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In this appendix, we detail occlusion-based hiding, and
also include results for five additional experiments:

1. Varying Detector Performance (Training): MOTA on
MOT17 when using detectors of varying performance
during self-supervised training of our tracker model.

2. Varying Detector Performance (Inference): MOTA
when using detectors of varying performance during in-
ference, with the same tracker model parameters.

3. Varying Unlabeled Video Dataset Size: MOTA when
self-supervised learning is conducted on video datasets
of varying size.

4. Varying Sequence Length: adjusting the length of video
sequences that are sampled on each training step.

5. Randomly Initialized Model: comparing performance of
our approach against a randomly initialized model.

1 Occlusion-based Hiding
At a high level, occlusion-based hiding produces the varia-
tions A(D) and B(D) by simulating random occlusion inci-
dents where all detections in occluded frames are eliminated
from the input, i.e., if Ik is occluded for A(D), then DA

k is
empty. We only occlude intermediate frames (i.e., a frame Ik
is only considered for occlusion if 0 < k < n) so that the
transition matrices still compare detections in I0 with those
in In. When processing an occluded Ik, the tracker is forced
to match all tracks to the absent column in that frame, and
re-localize the tracks after the occlusion.

We first introduce two schemes that do not work in isola-
tion, and then show that we can combine these schemes to
produce input variations that result in effective training.
Only-Occlusion. For each training sequence 〈I0, . . . , In〉,
Only-Occlusion randomly selects four indexes 0 < k1 ≤
k2 < k3 ≤ k4 < n to construct two disjoint frame subse-
quences 〈Ik1 , . . . , Ik2〉 and 〈Ik3 , . . . , Ik4〉. In A(D), we oc-
clude each frame Ik such that k1 ≤ k ≤ k2, and in B(D), we
occlude Ik if k3 ≤ k ≤ k4.

When training under Only-Occlusion, the tracker is forced
to leverage track features computed through the RNN to re-
localize tracks after each simulated occlusion ends. Learn-
ing to merely compare detection features across consecu-
tive frames would yield low accuracy since features in oc-
cluded frames are not observed. Furthermore, because one

tracker observes the detections and the other tracker does
not, the model must make similar tracking decisions when re-
localizing across occluded frames as it does when observing
detections in each frame.

However, in practice, Only-Occlusion yields a model that
simply memorizes detections in I0, and computes A(0,n) and
B(0,n) by comparing detections in In against memorized de-
tections. This strategy yields high consistency because it is
unaffected by occluded intermediate frames. Thus, to make
this scheme effective, we must prevent the propagation of fea-
tures directly from I0 to In.
RNN Hand-off. RNN Hand-off prevents simple memoriza-
tion by cutting off the propagation of RNN features through
the application of two separate RNN executions. We se-
lect two indexes 0 < k5, k6 < n. Instead of computing
A(0,n) directly, we first apply the tracker on the frame se-
quence 〈I0, . . . , Ik5

〉 to derive a transition matrix A(0,k5) that
matches detections in I0 with detections in Ik5

. We then inde-
pendently apply the tracker on 〈Ik5

, . . . , In〉 to derive another
matrix A(k5,n) that matches detections in Ik5 with detections
in In. We combine these matrices through the matrix prod-
uct to compute A(0,n): we compute A(0,n) = A(0,k5)A(k5,n).
Similarly, we compute B(0,n) = B(0,k6)B(k6,n).

This scheme forces the tracker to find the same unique de-
tection in Ik5

(and Ik6
) for two detections of the same object

in I0 and In in order to maximize similarity between the ma-
trix products. However, a tracker that learns to match tracks
to detections by comparing only the detection features in con-
secutive frames will exhibit high similarity between A(0,n)

and B(0,n) under this scheme.
Combined Scheme. Only-Occlusion and RNN Hand-off
have opposite advantages and drawbacks. Thus, we combine
these in our occlusion-based hiding scheme. We first select
the two sequences for simulated occlusion, 〈Ik1 , . . . , Ik2〉 and
〈Ik3

, . . . , Ik4
〉. Then, we randomly pick k5 and k6 such that

k3 ≤ k5 ≤ k4 and k1 ≤ k6 ≤ k2, i.e., the hand-off for one
tracker occurs when the other tracker observes a simulated
occlusion.

Under this scheme, neither memorizing features in I0 nor
comparing detections solely in a pairwise frame-by-frame
manner is an effective tracking strategy. Instead, the tracker
must learn to leverage RNN features for re-localizing across
simulated occlusion, while still ensuring the tracking deci-



sions reflect intermediate outputs.

2 Varying Detector Performance (Training)
First, we consider the impact of the object detection model
that we employ during self-supervised training on the robust-
ness of the resulting tracker model. We do not vary the de-
tector during inference – instead, we always use the same
MOT17 SDP detector. We expect that using a detector model
that most closely reflects the detections that will be seen dur-
ing inference will maximize MOTA; however, the parameters
for the MOT17 detectors are not available.

To vary detector performance, during tracker training, we
vary the input resolution for a Mask R-CNN model trained
on COCO from 1024x576 to 448x256. At each resolution,
we measure the mAP score each detector achieves over the
MOT17 training set frames to validate that we are testing a
substantial range of detector accuracy levels. We train our
tracker model under visual-spatial hiding using each of the
detector resolutions. Finally, we compute the MOTA when
applying each trained model on the MOT17 training set, using
the SDP detections included in the MOT17 dataset.

Resolution Detector mAP Visual-Spatial MOTA
1024x576 0.32 60.2%
832x448 0.29 59.5%
640x360 0.26 59.7%
448x256 0.18 59.3%

The table above shows the results. The detector provides
higher accuracy at higher resolutions. Thus, the results sug-
gest that there is a weak correlation between detector perfor-
mance and resulting tracker accuracy. We hypothesize that
this is in large part because the higher accuracy detections
also correspond more closely with the MOT17 SDP detector.

3 Varying Detector Performance (Inference)
We also compare the performance of our tracker model
trained under visual-spatial hiding when varying detector per-
formance during inference, but keeping constant the detector
used for self-supervised training. To do so, we simply re-
port the MOTA achieved on the MOT17 training set under
each of the object detectors included in the MOT17 dataset;
ordered from lowest-accuracy to highest-accuracy, these are
Deformable Parts Model (DPM), Faster R-CNN (FRCNN),
and Scale-Dependent Pooling (SDP).

DPM FRCNN SDP
MOTA 45.2 46.1 48.0

MOTA increases with detector accuracy.

4 Varying Unlabeled Video Dataset Size
We now consider the impact of the amount of unlabeled video
(which we use during self-supervised training of the tracker
model) on the robustness of the resulting tracker model. Note
that unlabeled video can be cheaply obtained since no man-
ual annotation is required to collect it. We vary the amount
of unlabeled video by using 100%, 25%, 15%, and 5% of the
PathTrack corpus (which totals 2.9 hours of video); we do
not use the labels in PathTrack. We then compute the MOTA

when applying each model, trained under visual-spatial hid-
ing, on the MOT17 training set.

Unlabeled Video Percentage MOTA
100% 59.2%
25% 58.3%
15% 57.3%
5% 56.3%

The tracker performance rapidly deteriorates as the amount
of unlabeled video is reduced. At 5% of the PathTrack corpus
(9 minutes of video), the performance of our tracker model is
similar to the performance of SORT, which only uses spa-
tial features (bounding box coordinates). This suggests that,
when training with only 9 minutes of video, our method is
able to learn to use spatial cues for tracking objects, but does
not have sufficient training data to learn to leverage visual
cues.

5 Varying Sequence Length n

Below, we report MOTA on the MOT17 training set of a
model trained under visual-spatial hiding using varying se-
quence lengths. We also report the accuracy when the se-
quence length n is randomly sampled from a set of multiple
options on each training example.

Sequence Length(s) MOTA
2 62.2%
4 60.2%
8 62.1%
16 62.0%
32 61.5%
4, 8, 16, 32 62.1%

Tracker performance is not very sensitive to the sequence
length.

6 Randomly Initialized Model
To highlight the degree to which self-supervised learning im-
proves performance over a randomly initialized model, we
compare the performance of our method on the MOT17 train-
ing set against such a baseline. In the baseline, since a
randomly initialized matching network will not effectively
compare image and spatial features, we opt to eliminate the
matching network and replace it with an L2 distance function
between bounding box coordinates or extracted image fea-
tures. It achieves -76.4% MOTA (negative MOTA) and 2.8%
IDF1, suggesting that random initialization is not at all effec-
tive, and that our cross-input consistency approach elevates
performance.
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