Supplementary Material: Efficient Algorithms for Generalized
Linear Bandits with Heavy-tailed Rewards

A Proof of Theorem 1

To ensure clarity of expression, we have divided the proof of Theorem 1 into two subsections. The
first subsection establishes a general upper bound for the confidence region constructed by ONS.
Building upon the first subsection, we employ the truncated technique in the second subsection to
deduce the confidence region for CRTM.

A.1 General Upper Bound of ONS

For the sake of representation, we define the loss function for the action-reward pair (x;, y;) as
(0) = —ypx/ 0 + m(x, 0),
and the conditional expectation for this loss function is denoted as f;(0) = E[¢(0)|G:—1].

First, we propose the following lemma to display the strong convexity of the loss function.
Lemma 1 Forany 0,0, € R? satisfying ||0,||2 < S, ||02]|2 < S, the inequality

ét(el) — ét(OQ) 2 Vét(Og)T(Ol — 02) + g (:1::01 — :13202)2

is true for all t > 0.

Proof. Let Li(z) = —yz + m(z),z € [-S, 5], then L} (z) = p/(z) > & due to Assumption 2.
Thus, L;(z) is a k-strongly convex function, which indicates that

Li(z) = Li(z2) 2 L) (21— ) + 5 (21— 22)°.

Let 2 = sr:tTOl and zo = a:tTBQ, we get that

R 2
Li(z] 61) — Li(x/ 02) >L,(z] 02)(z, 01 — [ 05) + = (z/ 01—z, 6:)".

2
Taking L;(x/ 0) = £,(0) and L}(x, 8)x; = V{;(0) into above equation finishes the proof. O

Then, we propose Lemma 2]to show that 6, is the minimum point of the expected loss function.
Lemma 2 Suppose 6 € RY satisfies ||0||2 < S, then f.(0) — f.(0.) > 0 forallt > 0.

Proof. Recall that GLB model satisfys E[y;|z;] = m/(x, 0.) and u(-) = m/(-), thus
f1(0) = fu(0+) = E[((0) — £:(6.)|Gi—1]

m(z, 0) —m(x/ 0.) — u(z 0.)(z 6 —x,6.)

> /(@] 0.) (@] 0 — 2] 0.) — n(@:0.)(x] 6 — x7 6.)

=0

where the inequality holds because m(-) is k-strongly convex. (|

To exploit the property of ONS, we adopt the following lemma from Zhang et al. [2016].

Lemma 3 For any t > 0, the inequality

R . 1 . 1/ .
VE(0:)T(0: = 0.) = SIVELO)I% 1 < 5 (16— 0.0, = 1601 —0.1%,.,)
holds.
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With above three lemmas, we are ready to bound the confience region of the ONS estimation.
Lemma [Tl tells that

R R “ N 2
0(0;) — €,(0.) < VL,(6,)T (6; — 0,) — (:cjet - wje*)

| =

If we take expectation in both sides, it becomes
R R . R 2
f1(0) — £:(0.) < V(6,7 (6, — 6.) — (332—015 - :1:;'—0*) .

Lemmal[2] tells that

| x

. . . 2
0< V£(0)T (6% - 9*) -k (mjot . mje*)
2
R ST p R 9 R R 13)
- (Vft(ot) - wt(at)) (et - 0*) -2 (wjet - wjo*) +VE(0,)T (6, - 6.).
According to Lemma[3] we can relax the last term in the right side of (I3 and get
. S NT /. K . 2

0< (Vft(et) - wt(et)) (et - 0*) _k (:cjet - :cjo*)

2 (14)

1 - 1/ 4 .
+ 5190001 + 5 (16— 0.1%,., — 1001~ 613, ) -
2 t+1 2
Then, taking the gradient
V0(0,) =~y + p(@] 0)xe, Vfi(0r) = —p(x] 0.)@ + (] 6),

into inequality (T4), we get that

Lo 5 K A 2
0< 5 (16— 0.0, — 101 —0-1%,.,) - 5 (2 0, — =/]6.)

R 1 R
+ (v — (] 0.)) @ (6, - 0.) + Sy + u(mjet))wt||3,t_+11.

A simple application of triangle inequality tells that

1 A A K ~ 2
0< 5 (100 =0.0%,,, =101 = 0.1%,,,) = 5 (27 6. =2/ 6.)
+ (g — p(@[0.)) ] (6: - 6.)
1

1 .
5 (] 0.0+ 5 (e 0.) — (] 802,

1 N N K A 2
5 (100 = 0.1, = 116001~ 0.1, ) — 5 (27 6. —2/6.)
+ (e — (@] 0.) ] (6, 6.)
1 1 N
5= (@] 0.0 @il + 5 (u(w/ 0.) — plw] 00 il

where the second equality holds because Vi1 = V; + Sx; x/ . By summing the above inequality
from 1 to ¢ and rearranging, the confidence region can be bounded as

IN

1601 — 60,113,
. P . 2 N2
< 100-0.0%, - 5> (270, —a76.) + > (u@l6.) —u(@6.)) o]

T=1 T=1

(15)
t t

. 2
+> 2(yr — (@] 0.)) 2] (0 —0.) + D (yr — p(®@]0.)) |||
=1 T=1
Until now, we have proven an upper bound for the ONS method updated with a general action-reward

pair (2, y¢), and the bound is shown in equation (T3).
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A.2 Truncated Upper Bound of CRTM

CRTM updates the estimator with a truncated action-reward pair (x;, 3, ), where ¢; is the truncated
reward ytHHTtHV—l ly¢|<r- Replacing the (z;, ;) of general upper bound (15) by (x, ), we get that
t

16041 — 6.11%,..,
t t
n 2 K T _ T T . T8\ 2
< 6 - 6.11%, QTZ_l(wTGT z70.) +;(u(-’v70*) w(@76,)) llwrl 6
~ ¢ 2
+Zz 760.)) o] (oﬁa*)+ (5 — @] 0))" - 12,
T=1

Assumption 2 shows that the upper bound of y(+) is U. Thus, the inequality (I6) can be simplified as

2

t
1611 — 013, < 161 — 0.3, +6U>> 2|3,
T=1

+ 2zt: (9 — p(x; 6.)) x] (9r - 9*)

t
+2> ll@ll 187 e 1,y <1

T=1

We define 3, = \\wr||v:1. Since V; = A\I; and él = 0, we can deduce that

t t
18i1 — 013, < AS*+6U> B2+2> B2y 5 , <r

T=1 T=1

A (17
t
+ QZ (y-Lg, y, <0 — (2] 6.)) @] (ér - 9*) .

T=1

B,
Then, we will employ analytic techniques of truncated strategy to bound the terms A and Z::l B;.

Lemma 4 Suppose that E [|y7\1+6|g771] <wufort =1,2,...,t. Then, we have that

¢
A < 2T%1n(2/6) + gflff Zﬁi“u
T=1

holds with probability at least 1 — 4.

Proof. According to the triangle inequality, A can be relaxed as

t
e + > BBy sy, <0|Gra] . (18)

T=1
In light of Bernstein’s inequality [Seldin ez al., 2012, Lemma 11], we have that

t
ZﬂzyzﬂlﬁTyﬂ"SF -k [672'y3]1|67y7‘gr|g7—1:|

=1

t
Zﬂgyzﬂlﬁﬂ'yﬂ'lfr -k [ﬂgyzﬂlﬂTyﬂ'|SF|gT—l]

=1

< 2I'%1n(2/9) —|— ZVar 52y7H|ﬂ7y7‘<F|gT 1] (19)
2 1+4+€, 13—¢€

< 2T%1n(2/6) + 2F2ZB ul
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holds with probability at least 1 — 4, and the second inequality of above equation holds because the
(1 + €)-th moment of rewards is bounded by .

We can bound the second term in the right side of (I8) as

t t
Y BB s,y <rlGra] STV B . (20)
=1 =1
Combining the inequalities (I8), (I9) and (20) finishes the proof of Lemma ] O

‘We will now proceed to bound the term Etr:1 B

Lemma 5 Suppose that E [|y7\1+6|g7_1] <wufort=1,2,...,t. Then, we have that

t
TZ:IBTS 7 In(2/8) + Qrezwe

holds with probability at least 1 — T'6.

Proof. First, we give the fact that

IN

z! (0, - 9*)2/7]1\@%\@’ 167 — Bullv, Nl = ly=[Tjs, y. <
< 16, —6.v.T.

Then, through the full probability formula [Mendenhall et al., 2012], we have that

t t
P{3mo < e -0, 2} 2S00 0 o)
=1 =1
t
< (T-1)5+P {Z Brlig, 6.3, <y > X} :

T=1

A

1)

The second inequality of above equation holds because |6, — 8, 137, >~ with probability at most .

In the following, we analyze the term Zi:l BTHHé —0.|2, < O determine the appropriate x for
703, <
bounding the right side of (ZI)). A simple application of the triangle inequality shows that

t
A <
> Brlis ez <y <
T=1

t

> @ —Elge|Gr 1)) 2] (0, - 016, 6.12_<4

1

Tj (22)
> Ely-lig,y, >rlG- 1)@ (6 — 06, 0.1z, <~

T=1

+

By utilizing Bernstein’s inequality [Seldin et al., 2012, Lemma 11], we can demonstrate that,

Z — E[jr|G1]) 2] (6, — 016, 6.2 <4

t

A ~ 1
> Varlz] (6, - 0.)116, 6. |3, <-¥r|Gr—1] + 2072 In(2/6).

holds with probability at least 1 — 4. Additionally, apply the Cauchy-Schwarz inequality and the
scalar property of variance, we can establish that

Var[:nj(éT - 0*)}1"@"79*”%7 Svﬂr|gr—1] <7- Var[ﬂr@7|gr—1]-
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Thus, we have that

t
> @~ ElFr|Gr—a)) 2] (6 = 00115 o3 <,

T=1

IN

2F7 ZVar 18-+ 5,y |<r|Gr—1] + 272 In(2/6) (23)

<
- QFE

Z Bitey + 2Ty2 In(2/9).

The second term on the right side of inequality (22)) can be bounded as

t
Y Ely-Lig,y, 50| 1]a] (0, —0.)T 5 4 12, <v

=1 1 (24)
<’72 ZE |ﬁ7yT|HIﬂT"/T‘>F|gT 1] - F ZB1+E
T=1 =1

Taking 23), 24) into (22), we have the inequality

t
Z;Bfﬂuéf_e 12, <y < gpe ZB”E + 20 In(2/6).

holds with probability at least 1 — &. Let y of inequality (ZT)) be 20y In(2/§) + 2% St B,

o<
we have ,
P{ZBT > x} < T,

T=1
The proof of Lemma f]is finished. ]

We have bounded the terms A and Z 1 Br using Lemma 4| and Lemma I respectively. By
incorporating these two lemmas into equatlon (]ﬂ[) and substituting § with § /27", we can derive that

1641 — 6.11%,,, < 6U° Z 82 + 402 In(4T/8) + 4Ty * In(4T/6)

T=1
t t
1
+AS? 43017 "B + 32T Bl
T=1 T=1
holds with probability at least 1 — &. The Holder inequality tells that

t

o<t Zﬁ (26)

T=1

(25)

Then, according to Lemma 11 of Abbasi-yadkori et al. [2011], we have that

T T
4 det(VT 1) 4d rT
2 _ A < S (St ) < S (14
;67' ;Hx HVTI = Il( det(Vl) + INd

Thus, (26)) can be relaxed as

1+e

t
1—e 4d rT 2
e «c 5 ( 2 — . 27
Tzﬂ@ <T (Hln(1+2)\d)> (27)

By taking (27) into (23) and let
1
1 kT 2 1—e¢
(dem (14 22 )) 7o
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we have that
N 24U3%d T
18041 — 0., < AS®+ " In (1 + K)

ond
4d ) 14 &T
P ond (28)

1 e 1—e 1 [ 4d wkT %
Tutre In(4T /6 THeTzaFo~2 [ —In 1+ —
+rurkmr /et (S (14 20))

+ TuTiE In(4T/8) Tre Tive

holds with probability at least 1 — 4.

In order to determine v satisfying ||@s+1 — 6, ||%,t+1 < #, a quadratic inequality with respect to ~y
need to be solved, such that the right side of inequality (28) is smaller than ~. This leads to the
conclusion that

s s 1-c4d KT 48U2d KT
= 11207 In(47/8) T+ TT7 —1In |1+ — 25?2 In(1+—
7= 20T (4T /o) e T o In (+2/\d>+)\s+ K (+2)\d>

By taking the union bound over all ¢, we have that with probability at least 1 — §, for any ¢ > 0, the
inequality

A 154 T
[Bcis = 01K, < 22407t ar/s) i 2 (14 71

2)d
48U2d
) 2
208 ( o d)

holds, which concludes the proof of Theorem 1. ]

B Proof of Theorem 2

To begin with, we bound the instantaneous regret by the following lemma.

Lemma 6 If 0. € C; for all t, then
(@] 0.) — (] 0.) < 2L/l |y
where &, = argmax e p, ((z ' 6s).
Proof. Considering that the link function y(-) is L-Lipschitz and monotonically increasing, we have
n(@] 0.) — u(@/ 0.) < max{0,L(#] 6. —x; 6.)}
< max{0, L(z; 0, — = 6,)}
max{0, Lz, (6, — 0,) + Lz (6, — 6,)}

< L(16: = Oullv, +110: — 6. I1v. ) lzelly,
< 2L il
where the second inequality holds due to the fact that (x,, 8,) = argmaxep, gec, (€, 0). O

Then, we get the regret of CRTM through the cumulative summation from 1 to 7.

Lemma 7 If 0. € C, for all t, then the regret of CRTM can be bounded as

R(T) < 2L (’jln<1+2)\d>2%> /2

Proof. Through the Lemma@ we have that

R(T) = Zﬂwt <) {6.) < QLZﬁllwt\\v 1

t=1

T 1/2 , p 1/2

2L <Z%> (Z‘M'Qvn) :
t=1 t=1
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According to the Lemma 11 of Abbasi-yadkori et al. [2011], we get that

T
4 det(Vriq) 4d kT
2 < —— )< Zm(14 —). 30
;”wt”vf =% n( detvy) ) S U g 30)
Combining (29) and (30) finishes the proof. O

By substituting ~ of Theorem 1 into Lemma([7]such that y, =~ fort = 1,2,..., T, the regret bound
of CRTM is explicitly given as

. T
R(T) < 128Lk~'wTdIn(4T/8) 7 In <1 + ;M> T+

[N

T
ULUK 'dIn (1+ 2=\ T
+ Uk dn( +2)\d)

1 1 KT H
+8LS(\d)2k (m (1+ M)) T

[MES

-0 (d(logT)%Tﬁ) .

The proof of Theorem 2 is finished.

C Proof of Theorem 3

Notice that CRMM updates the estimator with action-reward pair (x;, §;), where g; is the median of
{yt,y2,...,yr}. Replace (x¢,y;) of general upper bound (T3)) by (z, ), we get that

t t
~ ~ K ~ 2
1001 =013, < 161 =013, = 5> a2+ Y (nl@]0.) — u(@]6:)) Il 3
T=1 T=1
t R t 5
+3 221 (8, — 0.) (5 — pl@]0.)) + Y ll- 31 (5 — p(xl6.))”.
T=1 =1

Leta, = =] <éT - 0*> Br = ||@r[ly-1 and X; = g — p(x]6.). The above equation can be
simplified as

t t
~ N K N 2
10041 = 0.1%,, < 16— 01, — 5 302+ 3" (ulw] 0.) — plw] 6)) - |,
T=1 T=1
3D

t t
+> 20, X, 4+ BX2
T=1 T=1

We need to bound the terms >'_, o, X, and S.._, 42X to conduct a narrow confidence region.
Considering that the latent idea of CRMM is mean of medians, we provide the following lemma to
display the (1 + €)-th moment for the median term.

Lemma 8 Suppose X',... X" are independently drawn from the distribution x, and E[X?] = 0,
E[| X <wfori=1,2,...,r. If X is the median of { X }"_, , then X satisfies E[| X|'T¢] < rv.

=1

Proof. Let the p.d.f and c.d.f of x be denoted as p(x) and F'(z), respectively. Then, the c.d.f of X

can be calculated as
r

P{X <a}= > ()F(@)"1-F() "
k=[r/2]
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Taking the derivative of the above equation, the p.d.f of X can be obtained as

F@) = (1) @) 721 (1 = Fa) 72 p(a).
According to the fact ([7,;2}1_1)F(:z:) [r/21=1(1 — F(x)) = ["/21 < 1, we can easily get that

fx) <rp(x).

Thus, the (1 + €)-th moment of X satisfies

B[ = [ o e f@d <7 [ o] pla)d < o
The proof of Lemma [§]is finished. ]
Another tool used to bound Zj—:l a, X is displayed as follows, whose proof is provided in Section@

Lemma 9 Suppose that X1,...,X,, are random variables satisfying E[X;|F;—1] = 0, and
B X;|' €| Fii1] < vy, where Fi_y 2 {X1,...,X;_1} is a o-filtration and Fy = (. For the
fixed parameters a1, aq, ..., a, € Rand C > 0, with probability at least 1 — §, we have that

n
> i Xilla,x,1<Clla 1

=1

<&llellie

where

a=[ay,a,...,0p],§ =2C1In(2/6) + 2C™ “v;.

Equipped with Lemma and Lemma@ we are ready to bound the term Zi:l ar X

Lemma 10 Letr = (16 In %],for any t > 0, with probability at least 1 — 0/ T,

t
ZO‘TXT < plleite

T=1
where

a=|ag,a,...,0],C = (41))1%5”0 =2Cn(4T/)) + 2C~“rv.

Proof. Through the full probability formula [Mendenhall ez al., 2012], we have that

m{ >MﬂH%SPﬁ

t
ZaTXT
i=1
t
+ ZPr{|OzTXT| > Clle14¢}

T=1
We first analyze the second term in the right side of (32). Recall that CRMM observes r rewards
{yL,...,y"} at round 7, and for the sake of representation, we denote the difference between y and

(] 6,)as X¢, such that X? = yi — u(] 6.). Through Markov’s inequality and the heavy-tailed
condition E[| X |**¢] < v, we have that

t

> Xolja, x, |<Cllal.

T=1

> P||a||1+e}
(32

Pr{asXi| > Cllaiy } < A2
T I+ef = 7.1 11+te-
. ey
LetC = (41;)1%(’ then we have

Pr{|a X% > Cllaflite} <

NG

Define the random variables
Bi = Lo, xi>0llafiser
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thus p; = Pr{B; = 1} < 1. According to the Azuma-Hoeffing’s inequality [Azuma, 1967], we get

Pr{iBj > ;} SPr{iBi_pi > Z}
=1

i=1
0
<e TR < —
= =y
forr = [161In 4X]. The inequality >_;_, B; > % means more than half of the terms {B;}/_, is true.

Thus, the median term o X, satisfies

Ch,—XT > C||01H1+e

)

with probability at most ;7.

A similar argument shows that

a, X; < _C”aHl-i-e

)

7 Therefore, we have

holds with probability at most

0

< —.
Pr{la; X:[ > Cllaf14} < oT2

By taking it into (32)), we have that

5
< 4P
Pr{ >p||al+}_2T+ r{

Next, we proceed to bound the second term on the right side of inequality (33)) using Lemma[9] The
application of Lemma 9] requires satisfying two conditions. The first condition is that the expectation
of the median term X is 0, which is easily fulfilled due to the symmetry of rewards. The second
condition is that the (1 + €)-th moment of X is finite, which can be verified through Lemma such
that

t

ZaTXT

T=1

t
> Xl X, |<Cllas.

T=1

> p||a|1+e}. (33)

B[ X, '] < ro.
Consequently, Lemma [9] can be employed to bound the second term on the right side of (33) by
1
setting C' = (4v) T+ and vy = rv. This yields that

t
g ar X,
i=1

holds with probability at least 1 — 6 /7. Hence, the proof of Lemmais concluded. (|

< (2CIn(4T/6) 4+ 2C~ rv)||atl|1+¢

Similar to the discussion of Lemma we present Lemmato bound the term 2321 B2X2. The
proof of Lemma TT]is provided in Section [F|

Lemma 11 Letr = (16 In %1,for any t > 0, with probability at least 1 — 0/T,

t

Y B2 < OplBfE.

=1
where

B =1B1,Bs, .., B1],C = (4v) T p = 2C In(4T/5) + 2C“rv.

By taking Lemma[T0]and Lemma|[TT]into inequality (3T), we get that

N ~ t N 2
1001 = 0.3, < 101 = 0%, + D (@] 0.) — (@] 6,)) e e
T=1

K
- §||a||§ +2pllelliye + Cpll B3

holds with probability at least 1 — 26/T.
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Recall the upper bound of y(-) is U and |61 — 6, 137, < AS?, inequality (34) can be simplified as

t
A K
16141 = 0.3, <AS?+4U Y Jla- |30 = G lledl3 + 2pllediee + CplBIIT,.  (35)
T=1
Based on the Holder inequality, we get that

1—c 1-—e
leellase < 25T flexlla, 1BIIT 4 < 75

By taking these two inequalities into (33)) and recalling that 3, =

AlI3.

|@-[|y-1, we get that

t
A 1—e¢ K 1—e
1841 = 0., < AS? 4 (402 + Cot 5 ) Y ll@r o = Sl + 2087759

T=1

a||2
holds with probability at least 1 — 26 /7.
According to the fact 2,/pq < £ + kq,Vp, q > 0, if we take p = 4p2t717 g = [lc||3, we get that
3 2 2 e\ ¢ 2 2 20% 1-c
1601 = 0.1%,,, < (402 + Cpti50) X_jlumfnv,—l + A8 4 St

holds with probability at least 1 — 26 /7. Then, take an union bound over all rounds and , we have
that with probability at least 1 — 26, for any ¢ > 0,

. —e\ 4d t 2p? 1-e
1641 — 0,113, < (4U2 + Cpti?) P (1 + ”) FAS2 4 e
K K

- 20d
The proof of Theorem 3 is finished.

D Proof of Theorem 4

Since CRMM plays total Ty rounds with 7y = [T'/r] and r = [161n L], we bound the sum of ;
from ¢ = 1 to Ty first, such that

To 2 2 To
16U-d KTo 9 2p 4Cpd kTo 1—c
;’WS ( - ln(1+2/\d)+>\S)T0+<I€T0+l€1n ].-l-m E_:tpre
16U%d KTp 2p°  4Cpd kTp 2
< In(14— AS?) T, Lo T 1+ == ) T
< " n<+2/\d)+s>0+<m+ " n<+2/\d>>0

1—e 1—e
The second inequality holds due to the fact ZtTil tite < fOTO rTredr < Tol%e. Taking above result
into Lemma 7] we can easily get that

1
- kTo '\ 3 _1 kTo\\ 2 .1
R(Ty) < 16LUdk ' In (1 + M) T +ALSK ™ ()\dln (1 + M)) T}

IiTO

1
2 1 1
-1 The -1 1 k1o The
+8Lpk <dln <1+2)\d)> Ty +8Lds™"Cp2 In (1+2/\d) Ty ™.

Taking R(T') = rR(Tp) shows that the regret of CRMM can be bounded as

T AT L
< -1 L _ bl
R(T) < 64LUdk "' 1In <1+ 2Ad> <1n 5 > T

1
_1 kT 4T\ 2 1
+ 16LSK™ 2 <)\dln (1 =+ 2)\d> In ) 2

1
2 T+e
+32Lpk " <dln <1 + 2’12)) (m 4?) T+

T 1+e€
+32Ldk~'Cp? In <1 + ;M> <1n > T
— O (d(logT)%+lieT1}re) .

The proof of Theorem 4 is finished.
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E Proof of Lemma

Let Z; = Xiljo, x,1<C|a . Based on the triangle inequality, we obtain that

ll14e

n n
Y aiZi| < | iZi - ElaiZi| Fial| +
i=1

=1

< : (36)

Z E [OziZi |.7:,‘_1]
i=1

Utilizing Bernstein’s inequality [Seldin ef al., 2012, Lemma 11] for the first term in the right side of
obove equation shows that with probability at least 1 — §, we have

1

<2014 In(2/6) + ———
Jedlvsc In(2/8) + g

Z Var[aiZi |«7:i—1}-

i=1

n
Z Ozl*Zi —E [Ozl‘Zi|]:i_1]

=1

The variance of Z; can be relaxed as follows,

ZVar[aiZi\fi,ﬂ = ZE [(OéiZi — E[OéiZi‘Fifl])Z‘}-ifl]

i=1 i=1

Y E[(Zi)?|Fia] <o el
i=1

IN

Thus, we get that

Z OéiZi —E [aiZil}—ifl}

i=1

< (2CIn(2/6) +vC™ )|l 1+ (37)

holds with probability at least 1 — 4.

According to the conditions E[X;|F;_1] = 0 and E[| X;|*T¢|F;_1] <wvfori =1,2,...,n, we can
easily obtain that

ZE [OéiZi|-7:i71] = ZE [aiXiH\aiX,;\SCHa||1+g -7‘-2'71}
i=1 i=1
< Y B [leiXilla,x,>Cllaf . [ Fi-1]
=1 (38)
n 1
< Y (B[ Xl TN F]) T Pr{jaiXi| > Cllaliy )T
i=1
— O
Taking and into finishes the proof.
F Proof of Lemma [1]
We first provide the following lemma to help with the proof of Lemmal|[IT]
Lemma 12 Let X1, ..., X,, be random variables with bounded moments E[| X;|**¢|F;_1] < vy,
where F;_1 = {X1,...,X;_1} is a o-filtration and Fy = (). For the fixed parameters

81,82, ...,8n € Rand C > 0, with probability at least 1 — §, we have that

n

2y 2
Y B X gexaccoyayz

1+4e
i=1

S 5“/3”%+e7

where

ﬁ = [61a1627 DR 5”]75 = 202 1H(2/5) + 2U10176.
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Proof. Let Z7 = X7Tgzx2<c2 g|j2, .- The triangle inequality shows that

i BiZE <
=1

Taking use of the Bernstein’s inequality [Seldin et al., 2012, Lemma 11] tells that

+ > E[BZ}F]|.

i=1

277 — BB 22| Fid] (39)

25222 E (822} Fi1]| < 20?831 In(2/8) + : ZVarﬁ Z2\Fi]

26\12”/3“141*6 i=1

holds with probability at least 1 — §. The variance of 3222 can be relaxed as
N E[(B727 - BB Z)Fica] <) B [(8iZi) ! Fica] <viC 1Bl
i=1 ‘

Thus, we get that

127 — BB 2| Fioa]| < 2C7BI 1 n(2/0) + 01O 1B - (40)

Considering that E[| X;|* €| Fi_1] < wvy,i=1,2,...,n, itis easy to verify that
Y BB 2} Fia] <008, (1)
i=1

Taking (@0) and (&I into (39) finishes the proof of Lemma|[T2] O

Now, we are ready to prove Lemma[TT} Through the full probability formula [Mendenhall et al.,
2012], we have that

{Z B2X2 > CP||/3||1+5} <Pr {25 X? Tlgzx2<c2pz, . > CP||ﬁ|?+e}

T=1 (42)

+ Z Pr{|8:X:| > C||Bll1+} -

We first analyze the second term on the right side of above inequality. Recall that CRMM observes
r rewards {y;,...,y/} at round ¢, and for the sake of representation, we denote the difference
between ! and p(x/ 6.) as X}, such that X} = yi — (] 8.). Through Markov’s inequality and
the heavy-tailed condition E[| X, |17¢] < v, we have that

B

PF{WTXﬂ > C||ﬁ||1+e} hS W

Let C' = (4v) <, then we have

»P\H

Pr{[3:X7| > CllBll1sc} <

Define the random variables
Bi = Ig, xi>c|B14er
thus p; = Pr{B; =1} < %. According to the Azuma-Hoeffing’s inequality [Azuma, 1967], we have

that
Pr § B; > -\ <pr § Bi—p; >~
=1 ' 2 B =1 B 4

<e /8 < o

- ~ 472
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forr = [161n 2X]. The inequality >/, B; > % means more than half of the terms {B;}/_, is true.
Thus, the median term 3, X satisfies

Br X7 > C”ﬁHlJre
with probability at most %. A similar argument shows that
BrXr < _CHBHI-&-E

holds with probability at most Therefore, we have

4T2

0
Pr {18 X:| > CllBle} < -

Take it into (#2)), we get that

t
Pr {ZBEXE > CP”ﬁHe} < o7 +Pr {Zﬁ X2 H52X2<C2‘||ﬁ|\1+‘ > CP”ﬂ”%ﬂ} .

We obtain that the (1 + €)-th moment of X, is rv by Lemma thus Lemmacan be taken to bound
the second term on the right side of above inequality, such that

t
)
Pr {Z BrXZlg2x2<c2yp)2,. > 09||ﬂ|§+e} <57
T=1

with p = 2C'In(47'/6) + 2C~“rv. Thus, we get that
252)(2 (2C% In(4T/8) + 2rvC =) |82,

holds with probability at least 1 — 6 /7.
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