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1 DETAILED DATASET DESCRIPTIONS
The proposed method is systematically evaluated over four bench-
mark datasets [1, 2, 4, 8]. The examples of the four datasets are
shown in Fig. 2 and different configurations for RAVEN-style datasets
[2, 4, 8] are illustrated in Fig. 1.

1.1 PGM dataset.
Barrett et al. [1] developed the first large-scale RPM benchmark
PGM (Procedurally Generated Matrices) evaluating the analogical
visual reasoning ability, which contains 8 different regimes and
each having 1.42M question samples with 22.72M images. It has
diverse analogical rules (i.e., AND, OR, XOR, Union and Progression)
among different attributes of shape and/or line objects, including
Size, Color, Number, Position and Type. Most existing methods
are evaluated on the Neutral regime, where the training and test sets
are sampled from the same distribution of Neutral regime. Other
regimes are used to evaluate the generalizability where different
types of rules are omitted from the training and validation sets and
the test set consists solely of the held-out rules.

1.2 Original RAVEN dataset.
Zhang et al. [8] developed the benchmark RPM dataset named
RAVEN with 70K question sets, where each contains 8 question im-
ages and 8 candidate answer images. The candidates are generated
by permuting the answer image by randomly shifting one attribute
value. The dataset is equally distributed into 7 configurations, i.e.,
Center, 2x2Grid, 3x3Grid, Left-Right, Up-Down, Out-InCenter,
and Out-InGrid. Each question contains 6 visual attributes (Angle,
Number, Position, Type, Size and Color) and 4 analogical rules
(Constant, Progression, Arithmetic and Distribute_Three). Ex-
tra noise is added to attributes to further challenge the solvers.
Compared to the PGM dataset, the number of rule instances and
structural combinations has doubled, and the data is only one twen-
tieth of it, which is more challenging.

1.3 Impartial-RAVEN and RAVEN-FAIR
datasets.

Due to the shortcut in the answer generation process of the original
RAVEN [8], the aggregation of the most common values for each
attribute could be the correct answer. Hu et al. [4] and Benny et
al. [2] fixed the loophole of the original RAVEN and developed
two RAVEN variants, i.e., I-RAVEN (Impartial-RAVEN) and RAVEN-
FAIR datasets, respectively. In the I-RAVEN dataset, the negative
candidate answers are generated by hierarchically permuting one
attribute of the ground-truth answer in three iterations. For each
iteration, two child nodes are generated, where one node remains
the same as the parent node while the other permutes one attribute.
The RAVEN-FAIR dataset iteratively enlarges the answer set start-
ing with the correct answer only and changing one attribute value
from either the correct answer or a generated negative answer.

Except for the answer generation, other settings remain the same
as in the original RAVEN for both variants.

1.4 Comparisons of Three RAVEN Datasets.
The differences between three RAVEN datasets [2, 4, 8] are demon-
strated through an illustrative example shown in Fig. 2. The three
samples share the same question images, while the answer images
are generated through different schemes.

• The loophole in the original RAVEN [8] is shown in Fig. 2b
that the correct answer can be derived by aggregating the
most common attributes in the answer set, i.e., hexagon
shape, medium-gray color and medium size.
• As shown in Fig. 2c, the I-RAVEN dataset [4] fixes the loop-
hole by hierarchically permuting one attribute from the cor-
rect answer, i.e., the answer set in the I-RAVEN dataset has
balanced attributes for the overall eight options (two shape
types, two sizes and two colors), and the correct answer
can no longer be derived by aggregating the most common
attributes in the answer set as in the original RAVEN.
• As shown in Fig. 2d, the RAVEN-FAIR dataset [2] rectifies the
loophole by generating the options with more randomness.
Compared with the I-RAVEN dataset, it has more attribute
diversities, while keeping the principle that the attributes
for the correct answers can’t be derived by majority voting.

2 STATE-OF-THE-ART METHODS
The proposed method is compared with the following state-of-the-
art methods on these four datasets: CoPINet [9], WReN [1], DCNet
[10], SRAN [4], MRNet [2], AlgebraicMR [6], HCV-ARR [3], STSN
[5] and PredRNet [7].
CoPINet [9] models the probability of each candidate answer by
applying a contrasting module.
WReN [1] applies a Relation Network tomodel the pairwise interac-
tions between questions and answers, and utilizes the constructive
metadata as the auxiliary loss for reasoning.
DCNet [10] consists of a rule contrast module and a choice contrast
module to exploit the inherent structure of RPMs, which compares
the latent rules among rows to increase the differences among the
options.
SRAN [4] utilizes a hierarchical rule embeddingmodule and a gated
embedding fusion module to output the rule embedding given two
row sequences.
MRNet [2] is established by using multi-resolution convolution
layers for visual perception, and computing the row similarity as
the inductive reasoner over RPMs.
AlgebraicMR [6] contains an object detector to perceive discrete
entity attributes, and utilizes algebraic sub-routines like Gröbner
basis and ideal containment to handle RPMs as computational prob-
lems.
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(a) Center (b) 2x2G (c) 3x3G (d) L-R (e) U-D (f) O-IC (g) O-IG

Figure 1: Examples of seven problem configurations in the RAVEN datasets [2, 4, 8]. Settings Center, Left-Right (denoted as L-R),
Up-Down (denoted as U-D) and Out-InCenter (denoted as O-IC) have fixed positional layouts of objects, while 2x2Grid (denoted as
2x2G), 3x3Grid (denoted as 3x3G) and Out-InGrid (denoted as O-IG) may contain complex relations over the number and position
of objects and hence are more challenging to resolve.

?

(a) PGM dataset [1]

?

(b) Original RAVEN dataset [8]

?

(c) Impartial-RAVEN dataset [4]

?

(d) RAVEN-FAIR dataset [2]

Figure 2: Examples of four benchmark datasets [1, 2, 4, 8]. The correct answers are framed in green. As shown in Fig. 2b-2d, the
three RAVEN variants share the same question images, while the answer images are generated through different schemes.

HCV-ARR [3] adapts a mixed model of convolution blocks and
vision Transformer blocks to extract multi-level features from RPM
images, and then dynamically learns the importance weights over
different dimensions of row features based on an attention mecha-
nism.
STSN [5] incorporates the problem-specific inductive biases as an
object-centric encoder, and a transformer reasoningmodule to solve
the abstract visual reasoning problems.
PredRNet [7] utilizes consecutive residual convolutional layers
to extract high-level visual features from images, and uses con-
volutional blocks to extract abstract rules to predict the correct
answers.

3 DETAILS OF ABLATION STUDIES
The full ablation results are shown in Table 1 and Table 2 for differ-
ent problem configurations on the three RAVEN datasets [2, 4, 8].
Problem configurations such as Center, L-R, U-D and O-IC contain
constant object numbers and positions and rules are only applied to
object shape types, colors and sizes, while problem configurations
such as 2x2G, 3x3G and O-IG are built based on more complicated
relations over all five attributes, including higher-order position

relations over objects like rolling-over or binary operations. Hence,
the position-related rules in 2x2G, 3x3G and O-IG are more chal-
lenging to handle, even for humans.

The previously best performing method, PredRNet [7], is se-
lected as the baseline, which consists of an image encoder for visual
perception and a decoder for analogical reasoning. We substitute
the respective modules with the proposed modules and the results
are summarized in Table 1. The performance improvements shown
in Table 1 are derived by comparing either or both modules with
the baseline method. We can see from the average results that ap-
plying both HPALC and PredAI individually will result in great
performance improvements over all three datasets consistently.
When the two modules are jointly utilized, the proposed method
HP2AI significantly outperforms PredRNet [7] on all three datasets
in terms of average accuracy. The performance gains over 3x3G and
O-IG are most significant, illustrating that the proposed HPALC
and PredAI are both effective in handling high-level number- and
position-related rules.

In Table 2, we analyse the major hyper-parameter settings for
the proposed HP2AI, including the number of hierarchical stages 𝐽
for both HPALC and PredAI modules, and the number of PredAI
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Table 1: Ablation studies of the two major components of the proposed HP2AI on three RAVEN datasets [2, 4, 8].

Major Module Accuracy (%) on Configurations

HPALC PredAI Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG

O
-R
VN

% % 95.8 99.8 95.1 87.6 99.2 99.4 99.9 89.4
! % 97.2 (+1.4) 99.8 (+0.0) 97.6 (+2.5) 91.6 (+4.0) 99.6 (+0.4) 99.5 (+0.1) 99.7 (–0.2) 94.0 (+4.6)
% ! 97.7 (+1.9) 100.0 (+0.2) 97.9 (+2.8) 92.9 (+5.3) 99.9 (+0.7) 99.8 (+0.4) 99.8 (–0.1) 93.5 (+4.1)
! ! 98.8 (+3.0) 100.0 (+0.2) 98.8 (+3.7) 95.3 (+7.7) 99.9 (+0.7) 99.8 (+0.4) 99.9 (+0.0) 98.0 (+8.6)

I-R
VN

% % 96.5 99.9 97.8 91.2 99.7 99.7 99.6 87.7
! % 98.3 (+1.8) 99.9 (+0.0) 98.7 (+0.9) 96.9 (+5.7) 99.8 (+0.1) 99.7 (+0.0) 99.6 (+0.0) 95.3 (+7.6)
% ! 98.1 (+1.6) 99.9 (+0.0) 99.3 (+1.5) 94.9 (+3.7) 99.9 (+0.2) 99.9 (+0.2) 100.0 (+0.4) 94.2 (+6.5)
! ! 99.4 (+2.9) 100.0 (+0.1) 99.9 (+2.1) 97.4 (+6.2) 99.9 (+0.2) 100.0 (+0.3) 100.0 (+0.4) 98.8 (+11.1)

RV
N
-F

% % 97.1 99.8 97.3 92.6 99.7 99.5 99.7 91.2
! % 98.0 (+0.9) 99.9 (+0.1) 98.8 (+1.5) 95.1 (+2.5) 99.9 (+0.2) 99.9 (+0.4) 99.8 (+0.1) 93.3 (+2.1)
% ! 97.8 (+0.7) 99.9 (+0.1) 98.5 (+1.2) 94.2 (+1.6) 100.0 (+0.3) 99.6 (+0.1) 99.8 (+0.1) 93.1 (+1.9)
! ! 98.6 (+1.5) 100.0 (+0.2) 99.4 (+2.1) 96.9 (+4.3) 99.9 (+0.2) 99.9 (+0.4) 99.7 (+0.0) 94.2 (+3.0)

Table 2: Ablation studies of different hierarchical stages 𝐽 and different 𝐾 of PredAI blocks for the proposed HP2AI on all three
RAVEN datasets [2, 4, 8].

Params. Accuracy (%) on Configurations

Avg. Center 2x2G 3x3G L-R U-D O-IC O-IG

O
-R
VN

𝐽 = 1 87.1 98.7 72.5 74.0 99.4 99.2 99.6 66.3
𝐽 = 2 92.4 (+5.3) 99.5 (+0.8) 77.6 (+5.1) 77.7 (+3.7) 99.9 (+0.5) 99.6 (+0.4) 99.5 (–0.1) 92.8 (+26.5)
𝐽 = 3 98.8 (+11.7) 100.0 (+1.3) 98.8 (+26.3) 95.3 (+21.3) 99.9 (+0.5) 99.8 (+0.6) 99.9 (+0.3) 98.0 (+31.7)
𝐽 = 4 98.6 (+11.5) 100.0 (+1.3) 98.8 (+26.3) 93.9 (+19.9) 99.9 (+0.5) 99.8 (+0.6) 99.9 (+0.3) 97.8 (+31.5)

𝐾 = 1 98.1 99.9 98.1 92.2 99.6 99.6 99.6 97.4
𝐾 = 2 98.4 (+0.3) 99.9 (+0.0) 98.6 (+0.5) 92.9 (+0.7) 99.8 (+0.2) 99.8 (+0.2) 99.8 (+0.2) 98.0 (+0.6)
𝐾 = 3 98.8 (+0.7) 100.0 (+0.1) 98.8 (+0.7) 95.3 (+3.1) 99.9 (+0.3) 99.8 (+0.2) 99.9 (+0.3) 98.0 (+0.6)
𝐾 = 4 98.0 (–0.1) 99.8 (–0.1) 98.3 (+0.2) 91.3 (–0.9) 99.8 (+0.2) 99.7 (+0.1) 99.9 (+0.3) 97.2 (–0.2)

I-R
VN

𝐽 = 1 88.9 99.4 72.4 68.1 99.7 99.8 99.8 83.2
𝐽 = 2 93.6 (+4.1) 100.0 (+0.6) 93.4 (+21.0) 81.5 (+13.4) 99.8 (+0.1) 99.9 (+0.1) 99.6 (–0.2) 76.7 (–6.5)
𝐽 = 3 99.4 (+10.5) 100.0 (+0.6) 99.9 (+27.5) 97.4 (+29.3) 99.9 (+0.2) 100.0 (+0.2) 100.0 (+0.2) 98.8 (+15.6)
𝐽 = 4 99.1 (+10.2) 99.9 (+0.5) 99.5 (+27.1) 97.0 (+28.9) 99.9 (+0.2) 99.8 (+0.0) 99.9 (+0.1) 98.6 (+15.4)

𝐾 = 1 98.6 99.8 98.9 94.1 99.6 99.8 99.7 98.2
𝐾 = 2 99.1 (+0.5) 99.9 (+0.1) 99.5 (+0.6) 95.4 (+1.3) 99.9 (+0.3) 100.0 (+0.2) 100.0 (+0.3) 99.0 (+0.8)
𝐾 = 3 99.4 (+0.8) 100.0 (+0.2) 99.9 (+1.0) 97.4 (+3.3) 99.9 (+0.3) 100.0 (+0.2) 100.0 (+0.3) 98.8 (+0.6)
𝐾 = 4 99.0 (+0.4) 99.9 (+0.1) 99.5 (+0.6) 95.5 (+1.4) 99.8 (+0.2) 99.9 (+0.1) 99.9 (+0.2) 98.0 (–0.2)

RV
N
-F

𝐽 = 1 91.4 98.8 82.2 81.2 99.7 99.8 99.7 78.8
𝐽 = 2 96.4 (+5.0) 99.3 (+0.5) 89.7 (+7.5) 89.9 (+8.7) 99.5 (–0.2) 99.9 (+0.1) 99.7 (+0.0) 96.8 (+18.0)
𝐽 = 3 98.6 (+7.2) 100.0 (+1.2) 99.4 (+17.2) 96.9 (+15.7) 99.9 (+0.2) 99.9 (+0.1) 99.7 (+0.0) 94.2 (+15.4)
𝐽 = 4 98.5 (+7.1) 99.8 (+1.0) 99.1 (+16.9) 96.5 (+15.3) 99.9 (+0.2) 99.9 (+0.1) 99.9 (+0.2) 94.1 (+15.3)

𝐾 = 1 98.3 99.8 98.4 95.4 99.7 99.6 99.9 95.5
𝐾 = 2 98.3 (+0.0) 99.9 (+0.1) 99.1 (+0.7) 96.0 (+0.6) 99.9 (+0.2) 99.7 (+0.1) 99.9 (+0.0) 93.4 (–2.1)
𝐾 = 3 98.6 (+0.3) 100.0 (+0.2) 99.4 (+1.0) 96.9 (+1.5) 99.9 (+0.2) 99.9 (+0.3) 99.7 (–0.2) 94.2 (–1.3)
𝐾 = 4 98.2 (–0.1) 99.9 (+0.1) 99.0 (+0.6) 95.8 (+0.4) 99.6 (–0.1) 99.8 (+0.2) 99.8 (–0.1) 93.1 (–2.4)
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blocks 𝐾 in the PredAI module. The performance improvements
shown in Table 2 are derived by comparing with 𝐽 = 1 or 𝐾 = 1. On
all three datasets, the best values for 𝐽 and 𝐾 are 3. Specifically, for
the number of hierarchical stages, we can see clear improvements
by increasing 𝐽 from 1 to 3, which can result in over 20% perfor-
mance gains in settings 2x2G, 3x3G and O-IG, which corresponds
to our design of HPALC that deeper layers are advantageous to cap-
turing high-level spatial semantics. The long-range dependencies
in the Patch Attention branch also contribute to such significant
performance gains. When the 𝐽 goes deeper to 4, the reasoning
accuracy on all the configurations drops slightly, which is possibly
due to the insufficient information in the small feature maps of
the deeper stages. Regarding the number of PredAI blocks 𝐾 , we
can see that utilizing even 𝐾 = 1 PredAI block yields competitive
results on all the configurations, which demonstrates the effective-
ness of the proposed AIB in conducting robust analogical inference
by predicting-and-verifying paradigm, and SECA that amplifies the
dominant attributes and rules in analogical reasoning. When the
PredAI blocks are iterated from 𝐾 = 1 to 3, some initially wrongly
induced rules can be rectified during the iteration, which in turn
improves the accuracy. When 𝐾 goes deeper, the model may suffer
from over-fitting, which imposes a slight negative impact on the
reasoning accuracy.

4 FAILURE CASE ANALYSIS

?

(a)

?

(b)

Figure 3: Examples of the failure cases by the proposedHP2AI.
The correct answers are framed in green while the answers
wrongly predicted by HP2AI are framed in red.

Although the proposed HP2AI achieves near-perfect perfor-
mances on the four benchmark RPM datasets, it is noticeable that
the proposed HP2AI performs slightly poorer on the configurations
containing high-level spatial relations, which are also challenging to
other methods. We take a step further into these failure cases on the
most complicated setting 3x3G and analyze the underlying reasons.
As shown in Fig. 3, the proposed HP2AI fails to correctly predict
the answers for those two representative questions, similarly as

other methods do. In Fig. 3a, the HP2AI correctly predicts the Type
attribute and solves the question relying on Number attribute. How-
ever, Fig. 3a contains an extremely complicated Progression rule
over the Position attribute, which leads to the entities on each
panel rolling over the layout. Specifically, the entities in row-wise
images perform a rightward cyclic shift (→), and the boundary
entities perform an additional downward cyclic shift (→+↓). The
proposed HP2AI fails to model such a complicated relation. Fig. 3b
contains another similar Progression rule over the Position at-
tribute, where the entities in row-wise images perform a leftward
cyclic shift together with a downward cyclic shift (←+↓), and the
boundary entities perform only the leftward cyclic shift (←). It is
even difficult for humans to induce such a complicated reasoning
rule and derive the correct answer for these two questions.

5 MODEL ARCHITECTURE
We provide the detailed architectures and parameters for the pro-
posed HPALC, PredAI and classifier as shown in Tables 3, 4 and
5, respectively. The following table starts with the input of size
(16, 1, 80, 80), which represents a complete RPM panel (8 question
images + 8 answer images), and each image of size 80 × 80 pixels.

In Table 3, the local/regional self-attention block (L/R-SA) com-
putes the 𝒒𝒌𝒗 multi-head self-attention and has no layer operations,
which leads to the same dimensionality for the input and the output.
Every output feature map marked in bold is passed to the succes-
sive block, while simultaneously extracted as multi-level receptive
fields and sent into PredAI blocks to conduct relational reasoning.

The architectures and parameters for the proposed Predictive
Analogy-Inference block are shown in Table 4. The feature maps
from previous HPALC blocks are firstly reshaped, stacked and per-
muted into a matrix form, and column tensors of first two entities
in each row as shown in Eqn. (3) of the manuscript are passed to
AIB for prediction and verification.

Lastly, the reasoning features from different stages are jointly
passed to the classifier in Table 5 for final prediction, which utilizes
the Binary Cross-Entropy as the loss function.
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Table 3: Detailed network architecture for the proposed HPALC, with parameters of channels (𝐶), kernel size (𝐾), stride (𝑆),
padding (𝑃 ) and regional window sizes (𝑊 ). The sizes of output features at each stage are marked in bold.

Stage 𝐽 Module Layer Operations Parameters Input Output

1

PatchSplit Conv2d C64K4S4 (16,1,80,80)
LayerNorm C64 (16,64,20,20)

PatchAttention
Block×2

LayerNorm C64 (16,64,20,20)
L/R-SA W7
Residual (16,64,20,20)
LayerNorm C64 (16,64,20,20)
Linear C64
GELU
Residual (16,64,20,20)

LocalContext
Block

Conv2d
×3

C32K3P1 (16,1,80,80)
BatchNorm C32
ReLU
Residual (16,64,20,20)

2

PatchMerge
Unfold C256 (16,64,20,20) (16,256,10,10)
LayerNorm C256
Linear C128 (16,128,10,10)

PatchAttention
Block×2

LayerNorm C128 (16,128,10,10)
L/R-SA W7
Residual (16,128,10,10)
LayerNorm C128 (16,128,10,10)
Linear C128
GELU
Residual (16,128,10,10)

LocalContext
Block

Conv2d
×3

C128K3P1 (16,64,20,20)
BatchNorm C128
ReLU
Residual (16,128,10,10)

3

PatchMerge
Unfold C512 (16,128,10,10) (16,512,5,5)
LayerNorm C512
Linear C256 (16,256,5,5)

PatchAttention
Block×2

LayerNorm C256 (16,256,5,5)
L/R-SA W7
Residual (16,256,5,5)
LayerNorm C256 (16,256,5,5)
Linear C256
GELU
Residual (16,256,5,5)

LocalContext
Block

Conv2d
×3

C256K3P1 (16,128,10,10)
BatchNorm C256
ReLU
Residual (16,256,5,5)






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Table 4: Detailed network architecture for the proposed PredAI, with parameters of channels (𝐶), kernel size (𝐾), stride (𝑆) and
padding (𝑃 ). The sizes of output features at each stage are marked in bold.

Stage 𝐽 Module Layer Operations Parameters Input Output

1

DimReduc Conv2d C32K1S1 (16,64,20,20)
BatchNorm C32 (16,32,20,20)

MatReshape Stack (16,32,20,20) (8,9,32,20,20)
Permute (8,9,32,20,20) (8,32,3,3,400)

AIB

×3

Conv2d C32K(2,1)S1 (8,32,3,2,400)
BatchNorm C32
ReLU (8,32,3,1,400)

SECA

AvgPool2d (8,32,3,1,400) (8,32,1,1)
Linear C2
ReLU
Linear C32 (8,32,1,1)
Scaling (8,32,3,2,400) (8,32,3,2,400)

MLP Linear C128 (8,32,3,3,400)
Linear C32 (8,32,9,400)

2

DimReduc Conv2d C32K1S1 (16,128,10,10)
BatchNorm C32 (16,32,10,10)

MatReshape Stack (16,32,10,10) (8,9,32,10,10)
Permute (8,9,32,10,10) (8,32,3,3,100)

AIB

×3

Conv2d C32K(2,1)S1 (8,32,3,2,100)
BatchNorm C32
ReLU (8,32,3,1,100)

SECA

AvgPool2d (8,32,3,1,100) (8,32,1,1)
Linear C2
ReLU
Linear C32 (8,32,1,1)
Scaling (8,32,3,2,100) (8,32,3,2,100)

MLP Linear C128 (8,32,3,3,100)
Linear C32 (8,32,9,100)

3

DimReduc Conv2d C32K1S1 (16,256,5,5)
BatchNorm C32 (16,32,5,5)

MatReshape Stack (16,32,5,5) (8,9,32,5,5)
Permute (8,9,32,5,5) (8,32,3,3,25)

AIB

×3

Conv2d C32K(2,1)S1 (8,32,3,2,25)
BatchNorm C32
ReLU (8,32,3,1,25)

SECA

AvgPool2d (8,32,3,1,25) (8,32,1,1)
Linear C2
ReLU
Linear C32 (8,32,1,1)
Scaling (8,32,3,2,25) (8,32,3,2,25)

MLP Linear C128 (8,32,3,3,25)
Linear C32 (8,32,9,25)









697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Supplementary Materials: Hierarchical Perceptual and Predictive Analogy-Inference Network for Abstract Visual Reasoning ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Detailed network architecture for the classifier of the proposed HP2AI.

Module Layer Operations Parameters Input Output

Classifier

AvgPool1d C1024 (8,32,9,400) (8,1024)
AvgPool1d C1024 (8,32,9,100) (8,1024)
AvgPool1d C1024 (8,32,9,25) (8,1024)
Linear C1024 (8,1024×3)
BatchNorm C1024
ReLU (8,1024)
Linear C1 (8,1024) (8,1)


	1 Detailed Dataset Descriptions
	1.1 PGM dataset.
	1.2 Original RAVEN dataset.
	1.3 Impartial-RAVEN and RAVEN-FAIR datasets.
	1.4 Comparisons of Three RAVEN Datasets.

	2 State-of-the-art Methods
	3 Details of Ablation Studies
	4 Failure Case Analysis
	5 Model Architecture
	References

