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A APPENDIX

This section contains supplementary material that provides additional details for the main paper and
further experimental analysis. The content of this section is as follows:

• Additional Experimental Details

• Additional Experimental Analysis

• Additional Ablation Study

A.1 ADDITIONAL EXPERIMENTAL DETAILS

Dataset Details. In Tab. 6, we list the details of the datasets and the hand-crafted prompt we used
in the experiments. The prompts are from the Radford et al. (2021) and we have not adopted more
prompt templates to generate the optical text representations. In this work, we only focus on the
effect of fully fine-tuned CLIP and the text representations would be automatically learned during the
training.

Training Details. We maintain the temperature of the softmax function consistent with the pre-trained
model, using τ = 0.01, except for when LV LD is adjusted to 0.1. All images are randomly resized
and cropped to 224 × 224, only random resize and random crop data augments are applied. The
optical hyper-parameter λ is set to 0.7, η is set to 0.1, and α is set to 0.5 for all experiments. We use
the AdamW optimizer with the cosine learning rate strategy and the learning rate is set to 5e-6 and
trained for 20 epochs. The batch size is set to 32 for most datasets, with specific batch sizes of 16
for EuroSAT and 64 for ImageNet. For each result of CLIP-CITE, we report the average result with
three random seeds.

Table 6: Detailed statistics of the datasets.

Dataset Classes Train Val Test Hand-crafted Prompt

Caltech101 100 4,128 1,649 2,465 a photo of a [CLS].
OxfordPets 37 2,944 736 3,669 a photo of a [CLS], a type of pet.
StanfordCars 196 6,509 1,635 8,041 a photo of a [CLS].
Flowers102 102 4,093 1,633 2,463 a photo of a [CLS], a type of flower.
Food101 101 50,500 20,200 30,300 a photo of [CLS], a type of food.
FGVCAircraft 100 3,334 3,333 3,333 a photo of a [CLS], a type of aircraft.
SUN397 397 15,880 3,970 19,850 a photo of a [CLS].
DTD 47 2,820 1,128 1,692 [CLS] texture.
EuroSAT 10 13,500 5,400 8,100 a centered satellite photo of [CLS].
UCF101 101 7,639 1,898 3,783 a photo of a person doing [CLS].
ImageNet 1,000 1.28M N/A 50,000 a photo of a [CLS]

ImageNetV2 1,000 N/A N/A 10,000 a photo of a [CLS]
ImageNet-Sketch 1,000 N/A N/A 50,889 a photo of a [CLS]
ImageNet-A 200 N/A N/A 7,500 a photo of a [CLS]
ImageNet-R 200 N/A N/A 30,000 a photo of a [CLS]

A.2 ADDITIONAL EXPERIMENTAL ANALYSIS

Overfitting Analysis. We demonstrate the training process of FT-Probe and our CLIP-CITE
illustrated in Fig. 1 on EuroSAT dataset. The results of loss and accuracy of the training dataset are
shown in Fig. 8. We observe that, for the FT-Probe model, there is a decline in the training loss,
accompanied by a continual increase in accuracy on the training set. However, the final accuracy on
the test set is only 60.86%, which suggests the occurrence of overfitting. In contrast, in the case of
our CLIP-CITE model, there is also a reduction in the loss function and a consistent rise in training
set accuracy, culminating in a test set accuracy of 95.61%. This indicates that our approach does not
exhibit overfitting, demonstrating effectiveness. Moreover, it highlights that overcoming overfitting is
a crucial issue when fully fine-tuning models.
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Figure 8: Training loss and accuracy of FT-Probe and CLIP-CITE on EuroSAT dataset.

A.3 ADDITIONAL ABLATION STUDY

Prompt Tuning with Proposed Loss. To evaluate the effectiveness of full-fine-tuning, we also
explore the prompt tuning methods with our proposed loss. The results, detailed in Tab. 7, indicate that
prompt tuning methods experience a modest improvement with the implementation of our proposed
loss functions i.e. LSCL and LV LD. Notably, our CLIP-CITE still maintains a performance edge.
Besides, with the simple fine-tuning (FT-Probe), the tuned model seems to be overfitting, as shown in
Fig. 1. Therefore, we propose that both full fine-tuning and well-designed loss functions are crucial
in adapting VLMs to the downstream few-shot tasks.

Table 7: Ablation results (%) of our CLIP-CITE and prompt tuning, and fine-tuning methods with
various training objectives on the Base-to-New of the ImageNet dataset.

Method LSCL LV LD B N HM

CLIP 72.43 68.14 70.22
FLYP † 76.21 68.13 71.94

CoOp 76.47 67.88 71.92
CoOp ✓ 76.51 67.93 71.97
CoOp ✓ ✓ 78.23 70.89 72.11

MaPLe 76.66 70.54 73.47
MaPLe ✓ 76.70 70.67 73.56
MaPLe ✓ ✓ 76.71 70.89 73.69

CLIP-CITE ✓ ✓ 78.44 71.07 74.58

The Effect of the Hyper-Parameter λ and η. In Fig. 9, we ablate the different values on λ and η in
Eq. (6). From the results, we observe that the performances in terms of HM are better when applying
the LSCL, e.g., λ is greater than 0. It indicates that supervised vision-language alignment is necessary
when fine-tuning. Besides, the vision-language similarity distillation can regularize the model well
when η is less than 0.1. In the experiments, the optical λ and η are set to 0.7 and 0.1, respectively.

Results of Few-Shot Image Recognition. Fig. 10 presents the average results of four competitors
and our CLIP-CITE on the 11 datasets under 1, 2, 4, 8, and 16 shots. From the results, we observe
that our CLIP-CITE performs very competitively, especially under 1, 2, and 4 shots. When compared
with the second-best competitor MaPLe Khattak et al. (2023a) on the average results, our CLIP-CITE
demonstrates performance improvements by 3.42%, 3.00%, 2.48%, 1.73%, and 1.52% in scenarios
with 1, 2, 4, 8, and 16 shots, respectively. These gains underscore CLIP-CITE’s effectiveness in
generalizing to downstream tasks when provided with limited labeled examples. More comparisons
of each dataset are provided in the supplementary materials.
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Figure 9: The impacts of the hyper-parameter λ and η on the base-to-new generalization performances.
We report the Base (%), New (%), and HM (%) accuracy on the ImageNet dataset.
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Figure 10: Comparison results of few-shot learning benchmark on the 11 datasets. All of the methods
are trained on the ViT-B/16 backbone and implemented with the same experimental settings.

The Effect of Weights Ensemble Ratio α. Tab. 9 shows the results of different datasets with the
different ensemble ratios α. Without weights ensemble, CLIP-CITE achieves 85.79%, 73.52%, and
79.19% in Base, New, and HM accuracy, respectively. With the fine-tuning weights ensemble, the
performance increases from 71.70% to 78.90% in HM accuracy when α is 0.1. When α increases,
the Base accuracy increases, and the New accuracy fluctuates slightly. The optimal value α appears
to be 0.5. This indicates that our fine-tuning process maintains a subtle change of model parameters,
facilitating smooth compatibility with the zero-shot pre-trained CLIP model and resulting in an
overall enhancement of effectiveness.

More Experimental Results of Cross-Domain Generalization Setting. Tab. 8 and Tab. 3 shows
the experimental results of Cross-Domain setting. From the results of Tab. 8, all methods trained on
the ImageNet can consistently obtain the generalization performance on the other 10 datasets. From
the results of Tab. 3, the prompt tuning methods trained on other datasets are difficult to transfer to
ImageNet and impact the overall generalization, while our fine-tuning methods can maintain or even
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Methods CLIP CoOp CoCoOp MaPLe CLIP-CITE

Base New Base New Base New Base New Base New

Caltech101 96.84 94.00 94.15 93.92 96.58 95.16 96.30 94.98 96.71 93.82
OxfordPets 91.17 97.26 90.34 97.69 90.8 97.97 90.57 97.73 89.56 96.78

StanfordCars 63.37 74.89 61.99 73.37 63.62 74.48 62.44 73.98 60.74 72.41
Flowers102 72.08 77.80 66.86 75.23 72.30 77.64 73.25 76.86 71.48 76.9

Food101 90.10 91.22 88.62 90.68 89.39 91.0 89.29 90.86 88.47 90.53
FGVCAircraft 27.19 36.29 21.21 26.36 27.65 32.37 28.69 31.21 26.33 34.33

SUN397 69.36 75.35 68.36 72.78 72.08 75.96 71.46 76.1 71.78 76.16
DTD 53.24 59.90 49.00 51.73 55.32 57.01 51.04 54.51 50.39 57.53

EuroSAT 56.48 64.05 50.2 69.22 52.1 68.84 47.52 59.83 49.50 65.51
UCF101 70.53 77.50 68.89 71.88 70.89 75.77 69.22 74.97 70.99 76.55

Table 8: Cross-Domain evaluation. All the models are trained on the base training set of the ImageNet
dataset and evaluated on the 10 datasets .

α ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average on
Base 69.34 83.53 84.66 84.44 85.09 85.48 85.64 85.69 85.64 85.58 85.79
New 74.22 74.75 76.07 75.71 75.74 77.08 74.68 75.58 75.62 75.77 73.52
HM 71.70 78.90 80.13 79.83 80.15 81.06 79.79 80.32 80.32 80.38 79.19

ImageNet
Base 72.43 77.45 77.63 78.20 78.23 78.44 78.44 78.48 78.46 78.49 78.50
New 68.14 70.35 70.79 70.71 70.65 71.07 70.32 70.59 70.36 70.29 70.23
HM 70.22 73.73 74.05 74.27 74.25 74.58 74.16 74.33 74.19 74.17 74.14

Caltech101
Base 96.84 97.20 97.65 97.78 98.77 98.82 98.82 98.83 98.83 98.83 98.85
New 94.00 93.40 94.14 93.44 93.65 94.28 93.53 93.90 94.00 93.47 93.20
HM 95.40 95.26 95.86 95.56 96.14 96.50 96.10 96.30 96.36 96.08 95.94

OxfordPets
Base 91.17 95.23 95.84 95.66 95.82 96.01 96.18 96.42 96.60 96.93 97.01
New 97.26 96.12 96.47 96.69 96.71 97.95 96.66 96.72 96.90 97.28 95.23
HM 94.12 95.67 96.15 96.17 96.27 96.97 96.42 96.57 96.75 97.11 96.11

Table 9: Comparison with the different ensemble ratio α on base-to-new generalization.

enhance the performance of ImageNet. These demonstrate that ImageNet encompasses a broader
array of patterns and categories, and both prompt tuning methods and our approach effectively sustain
performance across various datasets. When transferring from other datasets to ImageNet, CLIP-CITE
can uphold ImageNet’s performance. It shows that our fine-tuning method has better generalization
capacity.
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Dataset Method 1-shot 2-shot 4-shot 8-shot 16-shot

Average

Linear probe CLIP 45.83 57.98 68.01 74.47 78.79
CoOp 67.56 70.65 74.02 76.98 79.89

CoCoOp 66.79 67.65 71.21 72.96 74.90
MaPLe 69.27 72.58 75.37 78.89 81.79

CLIP-CITE 72.69 75.58 77.85 80.62 83.31

ImageNet

Linear probe CLIP 32.13 44.88 54.85 62.23 67.31
CoOp 66.33 67.07 68.73 70.63 71.87

CoCoOp 69.43 69.78 70.39 70.63 70.83
MaPLe 62.67 65.10 67.70 70.30 72.33

CLIP-CITE 68.20 68.90 70.30 71.20 72.90

Caltech101

Linear probe CLIP 79.88 89.01 92.05 93.41 95.43
CoOp 92.60 93.07 94.4 94.37 95.57

CoCoOp 93.83 94.82 94.98 95.04 95.16
MaPLe 92.57 93.97 94.43 95.2 96.00

CLIP-CITE 94.16 94.81 95.53 96.39 96.50

OxfordPets

Linear probe CLIP 44.06 58.37 71.17 78.36 85.34
CoOp 90.37 89.8 92.57 91.27 91.87

CoCoOp 91.27 92.64 92.81 93.45 93.34
MaPLe 89.10 90.87 91.9 92.57 92.83

CLIP-CITE 91.47 93.02 93.54 93.87 94.70

StanfordCars

Linear probe CLIP 35.66 50.28 63.38 73.67 80.44
CoOp 67.43 70.5 74.47 79.3 83.07

CoCoOp 67.22 68.37 69.39 70.44 71.57
MaPLe 66.60 71.60 75.30 79.47 83.57

CLIP-CITE 70.63 74.22 76.53 79.94 83.70

Food101

Linear probe CLIP 43.96 61.51 73.19 79.79 82.90
CoOp 84.33 84.40 84.47 82.67 84.20

CoCoOp 85.65 86.22 86.88 86.97 87.25
MaPLe 80.50 81.47 81.77 83.60 85.33

CLIP-CITE 85.16 85.95 86.05 86.68 87.00

Flowers102

Linear probe CLIP 69.74 85.07 92.02 96.10 97.37
CoOp 77.53 87.33 92.17 94.97 97.07

CoCoOp 72.08 75.79 78.40 84.30 87.84
MaPLe 83.30 88.93 92.67 95.80 97.00

CLIP-CITE 84.25 86.76 92.08 95.86 97.6

FGVCAircraft

Linear probe CLIP 19.61 26.41 32.33 39.35 45.36
CoOp 21.37 26.20 30.83 39.00 43.40

CoCoOp 12.68 15.06 24.79 26.61 31.21
MaPLe 26.73 30.90 34.87 42.00 48.40

CLIP-CITE 29.34 32.40 36.60 46.00 57.00

SUN397

Linear probe CLIP 41.58 53.70 63.00 69.08 73.28
CoOp 66.77 66.53 69.97 71.53 74.67

CoCoOp 68.33 69.03 70.21 70.84 72.15
MaPLe 64.77 67.10 70.67 73.23 75.53

CLIP-CITE 69.54 70.99 72.36 74.45 76.30

DTD

Linear probe CLIP 34.59 40.76 55.71 63.46 69.96
CoOp 50.23 53.60 58.70 64.77 69.87

CoCoOp 48.54 52.17 55.04 58.89 63.04
MaPLe 52.13 55.50 61.00 66.50 71.33

CLIP-CITE 54.20 60.70 64.54 67.67 72.50

EuroSAT

Linear probe CLIP 49.23 61.98 77.09 84.43 87.21
CoOp 54.93 65.17 70.80 78.07 84.93

CoCoOp 55.33 46.74 65.56 68.21 73.32
MaPLe 71.80 78.30 84.50 87.73 92.33

CLIP-CITE 76.20 85.20 88.77 91.17 92.60

UCF101

Linear probe CLIP 53.66 65.78 73.28 79.34 82.11
CoOp 71.23 73.43 77.10 80.20 82.23

CoCoOp 70.30 73.51 74.82 77.14 78.14
MaPLe 71.83 74.60 78.47 81.37 85.03

CLIP-CITE 76.40 78.38 80.07 83.56 85.70

Table 10: Per-dataset performance comparison of our method with various methods in the few-shot
setting.
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