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A Proof of Theorem 1

To ensure clarity of expression, we have divided the proof of Theorem 1 into two subsections. The
first subsection establishes a general upper bound for the confidence region constructed by ONS.
Building upon the first subsection, we employ the truncated technique in the second subsection to
deduce the confidence region for CRTM.

A.1 General Upper Bound of ONS

For the sake of representation, we define the loss function for the action-reward pair (xt, yt) as

ℓt(θ) = −ytx
⊤
t θ +m(x⊤

t θ),

and the conditional expectation for this loss function is denoted as ft(θ) = E[ℓt(θ)|Gt−1].

First, we propose the following lemma to display the strong convexity of the loss function.

Lemma 1 For any θ1,θ2 ∈ Rd satisfying ∥θ1∥2 ≤ S, ∥θ2∥2 ≤ S, the inequality

ℓt(θ1)− ℓt(θ2) ≥ ∇ℓt(θ2)
⊤(θ1 − θ2) +

κ

2

(
x⊤
t θ1 − x⊤

t θ2
)2

is true for all t > 0.

Proof. Let Lt(z) = −ytz + m(z), z ∈ [−S, S], then L′′
t (z) = µ′(z) ≥ κ due to Assumption 2.

Thus, Lt(z) is a κ-strongly convex function, which indicates that

Lt(z1)− Lt(z2) ≥ L′
t(z2)(z1 − z2) +

κ

2
(z1 − z2)

2
.

Let z1 = x⊤
t θ1 and z2 = x⊤

t θ2, we get that

Lt(x
⊤
t θ1)− Lt(x

⊤
t θ2) ≥L′

t(x
⊤
t θ2)(x

⊤
t θ1 − x⊤

t θ2) +
κ

2

(
x⊤
t θ1 − x⊤

t θ2
)2

.

Taking Lt(x
⊤
t θ) = ℓt(θ) and L′

t(x
⊤
t θ)xt = ∇ℓt(θ) into above equation finishes the proof. □

Then, we propose Lemma 2 to show that θ∗ is the minimum point of the expected loss function.

Lemma 2 Suppose θ ∈ Rd satisfies ∥θ∥2 ≤ S, then ft(θ)− ft(θ∗) ≥ 0 for all t > 0.

Proof. Recall that GLB model satisfys E[yt|xt] = m′(x⊤
t θ∗) and µ(·) = m′(·), thus

ft(θ)− ft(θ∗) = E[ℓt(θ)− ℓt(θ∗)|Gt−1]

= m(x⊤
t θ)−m(x⊤

t θ∗)− µ(x⊤
t θ∗)(x

⊤
t θ − x⊤

t θ∗)

≥ m′(x⊤
t θ∗)(x

⊤
t θ − x⊤

t θ∗)− µ(xtθ∗)(x
⊤
y θ − x⊤

t θ∗)

= 0

where the inequality holds because m(·) is κ-strongly convex. □

To exploit the property of ONS, we adopt the following lemma from Zhang et al. [2016].

Lemma 3 For any t > 0, the inequality

∇ℓt(θ̂t)
⊤(θ̂t − θ∗)−

1

2
∥∇ℓt(θ̂t)∥2V−1

t+1

≤ 1

2

(
∥θ̂t − θ∗∥2Vt+1

− ∥θ̂t+1 − θ∗∥2Vt+1

)
holds.
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With above three lemmas, we are ready to bound the confience region of the ONS estimation.
Lemma 1 tells that

ℓt(θ̂t)− ℓt(θ∗) ≤ ∇ℓt(θ̂t)
⊤(θ̂t − θ∗)−

κ

2

(
x⊤
t θ̂t − x⊤

t θ∗

)2
.

If we take expectation in both sides, it becomes

ft(θ̂t)− ft(θ∗) ≤ ∇ft(θ̂t)
⊤(θ̂t − θ∗)−

κ

2

(
x⊤
t θ̂t − x⊤

t θ∗

)2
.

Lemma 2 tells that

0 ≤ ∇ft(θ̂t)
⊤
(
θ̂t − θ∗

)
− κ

2

(
x⊤
t θ̂t − x⊤

t θ∗

)2
=
(
∇ft(θ̂t)−∇ℓt(θ̂t)

)⊤ (
θ̂t − θ∗

)
− κ

2

(
x⊤
t θ̂t − x⊤

t θ∗

)2
+∇ℓt(θ̂t)

⊤(θ̂t − θ∗).

(13)

According to Lemma 3, we can relax the last term in the right side of (13) and get

0 ≤
(
∇ft(θ̂t)−∇ℓt(θ̂t)

)⊤ (
θ̂t − θ∗

)
− κ

2

(
x⊤
t θ̂t − x⊤

t θ∗

)2
+

1

2
∥∇ℓt(θ̂t)∥2V−1

t+1

+
1

2

(
∥θ̂t − θ∗∥2Vt+1

− ∥θ̂t+1 − θ∗∥2Vt+1

)
.

(14)

Then, taking the gradient

∇ℓt(θ̂t) = −ytxt + µ(x⊤
t θ̂t)xt, ∇ft(θ̂t) = −µ(x⊤

t θ∗)xt + µ(x⊤
t θ̂t)xt

into inequality (14), we get that

0 ≤ 1

2

(
∥θ̂t − θ∗∥2Vt+1

− ∥θ̂t+1 − θ∗∥2Vt+1

)
− κ

2

(
x⊤
t θ̂t − x⊤

t θ∗

)2
+
(
yt − µ(x⊤

t θ∗)
)
x⊤
t (θ̂t − θ∗) +

1

2
∥(−yt + µ(x⊤

t θ̂t))xt∥2V−1
t+1

.

A simple application of triangle inequality tells that

0 ≤ 1

2

(
∥θ̂t − θ∗∥2Vt+1

− ∥θ̂t+1 − θ∗∥2Vt+1

)
− κ

2

(
x⊤
t θ̂t − x⊤

t θ∗

)2
+
(
yt − µ(x⊤

t θ∗)
)
x⊤
t (θ̂t − θ∗)

+
1

2
(yt − µ(x⊤

t θ∗))
2∥xt∥2V−1

t+1

+
1

2
(µ(x⊤

t θ∗)− µ(x⊤
t θ̂t))

2∥xt∥2V−1
t+1

≤ 1

2

(
∥θ̂t − θ∗∥2Vt

− ∥θ̂t+1 − θ∗∥2Vt+1

)
− κ

2

(
x⊤
t θ̂t − x⊤

t θ∗

)2
+
(
yt − µ(x⊤

t θ∗)
)
x⊤
t (θ̂t − θ∗)

+
1

2
(yt − µ(x⊤

t θ∗))
2∥xt∥2V−1

t
+

1

2
(µ(x⊤

t θ∗)− µ(x⊤
t θ̂t))

2∥xt∥2V−1
t

where the second equality holds because Vt+1 = Vt +
κ
2xtx

⊤
t . By summing the above inequality

from 1 to t and rearranging, the confidence region can be bounded as

∥θ̂t+1 − θ∗∥2Vt+1

≤ ∥θ̂1 − θ∗∥2V1
− κ

2

t∑
τ=1

(
x⊤
τ θ̂τ − x⊤

τ θ∗

)2
+

t∑
τ=1

(
µ(x⊤

τ θ∗)− µ(x⊤
τ θ̂τ )

)2
∥xτ∥2V−1

τ

+

t∑
τ=1

2
(
yτ − µ(x⊤

τ θ∗)
)
x⊤
τ (θ̂τ − θ∗) +

t∑
τ=1

(
yτ − µ(x⊤

τ θ∗)
)2 ∥xτ∥2V−1

τ
.

(15)

Until now, we have proven an upper bound for the ONS method updated with a general action-reward
pair (xt, yt), and the bound is shown in equation (15).
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A.2 Truncated Upper Bound of CRTM

CRTM updates the estimator with a truncated action-reward pair (xt, ỹt), where ỹt is the truncated
reward ytI∥xt∥V

−1
t

|yt|≤Γ. Replacing the (xt, yt) of general upper bound (15) by (xt, ỹt), we get that

∥θ̂t+1 − θ∗∥2Vt+1

≤ ∥θ̂1 − θ∗∥2V1
− κ

2

t∑
τ=1

(
x⊤
τ θ̂τ − x⊤

τ θ∗

)2
+

t∑
τ=1

(
µ(x⊤

τ θ∗)− µ(x⊤
τ θ̂τ )

)2
∥xτ∥2V−1

τ

+

t∑
τ=1

2
(
ỹτ − µ(x⊤

τ θ∗)
)
x⊤
τ

(
θ̂τ − θ∗

)
+

t∑
τ=1

(
ỹτ − µ(x⊤

τ θ∗)
)2 ∥xτ∥2V−1

τ
.

(16)

Assumption 2 shows that the upper bound of µ(·) is U . Thus, the inequality (16) can be simplified as

∥θ̂t+1 − θ∗∥2Vt+1
≤ ∥θ̂1 − θ∗∥2V1

+ 6U2
t∑

τ=1

∥xτ∥2V−1
τ

+ 2
t∑

τ=1

(
ỹτ − µ(x⊤

τ θ∗)
)
x⊤
τ

(
θ̂τ − θ∗

)
+ 2

t∑
τ=1

∥xτ∥2V−1
τ
y2τ I∥xτ∥V

−1
τ

|yτ |≤Γ.

We define βτ = ∥xτ∥V−1
τ

. Since V1 = λId and θ̂1 = 0, we can deduce that

∥θ̂t+1 − θ∗∥2Vt+1
≤ λS2 + 6U2

t∑
τ=1

β2
τ + 2

t∑
τ=1

β2
τy

2
τ I|βτyτ |≤Γ︸ ︷︷ ︸
A

+ 2

t∑
τ=1

(
yτ I|βτyτ |≤Γ − µ(x⊤

τ θ∗)
)
x⊤
τ

(
θ̂τ − θ∗

)
︸ ︷︷ ︸

Bτ

.

(17)

Then, we will employ analytic techniques of truncated strategy to bound the terms A and
∑t

τ=1 Bτ .

Lemma 4 Suppose that E
[
|yτ |1+ϵ|Gτ−1

]
≤ u for τ = 1, 2, . . . , t. Then, we have that

A ≤ 2Γ2 ln(2/δ) +
3

2
Γ1−ϵ

t∑
τ=1

β1+ϵ
τ u

holds with probability at least 1− δ.

Proof. According to the triangle inequality, A can be relaxed as

A ≤

∣∣∣∣∣
t∑

τ=1

β2
τy

2
τ I|βτyτ |≤Γ − E

[
β2
τy

2
τ I|βτyτ |≤Γ|Gτ−1

]∣∣∣∣∣+
t∑

τ=1

E
[
β2
τy

2
τ I|βτyτ |≤Γ|Gτ−1

]
. (18)

In light of Bernstein’s inequality [Seldin et al., 2012, Lemma 11], we have that∣∣∣∣∣
t∑

τ=1

β2
τy

2
τ I|βτyτ |≤Γ − E

[
β2
τy

2
τ I|βτyτ |≤Γ|Gτ−1

]∣∣∣∣∣
≤ 2Γ2 ln(2/δ) +

1

2Γ2

t∑
τ=1

Var
[
β2
τy

2
τ I|βτyτ |≤Γ|Gτ−1

]
≤ 2Γ2 ln(2/δ) +

1

2Γ2

t∑
τ=1

β1+ϵ
τ uΓ3−ϵ

(19)
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holds with probability at least 1− δ, and the second inequality of above equation holds because the
(1 + ϵ)-th moment of rewards is bounded by u.

We can bound the second term in the right side of (18) as

t∑
τ=1

E
[
β2
τy

2
τ I|βτyτ |≤Γ|Gτ−1

]
≤ Γ1−ϵ

t∑
τ=1

β1+ϵ
τ u. (20)

Combining the inequalities (18), (19) and (20) finishes the proof of Lemma 4. □

We will now proceed to bound the term
∑t

τ=1 Bτ .

Lemma 5 Suppose that E
[
|yτ |1+ϵ|Gτ−1

]
≤ u for τ = 1, 2, . . . , t. Then, we have that

t∑
τ=1

Bτ ≤ 2Γγ
1
2 ln(2/δ) +

3γ
1
2

2Γϵ

t∑
τ=1

β1+ϵ
τ u

holds with probability at least 1− Tδ.

Proof. First, we give the fact that∣∣∣x⊤
τ (θ̂τ − θ∗)yτ I|βτyτ |≤Γ

∣∣∣ ≤ ∥θ̂τ − θ∗∥Vτ ∥xτ∥V−1
τ
|yτ |I|βτyτ |≤Γ

≤ ∥θ̂τ − θ∗∥Vτ
Γ.

Then, through the full probability formula [Mendenhall et al., 2012], we have that

P

{
t∑

τ=1

Bτ > χ

}
≤ P

{
∃τ, ∥θ̂τ − θ∗∥2Vτ

≥ γ
}
+ P

{
t∑

τ=1

Bτ I∥θ̂τ−θ∗∥2
Vτ

≤γ > χ

}

≤ (T − 1)δ + P

{
t∑

τ=1

Bτ I∥θ̂τ−θ∗∥2
Vτ

≤γ > χ

}
.

(21)

The second inequality of above equation holds because ∥θ̂τ − θ∗∥2Vτ
≥ γ with probability at most δ.

In the following, we analyze the term
∑t

τ=1 Bτ I∥θ̂τ−θ∗∥2
Vτ

≤γ to determine the appropriate χ for
bounding the right side of (21). A simple application of the triangle inequality shows that

t∑
τ=1

Bτ I∥θ̂τ−θ∗∥2
Vτ

≤γ ≤

∣∣∣∣∣
t∑

τ=1

(ỹτ − E[ỹτ |Gτ−1])x
⊤
τ (θ̂τ − θ∗)I∥θ̂τ−θ∗∥2

Vτ
≤γ

∣∣∣∣∣
+

∣∣∣∣∣
t∑

τ=1

E[yτ I|βτyτ |≥Γ|Gτ−1]x
⊤
τ (θ̂τ − θ∗)I∥θ̂τ−θ∗∥2

Vτ
≤γ

∣∣∣∣∣
(22)

By utilizing Bernstein’s inequality [Seldin et al., 2012, Lemma 11], we can demonstrate that,∣∣∣∣∣
t∑

τ=1

(ỹτ − E[ỹτ |Gτ−1])x
⊤
τ (θ̂τ − θ∗)I∥θ̂τ−θ∗∥2

Vτ
≤γ

∣∣∣∣∣
≤ 1

2Γγ
1
2

t∑
τ=1

Var[x⊤
τ (θ̂τ − θ∗)I∥θ̂τ−θ∗∥2

Vτ
≤γ ỹτ |Gτ−1] + 2Γγ

1
2 ln(2/δ).

holds with probability at least 1 − δ. Additionally, apply the Cauchy-Schwarz inequality and the
scalar property of variance, we can establish that

Var[x⊤
τ (θ̂τ − θ∗)I∥θ̂τ−θ∗∥2

Vτ
≤γ ỹτ |Gτ−1] ≤ γ ·Var[βτ ỹτ |Gτ−1].
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Thus, we have that ∣∣∣∣∣
t∑

τ=1

(ỹτ − E[ỹτ |Gτ−1])x
⊤
τ (θ̂τ − θ∗)I∥θ̂τ−θ∗∥2

Vτ
≤γ

∣∣∣∣∣
≤ γ

2Γγ
1
2

t∑
τ=1

Var[βτyτ I|βτyτ |≤Γ|Gτ−1] + 2Γγ
1
2 ln(2/δ)

≤ γ
1
2

2Γϵ

t∑
τ=1

β1+ϵ
τ u+ 2Γγ

1
2 ln(2/δ).

(23)

The second term on the right side of inequality (22) can be bounded as∣∣∣∣∣
t∑

τ=1

E[yτ I|βτyτ |≥Γ|Gτ−1]x
⊤
τ (θ̂τ − θ∗)I∥θ̂τ−θ∗∥2

Vτ
≤γ

∣∣∣∣∣
≤γ

1
2

t∑
τ=1

E[|βτyτ |I|βτyτ |≥Γ|Gτ−1] ≤
γ

1
2

Γϵ

t∑
τ=1

β1+ϵ
τ u.

(24)

Taking (23), (24) into (22), we have the inequality
t∑

τ=1

Bτ I∥θ̂τ−θ∗∥2
Vτ

≤γ ≤ 3γ
1
2

2Γϵ

t∑
τ=1

β1+ϵ
τ u+ 2Γγ

1
2 ln(2/δ).

holds with probability at least 1− δ. Let χ of inequality (21) be 2Γγ
1
2 ln(2/δ) + 3γ

1
2

2Γϵ

∑t
τ=1 β

1+ϵ
τ u,

we have

P

{
t∑

τ=1

Bτ > χ

}
≤ Tδ.

The proof of Lemma 5 is finished. □

We have bounded the terms A and
∑t

τ=1 Bτ using Lemma 4 and Lemma 5, respectively. By
incorporating these two lemmas into equation (17) and substituting δ with δ/2T , we can derive that

∥θ̂t+1 − θ∗∥2Vt+1
≤ 6U2

t∑
τ=1

β2
τ + 4Γ2 ln(4T/δ) + 4Γγ

1
2 ln(4T/δ)

+ λS2 + 3Γ1−ϵ
t∑

τ=1

β1+ϵ
τ v + 3γ

1
2Γ−ϵ

t∑
τ=1

β1+ϵ
τ u.

(25)

holds with probability at least 1− δ. The Hölder inequality tells that
t∑

τ=1

β1+ϵ
τ ≤ t

1−ϵ
2 (

t∑
τ=1

β2
τ )

1+ϵ
2 . (26)

Then, according to Lemma 11 of Abbasi-yadkori et al. [2011], we have that
T∑

τ=1

β2
τ =

T∑
τ=1

∥xτ∥2V−1
τ

≤ 4

κ
ln

(
det(VT+1)

det(V1)

)
≤ 4d

κ
ln

(
1 +

κT

2λd

)
.

Thus, (26) can be relaxed as

t∑
τ=1

β1+ϵ
τ ≤ T

1−ϵ
2

(
4d

κ
ln

(
1 +

κT

2λd

)) 1+ϵ
2

. (27)

By taking (27) into (25) and let

Γ = 2(u ln(4T/δ))
1

1+ϵ

(
dκ ln

(
1 +

κT

2λd

)) 1
2

T
1−ϵ

2(1+ϵ) ,
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we have that

∥θ̂t+1 − θ∗∥2Vt+1
≤ λS2 +

24U2d

κ
ln

(
1 +

κT

2λd

)
+ 7u

2
1+ϵ ln(4T/δ)

ϵ−1
1+ϵ T

1−ϵ
1+ϵ

4d

κ
ln

(
1 +

κT

2λd

)
+ 7u

1
1+ϵ ln(4T/δ)

ϵ
1+ϵT

1−ϵ
2(1+ϵ) γ

1
2

(
4d

κ
ln

(
1 +

κT

2λd

)) 1
2

(28)

holds with probability at least 1− δ.

In order to determine γ satisfying ∥θ̂t+1 − θ∗∥2Vt+1
≤ γ, a quadratic inequality with respect to γ

need to be solved, such that the right side of inequality (28) is smaller than γ. This leads to the
conclusion that

γ = 112v
2

1+ϵ ln(4T/δ)
2ϵ

1+ϵT
1−ϵ
1+ϵ

4d

κ
ln

(
1 +

κT

2λd

)
+ 2λS2 +

48U2d

κ
ln

(
1 +

κT

2λd

)
.

By taking the union bound over all t, we have that with probability at least 1− δ, for any t > 0, the
inequality

∥θ̂t+1 − θ∗∥2Vt+1
≤ 224v

2
1+ϵ ln(4T/δ)

2ϵ
1+ϵT

1−ϵ
1+ϵ

4d

κ
ln

(
1 +

κT

2λd

)
+ 2λS2 +

48U2d

κ
ln

(
1 +

κT

2λd

)
holds, which concludes the proof of Theorem 1. □

B Proof of Theorem 2

To begin with, we bound the instantaneous regret by the following lemma.

Lemma 6 If θ∗ ∈ Ct for all t, then
µ(x̃⊤

t θ∗)− µ(x⊤
t θ∗) ≤ 2L

√
γt∥xt∥V−1

t

where x̃t = argmaxx∈Dt
µ(x⊤θ∗).

Proof. Considering that the link function µ(·) is L-Lipschitz and monotonically increasing, we have

µ(x̃⊤
t θ∗)− µ(x⊤

t θ∗) ≤ max{0, L(x̃⊤
t θ∗ − x⊤

t θ∗)}
≤ max{0, L(x⊤

t θ̃t − x⊤
t θ∗)}

= max{0, Lx⊤
t (θ̃t − θ̂t) + Lx⊤

t (θ̂t − θ∗)}

≤ L
(
∥θ̃t − θ̂t∥Vt + ∥θ̂t − θ∗∥Vt

)
∥xt∥V−1

t

≤ 2L
√
γt∥xt∥V−1

t

where the second inequality holds due to the fact that (xt, θ̃t) = argmaxx∈Dt,θ∈Ct
⟨x,θ⟩. □

Then, we get the regret of CRTM through the cumulative summation from 1 to T .

Lemma 7 If θ∗ ∈ Ct for all t, then the regret of CRTM can be bounded as

R(T ) ≤ 2L

(
4d

κ
ln

(
1 +

κT

2λd

) T∑
t=1

γt

)1/2

.

Proof. Through the Lemma 6, we have that

R(T ) =

T∑
t=1

µ(x̃⊤
t θ∗)− µ(x⊤

t θ∗) ≤ 2L

T∑
t=1

√
γt∥xt∥V−1

t

≤ 2L

(
T∑

t=1

γt

)1/2( T∑
t=1

∥xt∥2V−1
t

)1/2

.

(29)
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According to the Lemma 11 of Abbasi-yadkori et al. [2011], we get that

T∑
t=1

∥xt∥2V−1
t

≤ 4

κ
ln

(
det(VT+1)

det(V1)

)
≤ 4d

κ
ln

(
1 +

κT

2λd

)
. (30)

Combining (29) and (30) finishes the proof. □

By substituting γ of Theorem 1 into Lemma 7 such that γt = γ for t = 1, 2, . . . , T , the regret bound
of CRTM is explicitly given as

R(T ) ≤ 128Lκ−1v
1

1+ϵ d ln(4T/δ)
ϵ

1+ϵ ln

(
1 +

κT

2λd

)
T

1
1+ϵ

+ 24LUκ−1d ln

(
1 +

κT

2λd

)
T

1
2

+ 8LS(λd)
1
2κ− 1

2

(
ln

(
1 +

κT

2λd

)) 1
2

T
1
2

= O
(
d(log T )

1+2ϵ
1+ϵ T

1
1+ϵ

)
.

The proof of Theorem 2 is finished.

C Proof of Theorem 3

Notice that CRMM updates the estimator with action-reward pair (xt, ȳt), where ȳt is the median of
{y1t , y2t , . . . , yrt }. Replace (xt, yt) of general upper bound (15) by (xt, ȳt), we get that

∥θ̂t+1 − θ∗∥2Vt+1
≤ ∥θ̂1 − θ∗∥2V1

− κ

2

t∑
τ=1

α2
τ +

t∑
τ=1

(
µ(x⊤

τ θ∗)− µ(x⊤
τ θ̂τ )

)2
∥xτ∥2V−1

τ

+

t∑
τ=1

2x⊤
τ (θ̂τ − θ∗)

(
ȳτ − µ(x⊤

τ θ∗)
)
+

t∑
τ=1

∥xτ∥2V−1
τ

(
ȳτ − µ(x⊤

τ θ∗)
)2

.

Let ατ = x⊤
τ

(
θ̂τ − θ∗

)
, βτ = ∥xτ∥V−1

τ
and Xτ = ȳτ − µ(x⊤

τ θ∗). The above equation can be
simplified as

∥θ̂t+1 − θ∗∥2Vt+1
≤ ∥θ̂1 − θ∗∥2V1

− κ

2

t∑
τ=1

α2
τ +

t∑
τ=1

(
µ(x⊤

τ θ∗)− µ(x⊤
τ θ̂τ )

)2
∥xτ∥2V−1

τ

+

t∑
τ=1

2ατXτ +

t∑
τ=1

β2
τX

2
τ .

(31)

We need to bound the terms
∑t

τ=1 ατXτ and
∑t

τ=1 β
2
τX

2
τ to conduct a narrow confidence region.

Considering that the latent idea of CRMM is mean of medians, we provide the following lemma to
display the (1 + ϵ)-th moment for the median term.

Lemma 8 Suppose X1, . . . , Xr are independently drawn from the distribution χ, and E[Xi] = 0,
E[|Xi|1+ϵ] ≤ v for i = 1, 2, . . . , r. If X̂ is the median of {Xi}ri=1 , then X̂ satisfies E[|X̂|1+ϵ] ≤ rv.

Proof. Let the p.d.f and c.d.f of χ be denoted as p(x) and F (x), respectively. Then, the c.d.f of X̂
can be calculated as

P{X̂ ≤ x} =

r∑
k=⌈r/2⌉

(
r
k

)
F (x)k(1− F (x))r−k.
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Taking the derivative of the above equation, the p.d.f of X̂ can be obtained as

f(x) = r
(

r−1
⌈r/2⌉−1

)
F (x)⌈r/2⌉−1(1− F (x))r−⌈r/2⌉p(x).

According to the fact
(

r−1
⌈r/2⌉−1

)
F (x)⌈r/2⌉−1(1− F (x))r−⌈r/2⌉ ≤ 1, we can easily get that

f(x) ≤ rp(x).

Thus, the (1 + ϵ)-th moment of X̂ satisfies

E[|X̂|1+ϵ] =

∫
|x|1+ϵf(x)d ≤ r

∫
|x|1+ϵp(x)d ≤ rv.

The proof of Lemma 8 is finished. □

Another tool used to bound
∑t

τ=1 ατXτ is displayed as follows, whose proof is provided in Section E.

Lemma 9 Suppose that X1, . . . , Xn are random variables satisfying E[Xi|Fi−1] = 0, and
E[|Xi|1+ϵ|Fi−1] ≤ v1, where Fi−1 ≜ {X1, . . . , Xi−1} is a σ-filtration and F0 = ∅. For the
fixed parameters α1, α2, . . . , αn ∈ R and C > 0, with probability at least 1− δ, we have that∣∣∣∣∣

n∑
i=1

αiXiI|αiXi|≤C∥α∥1+ϵ

∣∣∣∣∣ ≤ ξ∥α∥1+ϵ

where

α = [α1, α2, . . . , αn], ξ = 2C ln(2/δ) + 2C−ϵv1.

Equipped with Lemma 8 and Lemma 9, we are ready to bound the term
∑t

τ=1 ατXτ .

Lemma 10 Let r =
⌈
16 ln 4T

δ

⌉
, for any t > 0, with probability at least 1− δ/T ,

t∑
τ=1

ατXτ ≤ ρ∥α∥1+ϵ

where

α = [α1, α2, . . . , αt], C = (4v)
1

1+ϵ , ρ = 2C ln(4T/δ) + 2C−ϵrv.

Proof. Through the full probability formula [Mendenhall et al., 2012], we have that

Pr

{∣∣∣∣∣
t∑

i=1

ατXτ

∣∣∣∣∣ > ρ∥α∥1+ϵ

}
≤ Pr

{∣∣∣∣∣
t∑

τ=1

ατXτ I|ατXτ |≤C∥α∥1+ϵ

∣∣∣∣∣ > ρ∥α∥1+ϵ

}

+

t∑
τ=1

Pr {|ατXτ | > C∥α∥1+ϵ}

(32)

We first analyze the second term in the right side of (32). Recall that CRMM observes r rewards
{y1τ , . . . , yrτ} at round τ , and for the sake of representation, we denote the difference between yiτ and
µ(x⊤

τ θ∗) as Xi
τ , such that Xi

τ = yiτ − µ(x⊤
τ θ∗). Through Markov’s inequality and the heavy-tailed

condition E[|Xi
τ |1+ϵ] ≤ v, we have that

Pr
{
|ατX

i
τ | > C∥α∥1+ϵ

}
≤ |ατ |1+ϵv

C1+ϵ∥α∥1+ϵ
1+ϵ

.

Let C = (4v)
1

1+ϵ , then we have

Pr
{
|ατX

i
τ | > C∥α∥1+ϵ

}
≤ 1

4
.

Define the random variables
Bi = IατXi

τ>C∥α∥1+ϵ
,
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thus pi = Pr{Bi = 1} ≤ 1
4 . According to the Azuma-Hoeffing’s inequality [Azuma, 1967], we get

Pr

{
r∑

i=1

Bj ≥
r

2

}
≤Pr

{
r∑

i=1

Bi − pi ≥
r

4

}

≤e−r/8 ≤ δ

4T 2

for r =
⌈
16 ln 4T

δ

⌉
. The inequality

∑r
i=1 Bi ≥ r

2 means more than half of the terms {Bi}ri=1 is true.
Thus, the median term ατXτ satisfies

ατXτ > C∥α∥1+ϵ

with probability at most δ
4T 2 . A similar argument shows that

ατXτ < −C∥α∥1+ϵ

holds with probability at most δ
4T 2 . Therefore, we have

Pr {|ατXτ | > C∥α∥1+ϵ} ≤ δ

2T 2
.

By taking it into (32), we have that

Pr

{∣∣∣∣∣
t∑

τ=1

ατXτ

∣∣∣∣∣ > ρ∥α∥1+ϵ

}
≤ δ

2T
+ Pr

{∣∣∣∣∣
t∑

τ=1

ατXτ I|ατXτ |≤C∥α∥1+ϵ

∣∣∣∣∣ > ρ∥α∥1+ϵ

}
. (33)

Next, we proceed to bound the second term on the right side of inequality (33) using Lemma 9. The
application of Lemma 9 requires satisfying two conditions. The first condition is that the expectation
of the median term Xτ is 0, which is easily fulfilled due to the symmetry of rewards. The second
condition is that the (1 + ϵ)-th moment of Xτ is finite, which can be verified through Lemma 8, such
that

E[|Xτ |1+ϵ] ≤ rv.

Consequently, Lemma 9 can be employed to bound the second term on the right side of (33) by
setting C = (4v)

1
1+ϵ and v1 = rv. This yields that∣∣∣∣∣

t∑
i=1

ατXτ

∣∣∣∣∣ ≤ (2C ln(4T/δ) + 2C−ϵrv)∥α∥1+ϵ

holds with probability at least 1− δ/T . Hence, the proof of Lemma 10 is concluded. □

Similar to the discussion of Lemma 10, we present Lemma 11 to bound the term
∑t

τ=1 β
2
τX

2
τ . The

proof of Lemma 11 is provided in Section F.

Lemma 11 Let r =
⌈
16 ln 4T

δ

⌉
, for any t > 0, with probability at least 1− δ/T ,

t∑
τ=1

β2
τX

2
τ ≤ Cρ∥β∥21+ϵ

where

β = [β1, β2, . . . , βt], C = (4v)
1

1+ϵ , ρ = 2C ln(4T/δ) + 2C−ϵrv.

By taking Lemma 10 and Lemma 11 into inequality (31), we get that

∥θ̂t+1 − θ∗∥2Vt+1
≤ ∥θ̂1 − θ∗∥2V1

+

t∑
τ=1

(
µ(x⊤

τ θ∗)− µ(x⊤
τ θ̂τ )

)2
∥xτ∥2V−1

τ

− κ

2
∥α∥22 + 2ρ∥α∥1+ϵ + Cρ∥β∥21+ϵ

(34)

holds with probability at least 1− 2δ/T .
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Recall the upper bound of µ(·) is U and ∥θ̂1 − θ∗∥2V1
≤ λS2, inequality (34) can be simplified as

∥θ̂t+1 − θ∗∥2Vt+1
≤ λS2 + 4U2

t∑
τ=1

∥xτ∥2V−1
τ

− κ

2
∥α∥22 + 2ρ∥α∥1+ϵ + Cρ∥β∥21+ϵ (35)

Based on the Hölder inequality, we get that

∥α∥1+ϵ ≤ t
1−ϵ

2(1+ϵ) ∥α∥2, ∥β∥21+ϵ ≤ t
1−ϵ
1+ϵ ∥β∥22.

By taking these two inequalities into (35) and recalling that βτ = ∥xτ∥V−1
τ

, we get that

∥θ̂t+1 − θ∗∥2Vt+1
≤ λS2 +

(
4U2 + Cρt

1−ϵ
1+ϵ

) t∑
τ=1

∥xτ∥2V−1
τ

− κ

2
∥α∥22 + 2ρt

1−ϵ
2(1+ϵ) ∥α∥2.

holds with probability at least 1− 2δ/T .

According to the fact 2
√
pq ≤ p

κ + κq,∀p, q > 0, if we take p = 4ρ2t
1−ϵ
1+ϵ , q = ∥α∥22, we get that

∥θ̂t+1 − θ∗∥2Vt+1
≤
(
4U2 + Cρt

1−ϵ
1+ϵ

) t∑
τ=1

∥xτ∥2V−1
τ

+ λS2 +
2ρ2

κ
t
1−ϵ
1+ϵ .

holds with probability at least 1− 2δ/T . Then, take an union bound over all rounds and , we have
that with probability at least 1− 2δ, for any t > 0,

∥θ̂t+1 − θ∗∥2Vt+1
≤
(
4U2 + Cρt

1−ϵ
1+ϵ

) 4d

κ
ln

(
1 +

κt

2λd

)
+ λS2 +

2ρ2

κ
t
1−ϵ
1+ϵ .

The proof of Theorem 3 is finished.

D Proof of Theorem 4

Since CRMM plays total T0 rounds with T0 = ⌊T/r⌋ and r =
⌈
16 ln 4T

δ

⌉
, we bound the sum of γt

from t = 1 to T0 first, such that
T0∑
t=1

γt ≤
(
16U2d

κ
ln

(
1 +

κT0

2λd

)
+ λS2

)
T0 +

(
2ρ2

κ
T0 +

4Cρd

κ
ln

(
1 +

κT0

2λd

)) T0∑
t=1

t
1−ϵ
1+ϵ

≤
(
16U2d

κ
ln

(
1 +

κT0

2λd

)
+ λS2

)
T0 +

(
2ρ2

κ
+

4Cρd

κ
ln

(
1 +

κT0

2λd

))
T

2
1+ϵ

0 .

The second inequality holds due to the fact
∑T0

t=1 t
1−ϵ
1+ϵ ≤

∫ T0

0
x

1−ϵ
1+ϵ dx ≤ T0

2
1+ϵ . Taking above result

into Lemma 7, we can easily get that

R(T0) ≤ 16LUdκ−1 ln

(
1 +

κT0

2λd

)
T

1
2
0 + 4LSκ− 1

2

(
λd ln

(
1 +

κT0

2λd

)) 1
2

T
1
2
0

+ 8Lρκ−1

(
d ln

(
1 +

κT0

2λd

)) 1
2

T
1

1+ϵ

0 + 8Ldκ−1Cρ
1
2 ln

(
1 +

κT0

2λd

)
T

1
1+ϵ

0 .

Taking R(T ) = rR(T0) shows that the regret of CRMM can be bounded as

R(T ) ≤ 64LUdκ−1 ln

(
1 +

κT

2λd

)(
ln

4T

δ

) 1
2

T
1
2

+ 16LSκ− 1
2

(
λd ln

(
1 +

κT

2λd

)
ln

4T

δ

) 1
2

T
1
2

+ 32Lρκ−1

(
d ln

(
1 +

κT

2λd

)) 1
2
(
ln

4T

δ

) ϵ
1+ϵ

T
1

1+ϵ

+ 32Ldκ−1Cρ
1
2 ln

(
1 +

κT

2λd

)(
ln

4T

δ

) ϵ
1+ϵ

T
1

1+ϵ

= O
(
d(log T )

3
2+

ϵ
1+ϵT

1
1+ϵ

)
.

The proof of Theorem 4 is finished.
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E Proof of Lemma 9

Let Zi = XiI|αiXi|≤C∥α∥1+ϵ
. Based on the triangle inequality, we obtain that∣∣∣∣∣

n∑
i=1

αiZi

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

αiZi − E [αiZi|Fi−1]

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

E [αiZi|Fi−1]

∣∣∣∣∣ . (36)

Utilizing Bernstein’s inequality [Seldin et al., 2012, Lemma 11] for the first term in the right side of
obove equation shows that with probability at least 1− δ, we have∣∣∣∣∣

n∑
i=1

αiZi − E [αiZi|Fi−1]

∣∣∣∣∣ ≤ 2C∥α∥1+ϵ ln(2/δ) +
1

2C∥α∥1+ϵ

n∑
i=1

Var[αiZi|Fi−1].

The variance of Zi can be relaxed as follows,
n∑

i=1

Var[αiZi|Fi−1] =

n∑
i=1

E
[
(αiZi − E[αiZi|Fi−1])

2|Fi−1

]
≤

n∑
i=1

E
[
(αiZi)

2|Fi−1

]
≤ vC1−ϵ∥α∥21+ϵ.

Thus, we get that ∣∣∣∣∣
n∑

i=1

αiZi − E [αiZi|Fi−1]

∣∣∣∣∣ ≤ (2C ln(2/δ) + vC−ϵ)∥α∥1+ϵ (37)

holds with probability at least 1− δ.

According to the conditions E[Xi|Fi−1] = 0 and E[|Xi|1+ϵ|Fi−1] ≤ v for i = 1, 2, . . . , n, we can
easily obtain that∣∣∣∣∣

n∑
i=1

E [αiZi|Fi−1]

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

E
[
αiXiI|αiXi|≤C∥α∥1+ϵ

|Fi−1

]∣∣∣∣∣
≤

n∑
i=1

E
[
|αiXi|I|αiXi|>C∥α∥1+ϵ

|Fi−1

]
≤

n∑
i=1

(
E
[
|αiXi|1+ϵ|Fi−1

]) 1
1+ϵ Pr {|αiXi| > C∥α∥1+ϵ}

ϵ
1+ϵ

= vC−ϵ∥α∥1+ϵ.

(38)

Taking (37) and (38) into (36) finishes the proof.

F Proof of Lemma 11

We first provide the following lemma to help with the proof of Lemma 11.

Lemma 12 Let X1, . . . , Xn be random variables with bounded moments E[|Xi|1+ϵ|Fi−1] ≤ v1,
where Fi−1 ≜ {X1, . . . , Xi−1} is a σ-filtration and F0 = ∅. For the fixed parameters
β1, β2, . . . , βn ∈ R and C > 0, with probability at least 1− δ, we have that

n∑
i=1

β2
i X

2
i Iβ2

i X
2
i ≤C2∥β∥2

1+ϵ
≤ ξ∥β∥21+ϵ,

where

β = [β1, β2, . . . , βn], ξ = 2C2 ln(2/δ) + 2v1C
1−ϵ.
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Proof. Let Z2
i = X2

i Iβ2
i X

2
i ≤C2∥β∥2

1+ϵ
. The triangle inequality shows that

n∑
i=1

β2
i Z

2
i ≤

∣∣∣∣∣
n∑

i=1

β2
i Z

2
i − E

[
β2
i Z

2
i |Fi−1

]∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

E
[
β2
i Z

2
i |Fi−1

]∣∣∣∣∣ . (39)

Taking use of the Bernstein’s inequality [Seldin et al., 2012, Lemma 11] tells that∣∣∣∣∣
n∑

i=1

β2
i Z

2
i − E

[
β2
i Z

2
i |Fi−1

]∣∣∣∣∣ ≤ 2C2∥β∥21+ϵ ln(2/δ) +
1

2C2∥β∥21+ϵ

n∑
i=1

Var[β2
i Z

2
i |Fi−1]

holds with probability at least 1− δ. The variance of β2
i Z

2
i can be relaxed as

n∑
i=1

E
[
(β2

i Z
2
i − E[β2

i Z
2
i ])

2|Fi−1

]
≤

n∑
i=1

E
[
(βiZi)

4|Fi−1

]
≤ v1C

3−ϵ∥β∥41+ϵ.

Thus, we get that∣∣∣∣∣
n∑

i=1

β2
i Z

2
i − E

[
β2
i Z

2
i |Fi−1

]∣∣∣∣∣ ≤ 2C2∥β∥21+ϵ ln(2/δ) + v1C
1−ϵ∥β∥21+ϵ. (40)

Considering that E[|Xi|1+ϵ|Fi−1] ≤ v1, i = 1, 2, . . . , n, it is easy to verify that
n∑

i=1

E
[
β2
i Z

2
i |Fi−1

]
≤ v1C

1−ϵ∥β∥21+ϵ. (41)

Taking (40) and (41) into (39) finishes the proof of Lemma 12. □

Now, we are ready to prove Lemma 11. Through the full probability formula [Mendenhall et al.,
2012], we have that

Pr

{
t∑

τ=1

β2
τX

2
τ > Cρ∥β∥21+ϵ

}
≤Pr

{
t∑

τ=1

β2
τX

2
τ Iβ2

τX
2
τ≤C2∥β∥2

1+ϵ
> Cρ∥β∥21+ϵ

}

+

t∑
τ=1

Pr {|βτXτ | > C∥β∥1+ϵ} .

(42)

We first analyze the second term on the right side of above inequality. Recall that CRMM observes
r rewards {y1t , . . . , yrt } at round t, and for the sake of representation, we denote the difference
between yit and µ(x⊤

t θ∗) as Xi
t , such that Xi

t = yit − µ(x⊤
t θ∗). Through Markov’s inequality and

the heavy-tailed condition E[|Xτ |1+ϵ] ≤ v, we have that

Pr
{
|βτX

i
τ | > C∥β∥1+ϵ

}
≤ |βτ |1+ϵv

C1+ϵ∥β∥1+ϵ
1+ϵ

.

Let C = (4v)
1

1+ϵ , then we have

Pr
{
|βτX

i
τ | > C∥β∥1+ϵ

}
≤ 1

4
.

Define the random variables
Bi = IβτXi

τ>C∥β∥1+ϵ
,

thus pi = Pr{Bi = 1} ≤ 1
4 . According to the Azuma-Hoeffing’s inequality [Azuma, 1967], we have

that

Pr

{
r∑

i=1

Bj ≥
r

2

}
≤Pr

{
r∑

i=1

Bi − pi ≥
r

4

}

≤e−r/8 ≤ δ

4T 2
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for r =
⌈
16 ln 4T

δ

⌉
. The inequality

∑r
i=1 Bi ≥ r

2 means more than half of the terms {Bi}ri=1 is true.
Thus, the median term βτXτ satisfies

βτXτ > C∥β∥1+ϵ

with probability at most δ
4T 2 . A similar argument shows that

βτXτ < −C∥β∥1+ϵ

holds with probability at most δ
4T 2 . Therefore, we have

Pr {|βτXτ | > C∥β∥1+ϵ} ≤ δ

2T 2
.

Take it into (42), we get that

Pr

{
t∑

τ=1

β2
τX

2
τ > Cρ∥β∥1+ϵ

}
≤ δ

2T
+ Pr

{
t∑

τ=1

β2
τX

2
τ Iβ2

τX
2
τ≤C2∥β∥2

1+ϵ
> Cρ∥β∥21+ϵ

}
.

We obtain that the (1+ ϵ)-th moment of Xτ is rv by Lemma 8, thus Lemma 12 can be taken to bound
the second term on the right side of above inequality, such that

Pr

{
t∑

τ=1

β2
τX

2
τ Iβ2

τX
2
τ≤C2∥β∥2

1+ϵ
> Cρ∥β∥21+ϵ

}
≤ δ

2T

with ρ = 2C ln(4T/δ) + 2C−ϵrv. Thus, we get that

t∑
τ=1

β2
τX

2
τ ≤ (2C2 ln(4T/δ) + 2rvC1−ϵ)∥β∥21+ϵ

holds with probability at least 1− δ/T .
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