the256

nodes if 1-WL algorithm can not differentiate them. This takes two serious problems for the graph257

segmentation: First, the nodes with the same representations will be assigned to the same cluster even258

if they are not connected to each other; Second, too many nodes could be assigned to one cluster to259

make sure that the nodes far away from each other are in the same cluster.260

Here we compare the two segmentation results: one is from spectral clustering and another is from261

Memory-based graph networks[1] which is a typical trainable clustering method. In the first case,262

we find that nodes in the blue cluster from trainable clustering are not connected. If we adopt such263

patch representations by aggregating the disconnected nodes, it will definitely hurt the performance.264

This can also be applied to other hierarchical pooling methods such as Diffpool, Eigenpool, and265

MinCutpool.266

In the second case, the spectral clustering methods segment the graph by minimum cuts. This is267

helpful to solve the information bottleneck between patches. However, the Memory-based graph268

networks cluster the two benzene rings together. It will be difficult for the model to detect the269

existence of these two benzene rings.270

5 Empirical Study271

In this section, we evaluate the effectiveness of PatchGT through experiments.272

Datasets. We benchmark the performances of PatchGT on several commonly studied graph-level273

prediction datasets. The first four are from the Open Graph Benchmark (OGB) datasets [14] (ogbg-274

molhiv, ogbg-molbace, ogbg-molclintox, and ogbg-molsider). These tasks are predicting molecular275
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attributes. The evaluation metric for these four datasets is ROC-AUC (%). The second group of six276

datasets are from the TU datasets [25], and they are DD, MUTAG, PROTEINS, PTC-MR, ENZYMES,277

and Mutagenicity. Each dataset contains one classification task for molecules. The evaluation metric278

is accuracy (%) over all six datasets. The statistics for the datasets is summarized in Appendix A.11.279

5.1 Quantitative evaluation280

Table 1: Results (%) on OGB datasets

ogbg-molhiv ogbg-molbace ogbg-molclintox ogbg-molsider
GCN +VN 75.99 ±1.19 71.44 ± 4.01 88.55±2.09 59.84±1.54
GIN + VN 77.07±1.49 76.41±2.68 84.06±3.84 57.75 ±1.14
Deep LRP 77.19±1.40 - - -
PNA 79.05±1.32 - - -
Nested GIN 78.34±1.86 74.33±1.89 86.35±1.27 61.2±1.15
GRAPHSNN +VN 79.72±1.83 - - -
Graphormer (pre-trained) 80.51±0.53 - - -
PatchGT-GCN 80.22±0.84 86.44±1.92 92.21 ±1.35 65.21 ± 0.87
PatchGT-GIN 79.99±1.21 84.08±2.03 86.75 ±1.04 64.90 ±0.92
PatchGT-DeeperGCN 78.13 ± 1.89 88.31±1.87 89.02± 1.21 65.46±1.03

Table 2: Results (%) on TU datasets

DD MUTAG PROTEINS PTC-MR ENZYMES Mutagenicity
GCN 71.6±2.8 73.4±10.8 71.7±4.7 56.4±7.1 50.17 -
GraphSAGE 71.6±3.0 74.0±8.8 71.2±5.2 57.0±5.5 54.25 -
GIN 70.5±3.9 84.5±8.9 70.6±4.3 51.2±9.2 59.6 -
GAT 71.0±4.4 73.9±10.7 72.0±3.3 57.0±7.3 58.45 -
DiffPool 79.3±2.4 - 72.7±3.8 - 62.53 77.6±2.7
MinCutPool 80.8±2.3 - 76.5±2.6 - - 79.9±2.1
Nested GCN 76.3±3.8 82.9±11.1 73.3±4.0 57.3±7.7 31.2±6.7 -
Nested GIN 77.8±3.9 87.9±8.2 73.9±5.1 54.1±7.7 29.0±8.0 -
DiffPool-NOLP 79.98 - 76.22 - 61.95 -
SEG-BERT - 90.8 ±6.5 77.1±4.2 - - -
U2GNN 80.2±1.5 89.9±3.6 78.5±4.07 - - -
EigenGCN 78.6 - 76.6 - 64.5 -
Graph U-Nets 82.43 - 77.68 - - -
PatchGT-GCN 83.3±3.1 94.7±3.5 80.3±2.5 62.5±4.1 73.3±3.3 78.3±2.2
PatchGT-GIN 79.6±3.3 89.4±3.2 79.5±3.1 58.4±2.9 70.0±3.5 80.4±1.4
PatchGT-DeeperGCN 76.1±2.8 89.4±3.7 77.5±3.4 60.0±2.6 56.6±3.1 80.6±1.5

Baselines. In this section, we compare the performance of PatchGT against several baselines including281

GCN [17], GIN [36], as well as recent works Nested Graph Neural Networks [44] and GraphSNN282

[33]. To compare with learnable pooling methods, we also include DiffPool [39], MinCutPool [4]283

Graph U-Nets[12], and EigenGCN[23] as baselines for TU datasets. We also include the Graphormer284

model, but note that Graphormer needs a large-scale pre-training and cannot be easily applied to a285

wider range of datasets. We also compare our model with other transformer-based models such as286

U2GNN[26] and SEG-BERT[43].287

Settings. We search model hyper-parameters such as the eigenvalue threshold, the learning rate, and288

the number of graph neural network layers on the validation set. Each OGB dataset has its own data289

split of training, validation, and test sets. We run ten fold cross-validation on each TU dataset. In290

each fold, one-tenth of the data is used as the test set, one-tenth is used as the validation set, and the291

rest is used as training. For the detailed search space, please refer to Appendix A.12.292

Results. Table 1 and Table 2 summarize the performance of PatchGT and other baselines on OGB293

datasets and TU datasets. We take values from the original papers and the OGB website; EXCEPT294

the performance values of Nested GIN on the last three OGB datasets – we obtain the three values by295

running Nested GIN. We also tried to run the contemporary method GRAPHSNN+VN on the other296

three OGB datasets, but we did not find the official implementation at the submission of this work.297
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Figure 5: Analysis of the key design for the proposed PatchGT. All results are based on PatchGT
GCN. In the left figure, we show how changing the threshold for eigenvalues affects performance
on the ogbg-molclintox and PROTEINS datasets; The middle figure shows the model performances
with the removal of patch-GNN or Transformer (replaced by mean pool) on DD and ogbg-molhiv
datasets; The right figure shows the effect of the different readout functions for patch representations.

Figure 6: Attention visualization of PatchGT on ogbg-molhiv molecules. The second and fourth
figures show the attention weights of query tokens on the node patches for the corresponding
molecules, which are in the first and third figures. The molecule in the first figure does not inhibit
HIV virus, yet the molecule in the third figure does.

From the results, we see that the proposed method gets good performances on almost all datasets298

and often outperforms competing methods with a large margin. On the ogbg-molhiv dataset, the299

performance of PatchGT with GCN is only slightly worse than Graphormer, but note that Graphormer300

needs large-scale pre-training, which limits its applications.301

PatchGT with GCN outperforms three baselines on the other three OGB datasets. The improvements302

on these three OGB datasets are significant. PatchGT with GCN outperforms baselines on four out303

of six TU datasets. When it does not outperform all baselines, its performances are only slightly304

worse than the best performance. Similarly, two other configurations, PatchGT-GIN and PatchGT-305

DeeperGCN, also perform very well on these two datasets.306

5.2 Ablation study307

We perform ablation studies to check how different configurations of our model affect its performance.308

The results are shown in Figure 5.309

Effect of eigenvalue threshold. The eigenvalue threshold γ influences how many patches for a310

graph after the segmentation. Generally speaking, larger γ introduces more patches and patches with311

smaller sizes. When γ is large enough, the number of patches k equals the number of nodes |V | in the312

graph, and the Transformer actually works at the node level. When the γ is 0, then the whole graph is313

treated as one patch, and the model is reduced to a GNN with pooling. The left figure shows that314

there is a sweet point (depending on the dataset) for the threshold, which means that using patches is315

a better choice than not using patches.316

Effect of GNN layer on the coarse graph and Transformer layers. This ablation study removes317

either patch-level GNN layers or Transformer layers to check which part of the architecture is318

important for the model performance. From the middle plot in Figure 5, we see that both types of319

layers are useful, and Transformer layers are more useful. This is another piece of evidence that320

PatchGT can combine the strengths of different models.321
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Comparison of readout functions. We compare the performance of PatchGT model using different322

readout functions when aggregating node representations at each patch in Equation (4). In the right323

figure, we observe the remarkable influence of the readout function on the performance. Empirical324

studies indicate max-pooling is the optimal choice under most circumstances.325

5.3 Understanding the attention326

Besides improving learning performances, we are also interested in understanding how the attention327

mechanism helps the model identify the graph property. We train the PatchGT model on the ogbg-328

molhiv dataset and visualize the attention weights between query tokens and each patch. Interestingly,329

the attention only concentrates on some chemical motifs such as Cl O3 and CON2 but ignores other330

very common motifs such as benzene rings. It can be noticed that for the molecule in the first figure,331

the two benzene rings are connected to each other by -C-C-. However, the model does not pay any332

attention to this part. The two rings in the molecule of the second molecule are connected by -S-S-;333

differently, the model pays attention to this part this time. It indicates that Transformer can identify334

which motifs are informative and which motifs are common. Such property offers better model335

interpretability compared to the traditional global pooling. It not only makes accurate predictions but336

also provides some insight into why decisions are made. In the two examples shown above, we can337

start from motifs SO3 and -S-S- to look for structures meaningful for the classification problem.338

6 Conclusion and Limitations339

In this work, we show that graph learning models benefit from modeling patches on graphs, particu-340

larly when it is combined with Transformer layers. We propose PatchGT, a new learning model that341

uses non-trainable clustering to get graph patches and learn graph representations based on patch342

representations. It combines the strengths of GNN layers and Transformer layers and we theoretically343

prove that it helps mitigate the bottleneck of graphs and limitations of trainable clustering. It shows344

superior performances on a list of graph learning tasks. Based on graph patches, Transformer layers345

also provides a good level of interpretability of model predictions.346

However, the work tested our model mostly on chemical datasets. It is unclear whether the model347

still performs well when input graphs do not have clear cluster structures.348
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A Appendix447

A.1 Proof of Theorem 1448

The proof that DiffPooling cannot distinguish graphs that are colored in the same way by the 1-WL449

algorithm.450

Proof. The function form of a pooling layer in DiffPooling is451

H′ = S⊤ASS⊤H, S = gnnc(A,X), H = gnnr(A,X) (16)

Here gnnc(·, ·) learns a cluster assignment S of all nodes in the graph, and gnnr(·, ·) learns node452

representations.453

Note that gnnr has at most the ability of 1-WL algorithm [36]. Two nodes must get the same454

representation when they have the same color in the 1-WL coloring result. We use an indicator matrix455

C to represent the 1-WL coloring of the graph, that is, the node i is colored as j if Ci,j = 1, then we456

can write457

S = CB (17)

Here the j-th row of B denote the vector representation learned for color j.458

If two graphs represented by A and Λ cannot be distinguished by the 1-WL algorithm, then they get459

the same coloring matrix C (subject to some node permutation that does not affect our analysis here).460

Now we show that:461

C⊤AC = C⊤ΛC (18)

Let’s compare the two matrices on both sides of the equation at an arbitrary entry (k, t). Let αk462

and αt represent nodes colored in k and t, then the entry at (k, t) is
∑

i∈αk

∑
j∈αt

Ai,j , which is463

the count of edges that have one incident node colored in k and the other incident node colored464

in t. Since the coloring is obtained by 1-WL algorithm, each node i ∈ αk has exactly the same465

number of neighbors colored as t. The number of nodes in color k and the number of neighbors466

in color t are exactly the same for Λ because Λ receives the same coloring as A. Therefore,467 ∑
i∈αk

∑
j∈αt

Ai,j =
∑

i∈αk

∑
j∈αt

Λi,j , and (18) holds.468

At the same time, if two graphs cannot be distinguished by 1-WL, they have the same node represen-469

tations H, then they have the same H′.470

A.2 Proof of Theorem 2471

We first prove a lemma.472

Lemma 1. Suppose two graphs represented by A and Λ obtain the same coloring from the 1-WL473

algorithm, then474

i) the resultant two graphs from removal of nodes in the same color still get the same coloring by475

the 1-WL algorithm; and476

ii) the two multigraphs represented by Aℓ and Λℓ still get the same coloring by the 1-WL algorithm.477

Here Aℓ and Λℓ are the ℓ-th power of the two adjacency matrices, and they represent multigraphs that478

may have self-loops and parallel edges. The 1-WL algorithm is still valid over graphs with self-loops479

and multi-edges. A 1-WL style GNN defined in Section 3.1 or [12] is still bounded by the 1-WL480

algorithm on such multigraphs.481

Proof. i) We first consider updating of 1-WL coloring when nodes in a color is removed. Suppose482

we have stable coloring of graphs represented by A. Let αt and αr denote two groups of nodes in483

color t and r respectively. We also assume each node in r has t in its color set – if there are not such484

cases, then we can simply remove nodes in a color and obtain a stable 1-WL coloring.485

Suppose we remove nodes in color t from both graphs. Note that all nodes αr have the same number486

of neighbors in color t. We update the color set of each i ∈ αr by removing color t from it. Then all487

nodes in αr still get the same color. Therefore, removing the color t from nodes in all relevant color488

groups gives at least a stable coloring, which, however, might not be the coarsest.489
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Then we merge some colors when nodes share the same color set. If a node in color r has the same490

color set as a node in color r′, then we assign the same color to both nodes in colors r and r′. We run491

merging steps until no nodes in different colors share the same color set, then the coloring is a stable492

coloring of the graph, and the resultant coloring of the graph can be viewed as the 1-WL coloring of493

the graph.494

In the procedure above, the step of removing a color, and the steps of merging colors directly operate495

on nodes’ color sets. Since nodes in A and nodes in Λ have the same color sets, therefore, they will496

have the same color sets after color updates.497

The update procedure above purely runs on color relations between different colors. Since A and Λ498

have exactly the same color relations because they receive the same 1-WL coloring. Therefore, the499

update procedure above still gives the same stable coloring to A and Λ.500

ii) For the second part of the lemma, we first check the coloring of Aℓ. We show that the coloring501

of A is a stable coloring of Aℓ. Suppose each node i has a color set Ci. In the graph Aℓ, i’s ℓ-th502

neighbors become direct neighbors of i. The color set of i becomes503

Ci ∪
(
∪j1∈N(i)Cj

)
∪ . . . ∪

(
∪j1∈N(i) . . . ∪jℓ∈N(jℓ−1) Cjℓ

)
(19)

We know that if two nodes i and i′ have the same color if and only if their color sets are the same. By504

using the relation recursively, i and i′ have the same color set in Aℓ. Therefore, the stable coloring of505

A is also a stable coloring of Aℓ. If necessary, we can also run the merging procedure above and506

eventually get 1-WL coloring of Aℓ. With the same argument as above, the operations only run on507

color sets, therefore, Aℓ and Λℓ have the same coloring.508

Now we are ready to prove the main theorem that the Graph U-Net variant cannot distinguish graphs509

colored in the same way by the 1-WL algorithm.510

Proof. In the calculation of Graph U-Net-th, the indicator b for removing nodes is obtained by511

thresholding v, which is computed by a 1-WL GNN. Therefore, nodes in the same color are always512

kept or removed all together in b.513

Suppose the inputs to a Graph U-Net layer are (A,X) and (Λ,X) respectively, and A and Λ514

cannot be distinguished by the 1-WL algorithm. The inputs to next layer are (Aℓ[b,b],X[b]) and515

(Λℓ[b,b],X[b]) respectively. By the lemma above, the 1-WL algorithm cannot distinguish Aℓ and516

Λℓ, and it cannot be distinguish Aℓ[b,b] and Λℓ[b,b] either. Therefore, it still cannot distinguish517

the inputs (Aℓ[b,b],X[b]) to the next layer.518

By using the argument above recursively, the network cannot distinguish the graph at the final outputs519

if network inputs (A,X) and (Λ,X) cannot be distinguished by the 1-WL algorithm.520

Remark 1. For graphs with noise or low homophily ratios, the aforementioned issue may not be521

severe and long-distance aggregation is helpful.522

A.3 Analysis for expressiveness of Graph U-Nets523

In this section we use an example in Fig. 7 to understand how to maintain a graph’s global structure524

with pooling operations. In a pooling step, DiffPool and MinCutPool will assign nodes in the same525

color to the same cluster and merge them as one node. Clearly it does not maintain the global structure526

of the graph and cannot distinguish the two graphs.527

Graph U-Net always ranks nodes in one color above nodes of the other color. It is not always528

permutation invariant: for example, it may get different structures when it breaks tie to take two529

green nodes. In many cases, it cannot distinguish the two graphs: when it takes three nodes, either530

three green nodes or two blue and one green nodes, it cannot distinguish the two graphs. The Graph531

U-Net variant considered above always remove blue or green nodes, thus it cannot distinguish the532

two graphs. One important observation is Graph U-Net cannot preserve the global graph structure in533

its pooling steps. For example, when it removes three nodes, the structure left is vastly different from534

the original graph.535
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Original graphs Graph segmentation Patch graph

G1

G2

G̃1

G̃2

Original graphs Graph segmentation Patch graph

G3

G4

G̃3

G̃4

Figure 7: Two graphs that cannot be distinguished by the 1-WL algorithm. The colors illustrate
the 1-WL coloring of graph nodes. In comparison, PatchGT can differentiate them through the
patch-level graph.

A.4 A proof showing that PatchGT is more expressive than the 1-WL algorithm536

Proof. From the proof of GIN, we know that the two multi-sets {hL1
i : i ∈ G1} and {hL1

i : i ∈ G2}537

are already different if the two graphs can be distinguished by the L1-round 1-WL algorithm.538

Then we show that the rest of a learned network from Equation (4) to Equation (9) is a bijective539

operation. We first consider the patch aggregation by the sum-pooling is bijective. According to540

Corollary 6 of [36], and assuming the GIN layers are properly trained, then there is an inverse inv(·)541

of sum-pooling such that {hL1
i : i ∈ Ck′} = inv(z0). Then the inverse of patch aggregation is:542

{hL1
i : i ∈ G1} = ∪k

k′=1inv(z
0
k′) (20)

If the L2 GNN layers on patches are also properly trained, then the mapping from Z0 to ZL2 is also543

bijective. At the same time, we assume vectors in ZL2 are properly transformed, which will be useful544

in the following MHA operation.545

Finally, we consider MHA layers. We first analyze the case with only one layer with one attention546

head. Note that q1 = k · softmax
(
q⊤
0 ZL2

/
√
d
)⊤

ZL2
with d being the dimension of row vectors547

in Z1. Suppose PatchGT learns the query q0 to be a zero vector, and the linear transformation in548
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Equation (9) is the identity operation, then g1 = q1 = 1⊤ZL2 , which is the summation of patch549

vectors ZL2 . Combining the last GIN layer, this summation is a bijective operation according to550

Corollary 6 of [36]. If there are multiple MHA layers, then we only need the MLP in Equation (8) to551

zero out the input, and the layer is equivalent to no operation. If there are multiple attention heads,552

the network can always take the first attention head. Therefore, a general case of MHA layers can553

also be a summation of input vectors.554

Putting these steps together, there is an inverse mapping g1 to {hL1
i : i ∈ G1} and mapping g2 to555

{hL1
i : i ∈ G2}. Then g1 and g2 must be different.556

We further show that there are cases that cannot be distinguished by the 1-WL algorithm but can557

be distinguished by PatchGT. Consider two examples in Figure 7. The two original graphs G1 and558

G2, or G3 and G4, are non-isomorphic. However, both the 1-WL algorithm cannot differentiate559

them. In comparison, by segmenting these graphs into patches, PatchGT can discriminate G1 from560

G2. After segmentation, the two patches from G1 and the pacthes G2 can be distinguished by the561

1-WL algorithm and also PatchGT. Note that node degrees of G1 patches are already different from562

node degrees of G2 patches. It is the same for G3 and G4. These two examples indicate that the563

expressiveness of PatchGT is beyond 1-WL algorithm.564

565

A.5 Proof of Theorem 4566

We prove the theorem 4 through three lemmas below.567

Lemma 2. The patches split via k-means are invariant to column vectors in U from the spans of568

eigenvectors associated with the multiplicities of eigenvalues.569

kmeans(V) = kmeans(VQ) (21)

where Q is a standard block-diagonal rotation matrix.570

Proof. If we use Nu eigenvectors for the graph patch splitting, corresponding to the first Nu smallest571

eigenvalues, we can write them as (λ1,u1), ..., (λNu
,uNu

). If we have multiplicities in these572

eigenvalues, we can rotate the eigenvectors by a block-diagonal rotation matrix Q ∈ RNu×Nu to573

obtain another set of eigenvectors,574

U′ = [u′
1, ...,u

′
k] = [u1, ...,uk]Q = UQ (22)

where ui,u
′
i ∈ R|V |×1. If we perform k-means on the row vectors of [(u1)i, ..., (uk)Nu

], we can575

write the nodes’ coordinates as576

[x1; ...;x|V |] = [u1, ...,uNu
]. (23)

Similarly, we can write down the new coordinates after rotation as577

[x′
1; ...;x|V |] = [u′

1, ...,u
′
Nu

]. (24)

From the above three equations, it holds that578

[x′
1; ...;x|V|′ ] = [x1; ...;x|V|]Q. (25)

So for i, j ∈ {1, ..., |V |}, we have579

x′
i = xiQ x′

j = xjQ. (26)

The relative distance of new coordinates can be calculated as580

(x′
i − x′

j)(x
′
i − x′

j)
⊤ = (xiQ− xjQ)(xiQ− xjQ)⊤ = (xi − xj)QQ⊤(xi − xj)

⊤. (27)

From the property of the rotational matrix, we have581

I = QQ⊤. (28)

So it holds that582

(x′
i − x′

j)(x
′
i − x′

j)
⊤ = (xi − xj)(xi − xj)

⊤. (29)
So for any two node pair, the relative distance is preserved, thus it will not affect the k-means583

results.584
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Lemma 3. The patches split via k-means are invariant to column vectors in U with different signs.585

Proof. The sign invariance is a special case of rotation invariance by taking Q as a diagonal matrix586

with entry (Q)ii ∈ {−1, 1}587

Lemma 4. The patches split via k-means are invariant to the permutations of nodes588

kmeans(U) = kmeans(PU) (30)

where P is a permutation matrix.589

Proof. We denote I|V | = [1, ..., 1]⊤ ∈ R|V |×1 For a permutation matrix P of A, we have the590

corresponding permutation matrix P such that591

A′ = P⊤AP (31)

where A and A′ are adjacency matrices of G and G′ respectively. And the for the degree matrix of592

G and G′593

D = diag(A′I|V |), D
′ = diag(A′I|V |) (32)

Substitute equation31 into equation 32594

D′ = diag(P⊤API|V |) = diag(P⊤AP(P⊤I|V |P)) (33)

From the symmetry of the permutation matrix, it holds that595

P−1 = P⊤ (34)

Combine the above three equations, we can get596

D′ = P⊤diag(AI|V |)P = P⊤DP (35)

So the permuted Laplacian matrix is597

L′ = I−D′−0.5A′D′−0.5 = P⊤IP−P⊤D−0.5PP⊤APP⊤D−0.5P

= P⊤(I−D−0.5AD−0.5)P = P⊤LP
(36)

Substitute into the Laplacian eigen decomposition, we have the equation598

L′ − λI = P⊤LP⊤ −P⊤λIP = P⊤(L− λI)P (37)

and its algebraic form599

det(L′ − λI) = det(P⊤)det(L− λI)det(P) = det(L− λI), (38)

so the eigenvalues are remaining invariant.600

Next we look at the eigenvector. For a eigenvector of bL′, (λ,u′), we have601

L′u′ = λu′ (39)

Combine with equation 36, we can get602

P⊤LPu′ = λu′ ⇐⇒ L(Pu′) = λ(Pu′) (40)

So we have the relation of two corresponding eigenvectors as603

u = Pu′ ⇐⇒ u′ = P⊤u (41)

So we have the relation for the node coordinate604

[x′
1; ...;x

′
|V |] = PT [x1; ...;x|V |]. (42)

Thus there is a bijective mapping B : n → m such that (P)nB(n) = 1 and xn = x′
B(n). Then for any605

node pair (i, j), we can find (i′, j′) = (B(i),B(j)) such that606

xi = x′
i′ , xj = x′

j′ , (43)

then it clearly holds that607

(xi − xj)(xi − xj)
⊤ = (x′

i′ − x′
j′)(x

′
i′ − x′

j′)
⊤. (44)

So for any two node pair, the relative distance is preserved, thus it will not affect the k-means608

results.609
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A.6 Multi-head attention610

Transformer [32] has been proved successful in the NLP and CV fields. The design of multi-head611

attention (MHA) layer is based on attention mechanism with Query-Key-Value (QKV). Given the612

packed matrix representations of queries Q, keys K, and values V, the scaled dot-product attention613

used by Transformer is given by:614

ATTENTION(Q,K,V) = softmax

(
QKT

√
Dk

)
V, (45)

where Dk represents the dimensions of queries and keys.615

The multi-head attention applies H heads of attention, allowing a model to attend to different types616

of information.617

MHA(Q,K,V) = CONCAT(head1, . . . ,headH)W

where headi = ATTENTION
(
QWQ

i ,KWK
i ,VWV

i

)
, i = 1, . . . ,H. (46)

A.7 Proof of proposition 1618

Given a L layer GNN with uniform hidden feature and initial feature H0 = X, for l = 0, ..., L, the619

recurrent output of a GNN layer Hl+1 follows620

Hl+1 = σ(HlW
⊤
1l +AHlW

⊤
2l) (47)

where Hl ∈ R|V |×d, W1l,W2l ∈ Rd×d. And then we introduce another recurrent relationship to621

track the output change of each layers propagated from an initial perturbation ϵ0 ∈ R|V |×d on H0,622

ϵl+1 = σ(HlW
⊤
1l +AHlW

⊤
2l + ϵlW

⊤
1l +AϵlW

⊤
2l)− σ(HlW

⊤
1l +AHlW

⊤
2l). (48)

We denote | · | as an operator to replace a matrix’s (·) elements with absolute values and we write623

|J| ≤ |K| if |(J)ij | ≤ |(K)ij |. Let IS ∈ R|V |×1 is an indicator vector of S such that (IS)i =624

1 if i ∈ S else 0. We firstly prove a lemma below.625

Lemma 5. Given ϵ0 = α, it holds that626

|ϵl| ≤ alISV
⊤
l + rl ∈ R|V |×d or |(ϵl)ij | ≤ al(Vl)j(IS)i + (rl)ij (49)

where al = ϵ(τ + 1)l, Vl ∈ Rd×1
+ , ||Vl||1 ≤ d and ||rl||1 ≤ 2rϵm(l + 1)(τ + 1)l.627

Proof. We prove by induction. For l = 0, we can take a0 = ϵ, V0 = Id = [1, ..., 1︸ ︷︷ ︸
d

] and r0 = 0, then628

it holds629

|ϵ0| ≤ a0ISV
⊤
0 + r0. (50)

From the recurrent relation in equation 48, it holds that630

ϵl+1 = σ((Hl + ϵl)W
⊤
1l +A(Hl + ϵl)W

⊤
2l)− σ(HlW

⊤
1l +AHlW

⊤
2l). (51)

From the Lipschitz continuity of σ, it holds that631

|ϵl+1| ≤ |ϵlW⊤
1l +AϵlW

⊤
2l|. (52)

From the triangle inequality, we have632

|ϵl+1| ≤ |ϵl||W⊤
1l|+A|ϵl||W⊤

2l|. (53)

From the assumption the statement holds at lth layer, we have633

(∗) |ϵl| ≤ alISV
⊤
l + rl. (54)

Substitute equation 54 into equation 53, we have,634

|ϵl+1| ≤ (alISV
⊤
l + rl)|W⊤

1l|+A(alISV
⊤
l + rl)|W⊤

2l| (55)

Expand the above equation,635

|ϵl+1| ≤ al(AIS)(V
⊤
l |W⊤

2l|) +Arl|W⊤
2l|+ alISV

⊤
l |W⊤

1l|+ rl|W⊤
1l| (56)
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Using the property of undirected τ -graph, it holds that636

AIS = τIS −
∑

(i,j)∈E,i∈S,j∈T

(Ei −Ej) = τIS +BS , (57)

where we denote637

BS = −
∑

(i,j)∈E,i∈S,j∈T

(Ei −Ej), (58)

and Ei,Ej ∈ R|V |×1 are unit vectors with ith and jth entry equal to 1 respectively. Then it is trivial638

to show that639

||BS ||1 ≤ 2m. (59)
Substitute equation 57 into equation 56, we have640

|ϵl+1| ≤ alτISV
⊤
l |W⊤

2l|+ alBSV
⊤
l |W⊤

2l|+Arl|W⊤
2l|+ alISV

⊤
l |W⊤

1l|+ rl|W⊤
1l|. (60)

Let641

al+1 = (1 + τ)al,

V⊤
l+1 =

τ

τ + 1
V⊤

l |W⊤
2l|+

1

τ + 1
V⊤

l |WT
1l|,

rl+1 = alBSV
⊤
l |W⊤

2l|+Arl|W⊤
2l|+ rl|W⊤

1l|,

(61)

then we rewrite equation 60 as642

|ϵl+1| ≤ al+1ISV
⊤
l+1 + rl+1 (62)

From the assumption that643

||W1l||1 ≤ 1, ||W2l||1 ≤ 1, (63)
we have644

||(|W1l|)||1 = ||W1l||1 ≤ 1, ||(|W2l|)||1 = ||W2l||1 ≤ 1. (64)
So substitute equation 64, equation 59 and equation 54 into equation 61,645

al+1 = (τ + 1)al ≤ ϵ(τ + 1)l+1

||V⊤
l+1|| ≤

τ

τ + 1
||V⊤

l ||1 +
1

τ + 1
||V⊤

l || ≤ d
(65)

and646

||rl+1||1 ≤ al||BS ||1||V⊤
l ||1 + ||A||1||rl||1 + ||rl||1

≤ 2almd+ (τ + 1)||rl||1 ≤ 2mdϵ(τ + 1)l + (τ + 1)||rl||1
≤ 2mdϵ(τ + 1)l + 2mdϵ(l + 1)(τ + 1)l+1

≤ 2mdϵ(τ + 1)l+1 + 2mdϵ(l + 1)(τ + 1)l+1 = 2mdϵ(l + 2)(τ + 1)l+1.

(66)

This finishes the induction.647

The above lemma gives648

max
||W1l||1
||W2l||1

α

|ϵl| ≤ ϵ(τ + 1)lISV
⊤
l + rl (67)

where ||V⊤
l || ≤ d and ||rl||1 ≤ 2dϵm(l + 1)(τ + 1)l. So when only looking at indices ϵij with649

i ∈ T , the first term vanishes and it holds that650

max
||W1l||1
||W2l||1

α

∑
i∈T

|ϵl|ij ≤ 2dϵm(l + 1)(τ + 1)l (68)

For the denominator, we simply construct W1l = W2l as both identity matrix and take ϵ0 = β.651

Then it simply holds that652

|ϵ0| = (1 + τ)0ϵIT I
⊤
d (69)
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where IT is the indicator vector on set T . Assume it holds,653

ϵl = (1 + τ)lϵIT I
⊤
d (70)

then from the Lipschitz continuity (ReLU) of σ and standard τ -graph, it holds that654

ϵl+1 = σ((I+A)(Hl+ϵl))−σ((I+A)(Hl)) = (1+d)lϵ(I+A)IT I
⊤
d = (1+τ)l+1ϵIT I

⊤
d (71)

So we can get655 ∑
i∈T

|(ϵl)ij | = ϵ(1 + τ)l
∑
i∈T

(IT I
⊤
d )ij = (1 + τ)lϵ|T |d (72)

So that it holds that656

max
||W1l||1
||W2l||1

β

∑
i∈T

|ϵl|ij ≥ (1 + τ)lϵ|T |d (73)

Combine equation 68 and equation 73, and substitute the last layer number as L− 1, we have657

max
||W1l||1
||W2l||1

α

∑
i∈T |ϵl|ij

max
||W1l||1
||W2l||1

β

∑
i∈T |ϵl|ij

≤ 2mL

|T |
. (74)

A.8 Proof of Theorem 5658

From the proof of proposition 1 in appendix A.7, by simply constructing W1l,W2l in the node-level659

GNN as identity matrix, we have660

∑
i∈S

|(ϵS)ij | = (1 + τ)Lϵ|S|d if ϵ0 = α,∑
i∈T

|(ϵS)ij | = (1 + τ)Lϵ|T |d if ϵ0 = β.
(75)

Then from Lipschitz continuity (ReLU) we have661

ηS→T = gGNN
T (X+α)− gGNN

T (X)

= σ(zTW
⊤
1 + (zS +

1

|V |
∑
i∈S

(ϵS)ij)W2)− σ(zTW
⊤
1 + zSW

⊤
2 )

= (
1

|V |
∑
i∈S

(ϵS)ij)W
⊤
2 if ϵ0 = α

(76)

and662

||ηS→T ||1 = ||( 1

|V |
∑
i∈S

(ϵS)ij)W
⊤
2 ||1 = ||W⊤

2 ||1(1 + τ)Lϵ
|S|
|V |

d if ϵ0 = α (77)

Similarly, we can get663

ηT→T = (
1

|V |
∑
i∈T

(ϵT )ij)W
⊤
1 . if ϵ0 = β, (78)

and664

||ηT→T ||1 = ||W⊤
1 ||1(1 + τ)Lϵ

|T |
|V |

d if ϵ0 = β, (79)

Then we can simply make ||W1||1
||W2||1 = |S|

|T | , so that the ratio is 1.665

Remark 2. The assumption of output norm unification can be achieved by standard normalization,666

such as batch and layer normalizations. Lipschitz continuity exists widely in the activation functions667

such as ReLU. And most molecules can be modeled as qusi standard graphs. These assumptions are668

fair assumptions in graph learning. Although it is difficult to universally obtain a precise and tight669

bound, the existence of such bounds is still helpful for GNN structure design.670
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Remark 3. The ratio may become informative if there are information bottlenecks within a cluster.671

We can mitigate the problem by having an appropriate, sufficient number of clusters. However, the672

number of clusters can not be too large, so there is a tradeoff between avoiding bottlenecks and673

computational cost.674

Here, we also introduce a heuristic example for possibly extending to a non-standard graph. Let675

subgraph S be an cycle (2-graph) and subgraph T be a clique (n-graph), approximately. And we676

assume |S| = |T | = n, and node values are all units with perturbation ϵ. After one propagation of677

node level, each node in S has the value 3(1 + ϵ), each node in T has the value n(1 + ϵ). Then at678

patch level, equations (75), (77), (79) are modified accordingly as ηS→T = 3ϵW2, ηT→T = nϵW1,679

then ηS→T

ηT→T
= 3

n · W2

W1
, which indicates the unevenness may affect the performance. However, if at680

patch level W2

W1
≈ O(n) can be learned, we can still reach a sub-optimal balance. Actually, if W2

W1
> 1681

can be learned, it will help mitigate the bottleneck anyway.682

A.9 Graph segmentation683

As a graph has an irregular structure and contains rich structural information, forming patches on a684

graph is not as straightforward as segmenting images. The previous works [9, 22] generally split an685

image in the euclidean space. However, graphs are segmented through spectral clustering based on686

its topology. Figure 8 shows the second eigenvector and patch segmentations based on the algorithm687

described in Section 3.2. It can be seen that the eigenvectors change along with the graph structures,688

and the graphs are splitted into several function groups. Such patches are useful for discriminating689

the property of the given molecule.690

A.10 More results691

Table 7 provides the performance of PatchGT on ogbg-moltox21 and ogbg-moltoxcast.692

Table 3: Results (%) on OGB datasets

ogbg-moltox21 ogbg-moltoxcast
GCN +VN 75.51 ± 0.86 66.33±0.35
GIN + VN 76.21 ± 0.82 66.18 ±0.68
GRAPHSNN +VN 76.78± 1.27 67.68 ± 0.92
PatchGT-GCN 76.49 ±0.93 66.58 ±0.47
PatchGT-GIN 77.26 ± 0.80 67.95 ±0.55

A.11 Datasets693

Table 4 contains the statistics for the six datasets from Open Graph Bechmark (OGB) [14], and694

Table 5 contains the statistics for the six datasets from TU datasets [25].695

Table 4: Statistics of OGB datasets

Name #Graphs #Nodes per graphs #Edges per graph #Tasks
molhiv 41,127 25.5 27.5 1

molbace 1,513 34.1 36.9 1
molclintox 1,477 26.2 27.9 2
molsider 1,427 33.6 35.4 27

ogbg-moltox21 7,831 18.6 19.3 12
ogbg-moltoxcast 8,576 18.8 19.3 617

A.12 Hyper-parameters selection696

We report the detailed hyper-parameter settings used for training PatchGT in Table 6. The search697

space for λ is {0.1, 0.2, 0.4, 0.5, 0.8}.698
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Figure 8: Examples of eigenvectors, and graph patches for molecules.
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Table 5: Statistics of TU datasets

Name #Graphs #Nodes per graphs #Edges per graph
DD 1,178 284.3 715.7

MUTAG 188 17.9 19.8
PROTEINS 1,113 39.1 72.8
PTC-MR 344 14.3 14.7

ENZYMES 600 32.6 62.1
Mutagenicity 4,337 30.3 30.8

Table 6: Model Configurations and Hyper-parameters

OGB TU
# GNN layers 5 4

# patch-GNN layers 2 2
Embedding Dropout 0.0 0.1
Hidden Dimension d 512 256
# Attention Heads 16 4
Attention Dropout 0.1 0.1

Batch Size 512 256
Learning Rate 1e-4 1e-4
Max Epochs 150 50

eigenvalue threshold λ {0.1, 0.2, 0.4, 0.5, 0.8}

A.13 Visualization of attention on nodes699

Figure 9 shows more attention on graphs. We notice that some patches the model concentrates on700

are far away from each other. This can help address information bottleneck in the graph. Also, it701

provides more model interpretation.702

A.14 Analysis of the computational complexity703

We compare our computational complexity with the node-level Transformer, Graphormer [38]. The704

comptutational complexity for both framework can be classified into two parts. The first part is705

extracting graph structure infromation. For PatchGT, the complexity is O(|V |3) for calculating the706

eigenvectors and perform kmeans for k patches. For Graphormer, the complexity is O(|V |4) due to707

node pairwise shortest path computation.708

Remark 4. The software and algorithms of eigen-decomposition are being widely developed in many709

disciplines [10]. The complexity can be reduced to O(|V |2) if a partial query and approximation710

of eigenvectors and eigenvalues are allowed [8, 29]. And spectral clustering does not require all711

eigenvectors with exact values. However, we admit that for graphs with eigenvalues that are too close712

to each other, the complexity of computing the eigenvectors takes O(N3).713

The second part is neural network computation. For PatchGT, the complexity is O(|E|) for GNN if714

the adjacency matrix is sparse and O(k2) for Transformer. And for Graphormer, the complexity of715

Transformer is O(|V |2). It shoud be noticed that for a large graph, k << |V |. Overall, the complexity716

of patch-level transformer is significantly less than that of applying transformer directly on the node717

level.718

For other hierarchical pooling methods, they also need O(L|E|) to learn the segmentation (L is the719

number of layers used in GNN), which is comparable to spectral clustering. And spectral clustering720

is easier for parallel computation. Specifically, for a Npool-level hierarchical pooling, it needs721

O(
∑Npool

i=1 Li|Ei|) to learn the segmentation and O(
∑Npool

i=1 |Vi|diki) to perform the segmentation.722

When training epoch number becomes a large number, the extra accumulated cost is non-trivial. Our723

segmentation cost does not scale with the training iterations.724
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Figure 9: Attention visualization of PatchGT on ogbg-molhiv molecules.

A.15 Frequencies of motifs725

There are two classes in ogbg-molhiv, and we record the frequencies of motifs PatchGT pay attention726

to. There are an apparent difference between the two classes. It indicates the model has a better727

interpretability.728

A.16 Ablation study for patch level GNN729

In PatchGT, we apply patch level GNN to the entire graph. We can also apply it to each patch so730

that there would not be any connection between subgraphs. Here we test the difference of these two731

designs.732

Table 7: Results (%) on ogbg-molhiv

single GNN multiple GNNs
PatchGT-GCN 80.22 ±0.0.84 79.13 ±0.47
PatchGT-GIN 79.99 ± 1.21 78.96 ±0.55

24



PatchGT: Transformer over Non-trainable Clusters for Learning Graph Representations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Motif ID

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n 
or

ig
io

na
l s

am
pl

e

Positive
Negative

Figure 10: Frequency of motifs PatchGT pay attention to in two classes.
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