A Basic Inequalities

Firstly, we present some preliminary inequalities that will be frequently used in the subsequent proofs.

Fact 1 (Cauchy-Schwarz Inequality). For any =,y € R?,

[ (@) [ < ]l - [yl (15)
Fact 2. For arbitrary set of N vectors {z;}¥_ |, x; € RY,

N 2 N
S oal| SNl (16)
i=1 i=1
Fact 3. Forany x,y € RY,
lz +yl* < A+ )llz]* + A+ H]z]?, Yo >o0. (17)
Fact 4. Given a convex set K € RY, the projection operator satisfies the following properties
©) lIPc(@) = Pc@)l < llz—yll,  Vo,y eRL (18)
(i) [Pc(@)—af <Jlz—yll, VreR’yek. (19)
(iii) (Pc(z) —z,2 —y) < —||Pc(x) —z|* <0, Ve e RYy € K. (20)
Fact 5 (Jensen’s Inequality). Given a convex function f and a random variable x, then
f(E[z]) < E[f(2)]. 2D
B Proofs of Section
Define
B =iy ) i@t - a0 -0V fiad), (22)
JEN;
ritthi= P (877Y) — &, (23)
1N
=) al, (24)
N i=1
and then
it = P (&) = &+t (25)

For notational simplicity, define matrices

Xti=col{z!, -+, 2k}, X':=col{E, - &y}, X':=col{z!, -z},
R' = COl{Ti’ e 7T§V}’ VFt(Xt) = CO]{Vflt(xi)7 T avffv(xgv)}

Denote by 1 the N-dimention column vector with all components being one, and M :=
%1N1]T,,M := M ® I;. Then X* = MX!. Define the Laplacian matrix L := Iy — A and
L:=L®I; I :=1Iy®I; where ® is the Kronecher product. Denote by L; the i-th row of L.

Then by Remark|[T} Algorithm[T|can be written in the matrix form as

X = X4 Q(X! — XY, (26)
Xt = pe (Xt A LXH ntVFt(Xt)> 7
= X'+ 4 R (28)

To begin with, we consider general regret bounds.
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Lemma 1. Consider Algorithm|I|with non-increasing gradient descent stepsizes {n: }H_,
(i) (Convex case) Suppose Assumptionsm Bl [ hold. Then for each j € V:

, ND?
R(j,T) <

+Nc2zm+ 2\F+NGZ||Xt X

t=1 t=1

_|_ZT:L HXt _Xt+1H2+3HRt+1H2
= 2 .

(ii) (Strongly convex case) Suppose Assumptions hold and
Then for each j € V:

(29)

= mfor a constant ¢ > 0.

T T
R(j,T) < ueD* + NG* > “my+ (VN + N)G Y[ X' — X
t=1 t=1

+Z <HXt Xt+1H +3HRH1H>

N At+1  at41
Proof. Because > ;) > i n, i (257 —2;7)
the projection error rf“

(30)

= 0 under Assumption|l| with the introduction of
, We can write

N N N
_ 1 - T 1
e N R A PR M

Denote by x* the best decision in the hindsight, i.e., z* = arg min,ex ZtT 1 Zf\’ 1 fH(z). Then

2
th-{-l

o*|? =)z* —27|?

N N
T2 erﬂ —ntZfo(xt)

2 N 7’] N
+ =) ittt -ty - == — ). 31)
N 2 v LV

Under Assumption[d] we estimate the second term

N N 2 1 N 2 N 2
el S ot Vi) =52 | 2 S et 2n? | Vi)
i=1 i=1 i=1 i=1
. 1 2
N ( N;H,,j-‘rl” +2 2N2G2> _ HRt+1H +27]752G2 (32)
Then we come to the third term. Noting that * € K, by using the definition of rtH and the projection
property (iii), we have
N N
Z< f+1 Ft * Z t+1 zt Nt‘+1>+<PIC (ﬁ+1) t+17~t+1 x*>) (33)
i=1 i=1
B & t+1 ~t _ ~tfl a Lo g2 —t  ~t41](2 1 t+11|2 ot |
< Xt at) < 3o g+ et - 2 = iR +||xe -z,
Next we turn to the fourth term Under Assumption Al
fi(@h) = fi(5) + (Vi (ah), ai — af) > fi(af) — Gllai — a5,
and hence,

—<fo(x§),§ct— > <Vf (2h), x* —m>+<Vf x—xt>

< fi@®) = fi(a) - §||w - $§|\2 +Glla; — ']

* ,U, * =
< Fi@") = fi@)) + Gllag = gl = Sl = 2il® + Gl = 7'l 34
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where 1 > 0 for the strongly convex case and p = 0 for the convex case. Summing up (34) over
¢ =1,---, N with the fact that

N N
Do lat =gl < Y lat =2+ Nzt - aj) < VN| X' - X+ NIIXT - X,

i=1 i=1
N 2
Z”x tH2 Z(as*—xf) Z%HNJJ*_thHQ i‘t|2’
i=1
we have

N N
=Y (Va3 —a) <3 (fl) - ff<x§>)+<2¢N+N>G||Xf—f<f||—% o= — ]
=1 i=1

(35)

By substituting (32)), (33), and (33) into (3I)), we derive

ot = 2| < ot = ot P+ RO 202G (HR”lHQ +lxe- XMHQ)

2n¢ Y t tiot t ot Np —t||2
+ (Y ()~ fH@) + @VN + N)GIX - X1 - = [l -2t ).

i=1

By rearranging the terms,

i(ft( )= [l )) < g << ,u> |zt — a*|? — ||—t+1 *|2)

Uiz

+ NGy + (VN + N)GI X = X' + - (th Xf“H +3||Rt+1||>

Summing up the above inequality over ¢t = 1,--- T gives
Sl N&a/1 1 T
SN ()~ fla)) < 5> ( - u) & — "2+ NG2 S e
t=1 i=1 25\ t=1

(36)
(Q\F—&-NGZHXt thHZ (HXt Xt+1H —&—3HRt+1H ) féO

Mo

(1) In the convex case, px = 0. Using Assumptionwith the non-increasing of {m}tT:l, we have

T

1 1 D?
S (52 :c||2<2(— Jor< @)
=\t M1 M Me—1 nr
By substituting (37) into (36), we derive (29).
(i1) Under Assumption w1 > 0, and thus, n; = (t+ ) implies -1 T m - — p=0,Vt > 2. Then
T
1 1 _ “ 1 _ ¥
S (2= ) et = o = () et o) < e, (38)
=\t Th-1 Ui

By substituting (38) into (36), we derive (30).

O

The following key lemma analyzes the relationship between the projection error, the consensus error,
and the compressor error, and makes it possible to control these errors by the consensus stepsize vy
and the gradient descent stepsize 7;.
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Lemma 2. Suppose Assumptions|I| 2|and[{|hold. Consider Algorithm|[I|with the consensus stepsize

v € (0, 1] and arbitrary gradient descent stepsizes {nf}t 1-
i) Eq|RH* < 21— w)s*? | x7 - XtH +2NG2?

(ii) Eg || X" — XH” <(1 — 70)Eq || X' — X*||° +9(1+725) NG?n}

2 2 t -t 2
+9<1+5> (1-w)B 7HX e

; 2
(i) Eq || X"+ - Xt“H <3 (1 + > VB Eq || Xt — X! +9 (1 + ) NG}
w

H((1+) a-wus @ v +o (14 2) 0 -wpy) - 2

Proof. First of all, by Assumption|2|and the update rule of X+l

N 2 N
soflx 0 @t a0 <l

(39)

(40)

(41)

(42)

(i) By Assumption > jen;, @ij = 1. Since K is a convex set and z € K, we have 3~ - a;;f €

Kand (1 — )zt +~ D ieN; aijx € K for v € (0, 1]. By the projection property (ii),

[ = (1P (&7) = &7
H (L=t +7 ) ayah — @™
JEN;

=t + 7 > a(al —ah) = |2l +9 Y ay @t =2l - Vil
JEN; JEN;

=[]z (Xt = %) + v i)

Then, we can estimate the total projection error as

) zn s <2(H7L (xt =2 [+ 2wt

i)

<2 HVL (Xt - Xt“) H FONG2? = 2428° th - XMH FONG2R,  (43)

which is controlled by -y and 7;. By taking expectation over the internal randomness of the compressor

@ with respect to the above inequality and using (@2)), we derive (39).

(ii) Under Assumption[]} ML = LM = 0and LX* = LM X" = 0. By the update rule of X **1,

||Xt+1 _ Xt+1H2

N ~ 2
th CALXM - VEHXY) + R - M (Xt CALXT VXY + Rt“) H

_ N 2
- th ~ X' ALX g (I — M)VFY(XY) + (I — M) Rt“H

= =0 (xt = X~ (X X7) T - TP £ (- MR

2 (1 n 72‘5) (I = L) (X! - X

<1+ >H 1L (X = X1) = (T - M) VX (I—M)Rt+1H2- (44)
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The first term can be estimated by
(2 =~L) (X" = XT)|| =

(1)1 +74) (X' - 59
L K A - v (x5

1—y) | X" = X' +v(1=0) || X" — X

1f75 |xt - Xt (45)

because M (X' — X') = X' — X' =0and |A — M|, = 1 — 4. The expectation of the second
term can be estimated by

IN

I
= (
(
= (

~ 2
Eo H—VL (Xt“ - Xt> — (I = M)VFY(X") + (I — M) R H

<Eo <3 H'yL (x4t - x1)

2
+ 3| (I = M) VF(XY)|? +3 (I — M) Rt+1||2)

(139) N 2 .
<3 <7252(1 —w) th ~ X! ‘ F NG+ 2(1 — W)y th _ Xt

2
+ 2N02n§>

2
—9 ((1 —Ww)f22 fo _ Xt ‘ + NG%?) . (46)
By taking expectation over @) w.r.t the inequality (44), together with {@3)) and (@6)), we obtain
- )
Egq || X"+ — X% < (1 + 72) (1—76)%Eq || X" — X*|* +9 (1 + 5) NG*n}
v
2 22|yt vt
+9( 1+ 5 ) (1 -y |xt-x 47)
- 2
<(1—90)Eq ||X* — X +9 (1 + 75) NG*n;
2 2 ¢ otl]?
+9(1+5 (1—w)5~yHX x|, (48)

since (1—&—%‘5) (1—~6)%< (1— 775) (I1—v0)<1l—~dandy <1
(iii) Similarly to the procedure of (ii), we have
USRS G i PR3 SRS CRR e
N _ 2
_ H(I 4 ~L) (Xt - Xt+1) — AL (X' = X') -, VF{(X?) + R H
(17
= (1

#5) Jaeom (x5
+ (1 + ) =L (Xt = X*) =, VFH(X?) + R, (49)
The expectation of the first term can be estimated by

Eq |[(1+~L) (X' - Xt“)H (1+18)%Eq X' - Xt“H

2<1+76)2(17w>HX‘>X‘5 g (50)

dueto ||[I +~L||2 =1++|L|l2 = 1+ ~0, since the eigenvalues of L are positive. The expectation
of the second term can be estimated by

Eg ||—7L (Xt — X*) =, VF{(X') + R
<Eq (3|lL (X' = X"+ 3V E (X + 3] R )

_ ~ 112
< 392 B%Eq || X' — X*|* + 3NG4+ 6(1 - w)s? | X' - X' +enGEE (D)
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By taking expectation over ) w.r.t the inequality (9), together with (50) and (51), we obtain
Eq [[x*+! - Xt“H <3<1+ )7 BEq || xt - X' +9(1+ )NG2
2 2 2,2 t_ ot
(1+ )(1— @)1 +78)+6 (14 =) (L -w)By HX —XH
2 2 t_ |2 2 2,2
<3 {14 = ) Ee [ X = X7+ 9 (1+ = ) NG*n;
w 2 2 2 it
+((1+5) @—w)+ @ +28m) +6 (142 ) 1 —w)p?y ) [x = x|, 62

since v2 < v for v € (0, 1]. O

and arbitrary gradient descent stepsizes {nt};l. Define

1 1
eri1 < (1 — 257> er + 18 (1 +=+ ) NG?*n?. (53)
w

Lemma 3. Suppose Assumptions (I} 2] and@| hold. Consider Algorithm[I|with the consensus stepsize
~ chosen as

_ || [Bqlxttt — Xt
Eql| X — X

Thenfort=1,---,T,

v

Proof. By Lemma[2] we have

t+1 _ yt+1 t oyt
[EQIX X I} < ()[EQ”X X

1+
~ N 2,2 o
Eoll X+ - X1 o v rove [F] e

1+ 2
where

T 1-6 9(1+2)(1-w)B?y
Uly) = {3(1+3)W627 (1+g)(1—w)(1+((52i)2,6’) )+6(1+3)0 }

For notation simplicity, we denote u; = 9 (1 + %) (1 — w)p?u = 3(1 + g) 62’u3 _
(1+%)(1—w)(B*+28)+6(1+ 2) (1 —w)B? and write

Uly) = 1—dv u1’y2
Vo ey 1-% -9 4ugy|

By the definition of e;, we obtain

ers1 < UMy e + ING®n?

1+~/6
1—|—

2
< p(U(y))er + ING*n} (1 + P +1+ w) . (55)

Next, we focus on the spectrum radius of the matrix U(y). The characteristic polynomial of U(7y) is

h(r) =det (71 — U(v))

2 2
=72 (15’)’+1ww+U3’y>T+(15’y)'(1;w+U3’y) — ugugy?.

2 2
Since
w o w? 2 w o w? 5
A=(1-0y+1—=——Huzy] —4((1=6y) - (1—=— — 4 uzy | —uruzy
2 2 2 2
w  w? ?
:(1—57—(1—2—24—1@,7)) + duyugy® > 0,

(56)
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the equation /(7) = 0 has two roots 7; and 75. Since 1 —dy +1 — 4 — %2 + ugy >0,

p(U(7)) = max{r, 72} = % (1 —oy+1- % - w; + uzy + x/Z) : (57)
When 26 4 1)
7= T6urug + dusd + 302 (58)
it can be verified that , )
A<(1—?—<1—;—2+ud7)> ) (59)
and then,
pU(7)) < % <(1—75+ <1—2 —22+u37>> + <1—¥$— (1—;—°‘;+usv)>>
=1- 275. .
We take (00)
y = (W) = 36 26(w? + w)

- Z 16w ue + 4usd + 362
B 363w (w+1)

48(82 + 18632 + 3632)32(w + 2)(1 — w) + 402(2 + B)(w + 2)(1 — w)w + 653w’
which satisfies 1} since 22 < 1. Notice that 7(w) increases monotonically with w, and 7(0) =

0,7(1) = 1. Thus, y(w) € (0,1] for w € (0,1], which meets the algorithm design requirement.
Then, the lemma is proved. O

(61)

Lemma 4. Let {e;},>1 denotes a sequence of real values satisfying e; = 0 and

err1 < (1 —ples + qn?, (62)

for parameters p € (0,1), ¢ > 0, and the stepsize sequence {n, },>1 satisfying either of the following
conditions

. _ b 2
(i) me = W for constants ¢ > p,b >0,
(i) ny = Fbcforconstants c> %,b > 0.
Then for any t > 1,

2
qsfﬁ. (63)

Proof. We proceed the proof by induction. For ¢ = 1, the statement holds since e; = 0. Suppose that
the statement holds for ¢. Then for ¢ + 1,

2q
err1 < (1—plec+aqn? < (1 —p);?ﬁ +qn;. (64)
It remains to prove
29 2 2q o P _ N
L—p)—n +aqn < —niyy. (&= 1-35< 65
( )p t t D t+1 2 n?
As for the condition (i),
2
t 1
Bin _ tHC g L g Py (66)
n; t+c+1 t+c+1 2

As for the condition (ii),

n? t+c \ p
t+1

= >1l——>1—=, Vi>1. 67
n? <t+c+1> t+c+1 2 - (67
Thus, the conclusion follows. O
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Proof of Theorem[T]
By Lemma[3|and Lemma[4] we have

4 11
er < By + — +— | NG*n}. (68)
~vé ¥5  w

According to the Jensen’s Inequality,

: . 48 11
Eoll X' — X*|| 'S \/Eqll Xt — X1[? < v < 6<1+75+W)N02n?

<4v3 (1+5+ )\F G 69)

Similarly to the procedure of (44), we estimate

| % - )Z't“HQ —||xt - Xt - o) - XfHQ
- H(I —4L) (X' = X') — 4L (Xt“ - Xf) - mVFt(Xt)H2
2 (1+ 7;) (T — L) (x* — X (10)

+ (1 + 725) ((1 +2) oL (X1 - x) H2 + (1 + ;) HntVFt(Xt)\f) .

Together with the estimate of Eq || R**1||? and the choice of «y in , we have

Eq (HX:& _ )'Zt+1H2 n 3||Rt+1||2>
Y0 2 t |2 2 2 2 t ot ||?
< (1+2> (1 —78)%Eq || X' — X +3<1+7§) (1-w)p? | x* - X
+ g (1 + 725) NG*p? +3 <2(1 — W) th - XtHQ + 2NG277§>

+<2+’}/(5>NG un

_ 2 N
<(1—6)Eq ||X* = K[> +9 <1 + 5> (1 - )82y |x' - X!
_ EqllX* — X| 15 3 2 2

5 3
<p(U())er + (2 + 75) NG

©3) 48 1 1 15 3
_75 1 2 2 2\ NG22
< >v5<+75+ ) Gt+<2+75> i

48 1 1) ,15 3
—((=- T+ — 4= |+ =4 = | NG*p? 71
<<76 36)( +v5+w>+2+v5> e 7

where U() is defined in Lemmal 3]
For the strongly convex case (ii), we substitute (69) and (71)) into (30), and derive

EqR() ><ucD2+NG22m+ (2VN + ) GZM( S )fgm

~6
"1 48 11 15 3
- 1 - - -v - N 2 2
+;2nt ((75 36)( +75+w)+2+75) o
2 2\/> 2
<pcD? +4v/3 \F+—+ +7+ NG va (72)
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where the last inequality holds since (4v/3 4+ 3 — 18) /76 <0and1+(4v3-18)(1+ 1)+ <0

forw € (0, ] Consider the gradient step31ze N = u(t "oy fore > 165 > 1, and then,

1 171 1 s 1
Z”t Z < /o ds:ﬁln(s—l—c)h)g;ln(T—i—c). (73)

plt+c) = p s+c

Combining @) with @), we obtain (7).
For the convex case (i), the gradient stepsize 7

_ _D
=G m,and then,

D D (" 1
< ——ds =
Zm Z GVt+c 0o Vs+c i
By substltutmg (©9), @) and (74) into @) we derive

]EQR(JFT)—N <\ﬁ+2f+1> <1++ >NGQZW

NDzG”T+C+4f<W+M+1> <1+715+ >NG22Dm.

Then the theorem is proved. O

D 2D
52\/5—4—0\5 < VT +e (74)

C Proofs of Section[3]

Algorithm I actually performs the gradient descent scheme on the function ft( ) =
Eues [f(z + eu)] restricted to the convex set (1 — ¢)K. By Assumptions |§| and I as well as
the construction of g}

. d dB
|[VF@)| = [E[5] <E [lgh)) <E Lnﬁnnuﬂ@ ST =G WieVit=1 T,
lo -yl <2R:= D, Va,ye(1- QK.
The remaining gaps include 1) the difference between the case of the loss function f! and that of

Af; 2) the difference between the case of the feasible set (1 — ¢)/C and that of IC. As for 1), by
Assumption[7} we have

(@) = 11 @) = [|Bu (£ + )] = £ @)]| < Eu || @+ ew) = fi@)]| < le,
and thus,

fl@) —le < fl(w) < fi(z) + e (75)
As for 2), we have the following lemma from [4].
Lemma 5. The optimum in (1 — ¢)K is near the optimum in K.

T N T N
min f z) < 2(BNT + min f ). (76)
xe(l_m;;f( ) <2 zEK;;J"( )

By Lemma [5 we can obtain the regret bounds in the one-point bandit setting upon the obtained
results in the full information setting.

T N
EZZL )—miny > fi(x)

t=1 i=1 t=1 i=1
T N
s ;;ft xef?irém;;ﬁ(@ +2(BNT
Eii(ﬂ( t)+l> XT:Z( l)+2gBNT
< (s €)] — min €
t=1 i=1 ’ ve(=Ok =
T N
fzg;;ff Ie{?n}m;; fi(at) + 21eNT + 2 BNT. (77)



Proof of Theorem

(i) (Convex case) From Theoremm part (i) we have

T N
EZfo(xﬁﬂ)—reng% ZZJ“ ( +2H)NdEB2R\/T+c, (78)

t=1 i=1 t=1
where H is defined in (8). Then by (77) w1th (=5,

ER(,T) < (1 +4H)N@VT+¢:+21€NT+2EBNT. (79)
€ r

3 1
We choose € = (“;Eﬁ’;f J;R> (T;f) ~ to minimize the right hand of the above inequality and then
- 2

obtain the conclusion.

(ii) (Strongly convex case) From Theorem|I|part (ii), we have

e Nd2B?
E Fh(zt) — ) <4ucR*+ H In(T + ¢), 80
;;fz (xj) xE?lnré sz e Mez Il( C) ( )
where H is defined in (8). Then by (77] w1th ( =<
d2
ER(j,T)] < 4ucR® + H ln(T +¢) + 20eNT +2- ‘BNT. (81)

H2B2 13y (Tyc) g C . . .
We choose € = W to minimize the right hand of the above inequality and then

obtain the conclusion. O

D Proofs of Section 4]

The proof in the two-point bandit case takes a similar procedure as that in the one-point case. By
Assumptions@and as well as the construction of g!,

. d
[Vit@)| = & ol <E Qlghl] < B | (171Gt + eut) — fat = eud)| [

d
< 2—l2e||uﬂ|2 =dl:=G, Yiev,t=1,---,T,
€
|z —y|| <2R:=D, Vz,ye (1- K.

Similar to the Lemma 2 in [3], we have
Lemma 6. For any point x € K,

t + t T
Z Zf yz 1) f yz 2 Z Z fzt )
t=1i=1 t=1 i=1
T N T N
I ACHED PP A(C! )+ 3NTGe + NTGDC.  (82)

t=1 i=1 t=1 i=1

By Lemmaﬁ for x* = arg Hli’Icl 23:1 Zf\;l JHEIR
zE

T N tint tiat T N

T N
<EY N i) =0T fH(1 - ¢Qa") + BNTGe + NTGDC
t=1 i=1 t=1 i=1
r N T N
<EY Y fia)) - o ZZ (z) + 3NTdle + 2NTAIRC  (83)

=11i=1
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Proof of Theorem[3]
(i) (Convex case) From Theorem|[I] part (i), we have
T N T N 1
E ; ; fiah) - mef?i_ré);c ; ; i) < (2 - 2H> NdI2RVT + ¢, (84)
where H is defined in (8). Then by with { = ¢

E[Ra(j, T)] < (1 +4H) NdIRVT + ¢ + (3 + 2R> NdiTe. (85)
T

‘We choose € = ﬁ and then obtain the conclusion.

(ii) (Strongly convex case) From Theorem I] part (i), we have

T N R T N . Nd2l2
EY > fiah) - min)]cZfo(x)§4ucR2+H P In(T + ¢), (86)

t=1i=1 re(-OK =i
where H is defined in (8). Then by (83) with ( = £,
212

In(T + ¢) + <3 + 2R> NdiTe (87)
T

Nd
E[Ro(j,T)] < 4pcR® + H

In(T)

We choose € = =+ and then obtain the conclusion. ]

E Parameters selection details

The theoretical value of the consensus stepsize v depends on the compression ratio w and the graph pa-
rameters J, 3, which is pretty conservative. We tune -y for each experiment. The gradient descent step-
sizes of DC-DOGD, DC-DOBD and DC-DO2BD for convex losses can be written in a unified form as

N = \/%, where ¢ = 3%6 as in theorems and b is tuned from {0.001, 0.005,0.01,0.05,0.1,0.5,1}.

Also, for strongly convex losses, the gradient descent stepsize can be written as 7; = t%c, where
c= % as in theorems and b is tuned. In DC-DOBD and DC-DO2BD, the shrinkage parameter = <

as in theorems and the exploration parameter e is tuned from {0.001, 0.005, 0.01, 0.05,0.1,0.5, 1}.
For each experiment, b and € are tuned by grid search.

Parameters in Fig. [ In this experiment, we set v = 0.26 for QSGD, with w = 0.3 over

G(9, 18). The parameters b and € for the proposed algorithms are given in Table[2| The parameters
for ECD-AMDGrad are chosen as suggested in [6]].

Table 2: Parameters b and ¢ for the proposed algorithms

Convex losses Strongly convex
Parameters b € b €
DC-DOGD 0.1 \ 1 \
DC-DOBD  0.01 0.5 0.05 0.5
DC-DO2BD 0.1 0.05 0.5 0.01

Parameters in Fig. When studying the impacts of compression ratio and compressor type, we
take DC-DOGD with strongly convex losses over the graph G(INV, 2N) as an example, and set b = 1.
The corresponding -y for different compression ratios w (with the same compressor type Top,,) are
given in Table[3] and the corresponding ~y for different compressor types (with the same compression
ratio w = 0.3) are given in Table[d] DAOL takes the same gradient descent stepsizes as DC-DOGD.

Parameters in Fig. When studying the impact of network topology, we take DC-DOGD with
strongly convex losses as an example, and set b = 1. For the compressor Top; with w = 0.05, we set
~v = 0.09. When studying the impact of node number, we take the compressor Top, with w = 0.1
and set y = 0.1. The parameters b and € are chosen the same as Table 2]
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Table 3: Corresponding +y for different w
w 005 0.1 05

v 009 0.1 032

Table 4: Corresponding +y for different compressors
Randy GSGDy

0.09 0.26

Compressor  RGossip,,

0.09

Topy,
0.28

v

F Additional experiments

We give some additional experiments in the convex cases here. Still, we use the dataset diabetes-
binary-BRFSS2015 El The communication graph is generated by the tool NetworkX |€| and the best

solution is obtained by the tool Logistic Regression

Our code is available at https://github,

com/happy-math/CC-DOCO.
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Figure 4: The impact of compression ratio w. Setting: DC-DOGD with the compressor Top,, over
G(9,18) in the convex case. b = 1. The corresponding + for different w are chosen as in Table
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Figure 5: The impact of compression ratio w. Setting: DC-DOBD with the compressor Top,, over
G(9,18) in the convex case. b = 0.01, ¢ = 1. The corresponding ~y for different w are chosen as in

Table El
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Figure 6: The impact of compression ratio w. Setting: DC-DO2BD with the compressor Top,, over
G(9,18) in the convex case. b = 0.1, e = 0.05. The corresponding ~y for different w are chosen as in
Table[3]
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Figure 7: The impact of compressor type. Setting: DC-DOGD with the compression ration w = 0.3
over G(9, 18) in the convex case. b = 0.1. The corresponding -y for different compressor types are

chosen as in Tableﬁ
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Figure 8: The impact of topology. Setting: DC-DOGD with Top,, w = 0.05 in the convex case.
b=0.1,v=0.09.
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