
On the Limitations of Markovian Rewards
to Express Multi-Objective, Risk-Sensitive, and Modal Tasks

(Supplementary Material)

Joar Skalse1,2 Alessandro Abate1

1Computer Science Department, Oxford University, Oxford, UK
2The Future of Humanity Institute, Oxford, UK,

A PROOFS

Here, we will provide all proofs that were omitted from the
main text. We will begin with Theorem 1, from Section 3.

Theorem 1. If a MOMDP M with objective O is scalariz-
able, then there exist w1 . . . wk ∈ R such that M with O is
scalarized by the reward R(s, a) =

∑k
i=1 wi ·Ri(s, a).

To prove this, we must first set up some theoretical prelim-
inaries. For convenience, let n = |S||A|, let T = S × A,
and let each transition in S × A be indexed by an integer
i ∈ [1, n]. Moreover, given a reward function R, let R⃗ ∈ Rn

be the vector such that R⃗i = R(Ti). Next, given τ , µ0, and
γ, let mτ,µ0,γ : Π → Rn be the function where

mτ,µ0,γ(π)i =

∞∑
t=0

γtPξ∼π(ξ = Ti).

Now J(π) = R⃗ ·mτ,µ0,γ(π). In other words, this construc-
tion lets us decompose J into two steps, the first of which
embeds π in Rn, and the second of which is a linear func-
tion. Let Sγ be the smallest affine subspace of Rn such that
Im(mτ,µ0,γ) ∈ Sγ . We will also use the following lemma:

Lemma 1. Im(mτ,µ0,γ) is open in Sγ .

For a proof of Lemma 1, see Skalse and Abate [2023] (their
Lemma A.11). We can now prove Theorem 1:

Proof. Suppose the MOMDP ⟨S,A, τ, µ0,R, γ⟩ with O is
equivalent to the MDP ⟨S,A, τ, µ0, R, γ⟩.

First, note that J(π) = R⃗ ◦mτ,µ0,γ(π), and that Ji(π) =
R⃗i ◦mτ,µ0,γ(π) for each of Ri ∈ R. Let M be the (n× k)-
dimensional matrix that maps each vector x ∈ Rn to ⟨R1 ·
x, . . . , Rk · x⟩. In other words, M is the matrix whose rows
are R⃗1 . . . R⃗k. Since J(π) is a function of J1(π) . . . Jk(π),
we have that R⃗ · x1 = R⃗ · x2 if M · x1 = M · x2 for any
x1, x2 ∈ Im(mτ,µ0,γ).

We will first show that R⃗ ·x1 = R⃗ ·x2 if M ·x1 = M ·x2 for
any x1, x2 ∈ Sγ , not just any x1, x2 ∈ Im(mτ,µ0,γ). Let
x1, x2 be any two points in Sγ such that M · x1 = M · x2,
and let x be some arbitrary element of Im(mτ,µ0,γ). Let
y1 = x1 − x and y2 = x2 − x. Since Im(mτ,µ0,γ) is open
in Sγ (as per Lemma 1), there is an α > 0 such that
x + α · y1 ∈ Im(mτ,µ0,γ) and x + α · y2 ∈ Im(mτ,µ0,γ).
Since M is linear, and since M · x1 = M · x2, we have
that M · (x+ α · y1) = M · (x+ α · y2). Moreover, since
x+α ·y1 ∈ Im(mτ,µ0,γ) and x+α ·y2 ∈ Im(mτ,µ0,γ), this
means that R⃗ · (x+α · y1) = R⃗ · (x+α · y2). Finally, from
the properties of linear functions, this in turn implies that
R⃗·x1 = R⃗·x2. Thus, if M ·x1 = M ·x2 then R⃗·x1 = R⃗·x2

for all x1, x2 ∈ Sγ .

Next, note that we can decompose M into two matrices
M1,M2 such that M = M1 ·M2, where M1 is invertible,
and M2 is an orthogonal projection such that M2(x1) =
M2(x2) if and only if M(x1) = M(x2). This means that
R⃗ · x = R⃗ · M2(x) for all x ∈ Sγ . From this, we obtain
that R⃗ · x = R⃗ ·M−1

1 ·M1 ·M2(x) = R⃗ ·M−1
1 ·M(x) for

all x ∈ Sγ . Since R⃗ ·M−1
1 is a linear function, this means

that R⃗ · x can be expressed as
∑k

i=1 wi ·M(x)i for some
w1 . . . wk for all x ∈ Sγ .

Recall that J(π) = R⃗ · mτ,µ0,γ(π), where m(π) ∈ Sγ .
This means that J(π) =

∑k
i=1 wi · M(mτ,µ0,γ(π))i =∑k

i=1 wi · R⃗i ·mτ,µ0,γ(π) =
∑k

i=1 wi · Ji(π). This com-
pletes the proof.

Corollary 1. If O(J1 . . . Jk) has a non-linear represen-
tation U , and M is a MOMDP whose J-functions are
J1 . . . Jk, then M with O is not equivalent to any MDP.

Proof. Assume for contradiction that M with O is equiv-
alent the MDP ⟨S,A, τ, µ0, R, γ⟩. Then J represents
O(J1 . . . Jk), and this in turn means that U must be strictly
monotonic in J . Moreover, Theorem 1 implies that J =∑k

i=0 wi · Ji for some w1 . . . wk ∈ Rk. However, this con-
tradicts our assumptions.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<joar.skalse@cs.ox.ac.uk>?Subject=Your UAI 2023 paper

Corollary 2. There is no MDP equivalent to M with
LexMax, as long as M has at least two reward functions
that are neither trivial, equivalent, or opposite.

Proof. Suppose M with LexMax is equivalent to M̃ =
⟨S,A, τ, µ0, R̃, γ⟩. Let i be the smallest number such that
Ri is non-trivial, and let j be the smallest number greater
than i such that Rj is non-trivial, and not equivalent to or
opposite of Ri. Then there are π1, π2 such that Ji(π1) =
Ji(π2) and Jj(π1) < Jj(π2), which means that π1 ≺M

Lex π2.
Moreover, since J̃ represents ≺M

Lex, it follows that there
are no π, π′ such that Ji(π) < Ji(π

′) and J̃(π) > J̃(π′).
Then Theorem 1 in Skalse et al. [2022] implies that Ri

is equivalent to R̃. However, then J̃(π1) = J̃(π2), which
means that J̃ cannot represent ≺M

Lex.

Corollary 3. There is no MDP equivalent to M with
MaxMin, unless M has a reward function Ri such that
Ji(π) ≤ Jj(π) for all j ∈ {1 . . . k} and all π.

Proof. OM
Min is represented by the function U(π) =

miniJi(π). Moreover, if M has no reward function Ri such
that Ji(π) ≤ Jj(π) for all j ∈ {1 . . . k} and all π then this
representation is non-linear. Corollary 1 then implies that
M with MaxMin is not equivalent to any MDP.

Corollary 4. There is no MDP equivalent to M with
MaxSat, as long as M has at least one reward Ri where
Ji(π1) < ci and Ji(π2) ≥ ci for some π1, π2 ∈ Π.

Proof. Note that MaxSat(M) is represented by the func-
tion U(π) =

∑k
i=1 1[Ji(π) ≥ ci], where 1[Ji(π) ≥ ci] is

the function that is equal to 1 when Ji(π) ≥ ci, and 0 other-
wise. Moreover, U is not strictly monotonic in any function
that is linear in J1 . . . Jk. Corollary 1 thus implies that M
with MaxSat is not equivalent to any MDP.

Corollary 5. There is no MDP equivalent to M with
ConSat, unless either R1 and R2 are equivalent, or
maxπ J1(π) ≤ c.

Proof. OM
Con is represented by U(π) = {J1(π) if J1(π) ≤

c, else J2(π)−minπ J2(π) + c}. Moreover, this represen-
tation is non-linear, unless either R1 and R2 are equivalent,
or maxπ J1(π) ≤ c. Corollary 1 then implies that M with
ConSat is not equivalent to any MDP.

We next give the proof of Theorem 2, from Section 4.

Theorem 2. Given S, A, and γ, let R1 and R2 be two
reward functions. If for all ξ1, ξ2 ∈ (S ×A)ω and γ ≥ 0.5,

G1(ξ1) ≤ G1(ξ2) ⇐⇒ G2(ξ1) ≤ G2(ξ2),

then there exist a ∈ R, b ∈ R > 0 such that for all ξ ∈
(S ×A)ω ,

G1(ξ) = b ·G2(ξ) + a.

Proof. We can first note that if G1 is constant then G2 must
also be constant, and vice versa, in which case this result is
straightforward (with b = 1, a = G1 −G2). For the rest of
the proof, assume that neither G1 or G2 is constant.

For convenience, let n = |S||A|, let T = S × A , and let
each transition in S ×A be indexed by an integer i ∈ [1, n].
Let R⃗1 ∈ Rn be the vector such that R⃗1i = R1(Ti), and
R⃗2 ∈ Rn be the vector such that R⃗2i = R2(Ti). Moreover,
let m : T → Rn be the function where

m(ξ)i =

∞∑
j=0

δj1[ξj = Ti].

Now G1(ξ) = R⃗1 ·m(ξ) and G2(ξ) = R⃗2 ·m(ξ). In other
words, this construction lets us decompose G1 and G2 into
two steps, the first of which embeds ξ in Rn, and the second
of which is a linear function.

Next, let us consider what Im(m) looks like. First, note that
m(ξ)i ≥ 0 for all i and all ξ. Next, note that

∑
m(ξ) =

1/(1 − γ) for all ξ. This means that Im(m) is located in-
side the simplex that is formed by all points in the positive
quadrant of Rn whose L1-norm is 1/(1− γ).

Consider two arbitrary transitions ti, tj ∈ T . Note that
m(tωi) is the point where the aforementioned simplex inter-
sects the i’th basis vector of Rn, and similarly for m(tωj).
Moreover, if ξ is made up entirely from ti and tj in some
combination and order (i.e., ξ ∈ {ti, tj}ω ⊆ T), then m(ξ)
is on the line between m(tωi) and m(tωj).

Let α be any number in [0, 1/(1−γ)]. Since 1/γ > 1, there
is a representation of α in base 1/γ. This means that there is
an integer u and a sequence of integers {ak}k∈(−∞,u] such
that

−∞∑
k=u

ak · (1/γ)k = α

where each ak is a nonnegative integer less than 1/γ. Since
γ ≥ 0.5, this means that each ak is 0 or 1. Moreover, since
α ≤ 1/(1 − γ), we have that u ≤ 0. By rewriting using
k′ = −k, this means that there is a sequence {ak′}k′∈[0,∞)

where each ak′ ∈ {0, 1} such that

∞∑
k′=0

ak′ · γk′
= α.

Let ξ ∈ T be the trajectory where ξk′ = ti if ak′ = 1, and
tj if ak′ = 0. We now have that m(ξ) = α/(1/(1 − γ)) ·
m(tωi)+ (1−α/(1/(1− γ))) ·m(tωj). Since α was chosen
arbitrarily from [0, 1/(1− γ)], this means that every point
on the line between m(tωi) and m(tωj) are in Im(m). Since
ti and tj were also chosen arbitrarily, this holds for any ti
and tj in T .

Consider again the simplex that is formed by all points in
the positive quadrant of Rn whose L1-norm is 1/(1 − γ).

We have just shown that every point on the edges (1-faces)
of this simplex are in Im(m).

Consider the linear functions that R⃗1 and R⃗2 induce on Rn.
Take the point x at the centre of the simplex, and consider the
tangent plane of R⃗1 at this point. Since every point on any
of the simplex edges are in Im(m), we have that this tangent
plane must intersect Im(m) at n− 1 linearly independent
points. Since R⃗1 ·x1 = R⃗1 ·x2 implies that R⃗2 ·x1 = R⃗2 ·x2

for all x1, x2 ∈ Im(m), we have that the tangent plane of R⃗2

at x must intersect Im(m) at the same points. This implies
that there are a, b ∈ R such that G1 = b · G2 + a. Since
moreover G1(ξ1) ≤ G1(ξ2) ⇐⇒ G2(ξ1) ≤ G2(ξ2), we
have that b > 0.

Theorem 3. For any modal reward R♢ and any transition
function τ , there exists a reward R that is contingently
equivalent to R♢ given τ . Moreover, unless R♢ is trivial,
there is no reward that is robustly equivalent to R♢.

Proof. This is straightforward. For the first part, simply let
R(s, a, s′) = R♢(s, a, s′, τ). The second part is immediate
from the definition of trivial modal reward functions.

B TASKS AS OPTIMAL POLICIES

In this paper, we primarily think of a “task” as correspond-
ing to a policy ordering. An alternative way to formalise the
notion of a task is as a set of optimal policies. It is fairly
straightforward to provide necessary and sufficient condi-
tions for when this type of task can be expressed using a
scalar, Markovian reward function.

Proposition 1. A set of policies Π̂ is the optimal policy
set for some reward if and only if there is a function o :
S → P(A) \∅ that maps each state to a (non-empty) set of

“optimal actions”, and π ∈ Π̂ if and only if supp(π(s)) ⊆
o(s).

Proof. For the “if” part, consider the reward function R
where R(s, a, s′) = 0 if a ∈ o(s), and R(s, a, s′) = −1
otherwise. The “only if” part follows from the fact that the
optimal Q-function Q⋆ is the same for all optimal policies,
so we can let o(s) = argmaxaQ

⋆(s, a).

We can see that some tasks of this form cannot be expressed
by Markovian rewards. For example, consider the task “al-
ways go in the same direction” — this task cannot be ex-
pressed as a reward function, because any policy that mixes
the actions of two other optimal policies must itself be opti-
mal. It also shows that Markovian reward functions cannot
be used to encourage stochastic policies. For example, there
is no Markovian reward function under which “play rock,
paper, and scissors with equal probability” is the unique
optimal policy.

C MORE MORL OBJECTIVES

In this Appendix, we give even more examples of MORL
objectives, and some comments on how to construct them
– the purpose of this is mainly just to show how rich this
space is. First, similar to the MaxMin objective, we might
want to judge a policy according to its best performance:

Definition 1. Given J1 . . . Jk, the MaxMax objective
≺Max is given by π1 ≺Max π2 ⇐⇒ maxi Ji(π1) <
maxi Ji(π2).

We would next like to point out that it is possible to create
smooth versions of almost any MORL objective. In Sec-
tion 6, we outline an approach for learning any continuous,
differentiable MORL objective, so this is quite useful. We
begin with a soft version of the MaxMax objective:

Definition 2. Given J1 . . . Jk and α > 0, the Soft MaxMax
objective ≺MaxSoft is given by

JMaxSoft(π) =

(
k∑

i=1

Ji(π)e
αJi(π)

)/(
k∑

i=1

eαJi(π)

)
.

This is of course not the only way to continuously approx-
imate MaxMax, it is just an example of one way of doing
it. Here α controls how “sharp” the approximation is – the
larger α is, the closer JMaxSoft gets to the sharp max func-
tion, and the smaller α is, the closer it gets to the arithmetic
mean function (so by varying α, we can continuously in-
terpolate between them). Similarly, we can also create a
smooth version of MaxMin:

Definition 3. Given J1 . . . Jk and α > 0, the Soft MaxMin
objective ≺MinSoft is given by

JMinSoft(π) =

(
k∑

i=1

Ji(π)e
−αJi(π)

)/(
k∑

i=1

e−αJi(π)

)
.

As before, the larger α is, the closer JMinSoft gets to the
sharp min function, and the smaller α is, the closer it gets to
the arithmetic mean function We can also smoothen MaxSat:

Definition 4. Given J1 . . . Jk, c1 . . . ck, and α > 0, the Soft
MaxSat objective ≺SatSoft is

JSatSoft(π) =

k∑
i=1

(
1

1 + e−α(Ji(π)−ci)

)
.

The larger α is, the closer JSatSoft gets to the sharp MaxSat
function (and the smaller α gets, the closer JSatSoft gets
to a flat 0.5). And, again, this is of course not the only
way to create a smooth version of MaxSat. It is unclear if
it is possible to create a smooth version of ConSat with-
out having any prior knowledge of (a lower bound of)

the value of minπ J1(π), but with this value it should be
reasonably straightforward (see the construction in Corol-
lary 5). As for LexMax, we can of course create a smooth
approximation of it by taking a linear approximation of the
weights, but here we would need some prior knowledge of
maxπ J1(π) . . .maxπ Jk(π).

D A METHOD FOR SOLVING MODAL
TASKS

In this Appendix, we give an outline of one possible method
for solving modal tasks. We mainly want to show that it
is feasible to learn modal tasks, and so we only provide a
solution sketch; the task of implementing and evaluating this
method is something we leave as a topic for future work.

We will first define a restricted class of modal tasks, which
is both very expressive, and also more amenable to learning
than the more general version given in Definition 7:

Definition 5. An affordance consists of a reward function
and a discount factor, ⟨R, γ⟩, and an affordance-based re-
ward is a function R♢ : S × A × S × R2k → R, that
is continuous in the last 2k arguments. An affordance-
based MDP is a tuple ⟨S,A, τ, µ0, R

♢, γ, ⟨R, γ⟩k⟩, where
the reward given for transitioning from s to s′ via a
is R♢(s, a, s′, V ⋆

1 (s) . . . V
⋆
k (s), V

⋆
1 (s

′) . . . V ⋆
k (s

′)), where
V ⋆
i is the optimal value function of the i’th affordance.

This definition requires some explanation. In psychology
(and other fields, such as user interface design), an affor-
dance is, roughly, a perceived possible action, or a perceived
way to use an object. For example, if you see a button, then
the fact that you can press that button, and expect something
to happen, is part of how you perceive it, in a way that might
not be the case if you could somehow show the button to a
premodern human. It can also be used to refer to a choice or
action that is perceived as available in some context (without
being tied to an object). Here, we are using it to refer to a
task that could be performed in an MDP. The intuition is
that R♢ is allowed to depend on what could be done from s
and s′, in addition to the state features of s and s′.

Before outlining an algorithm, let us first give a few exam-
ples of how to formalise modal tasks within this framework.
First consider the instruction “you should always be able
to return to the start state”. We can formalise this using
a reward function R1 that gives 1 reward if the start state
is entered, and 0 otherwise, and pair it up with a discount
parameter γ that is very close to 1. We could then set R♢

to, for example, R♢(s, a, s′, V ⋆
1 (s), V

⋆
1 (s

′)) = R(s, a, s′) ·
tanh(V ⋆

1 (s
′)), where R describes some base task. In this

way, no reward is given if the start state cannot be reached
from s′. Next, consider the instruction “never enter a state
from which it is possible to quickly enter an unsafe state”.
To formalise this, let R1 give 1 reward if an unsafe state

is entered, and 0 otherwise, and let γ correspond to a very
high discount rate (e.g. 0.7). We could then set R♢ to, for ex-
ample, R♢(s, a, s′, V ⋆

1 (s), V
⋆
1 (s

′)) = R(s, a, s′)− V ⋆
1 (s

′),
where R again describes some base task.

These examples show that our “affordance-based” MDPs are
quite flexible, and that they should be able to formalise many
natural modal tasks in a satisfactory way, including most of
our motivating examples.1 However, the definition could of
course be made more general. For example, we could allow
the affordances to themselves be based on affordance-based
reward functions, etc. However, it is not clear if this would
bring much benefit in practice.

Let us now outline an approach for solving affordance-
based MDPs using reinforcement learning, specifically
using an action-value method. First, let the agent main-
tain k + 1 Q-functions, Q♢, Q1, . . . , Qk, one for R♢ and
one for each affordance ⟨Ri, γi⟩. Next, we suppose that
the agent updates each of Q1, . . . , Qk using an off-policy
update rule, such as Q-learning; this will ensure that
Q1, . . . , Qk converge to their true values (i.e. to Q⋆

1 . . . Q
⋆
k),

as long as the agent explores infinitely often. Note that
the use of an off-policy update rule is crucial. Next, let
the agent update Q♢ as if it were an ordinary Marko-
vian reward function, using the reward R̂(s, a, s′) =
R♢(s, a, s′, V1(s) . . . Vk(s), V1(s

′) . . . Vk(s
′)), where Vi(s)

is given by maxa Qi(s, a). In other words, we let it update
Q♢ using an estimate of the true value of R♢, expressed
in terms of its current estimates of V ⋆

1 . . . V ⋆
k . The fact that

Q1, . . . , Qk converge to Q⋆
1, . . . , Q

⋆
k, and the fact that R♢

is continuous in its value function arguments, will ensure
that the estimate R̂ also converges to the true value of R♢.
The update rule used for Q♢ could be either on-policy or
off-policy. We then suppose that the agent selects its actions
by applying a Bandit algorithm to Q♢, and that this Bandit
algorithm is greedy in the limit, but also explores infinitely
often, as usual.

This algorithm should be able to learn to optimise the reward
in any affordance-based MDP. In the tabular case, it should
be possible (and reasonably straightforward) to prove that
it always converges to an optimal policy (assuming that
appropriate learning rates are used, etc), using Lemma 1
in Singh et al. [2000]. We would also expect it to perform
well in practice, when used with function approximators
(such as neural networks). However, we leave the task of
implementing and properly evaluating this approach as a
topic for future work.

There are also several ways that this algorithm could be
tweaked or improved. For example, the algorithm we have
described is an action-value algorithm, but the same ap-
proach could of course be used to make an actor-critic algo-

1This arguably excludes “you should never enter a state where
you would be unable to receive a feedback signal”. However, this
instruction only makes sense in a multi-agent setting.

rithm instead. We also suspect that there could be interesting
modifications one could make to the exploration strategy
of the algorithm. If a standard Bandit algorithm (such as
ϵ-greedy) is used, then the agent will mostly take actions
that are optimal under its current estimate of Q♢. In the
ordinary case, this is good, because it leads the agent to
spend more time in the parts of the MDP that are relevant
for maximising the reward. However, in this case, there is
a worry that it could lead the agent to neglect the parts of
the (affordance-based) MDP that are relevant for learning
more about V ⋆

1 . . . V ⋆
k , which might slow down the learn-

ing. Again, we leave such developments for future work,
since our aim here only is to show that it is feasible to learn
non-trivial modal tasks.

We also want to point out that the work by Wang et al. [2020]
could provide another starting point for learning modal tasks
using RL. In their work, they present some RL-based meth-
ods for determining whether a specification in Probabilistic
Computational Tree Logic (PCTL) holds in an MDP. PCTL
can be used to specify many kinds of properties of states in
MDPs which depend on the transition function, including
e.g. what states can and cannot be reached from a particular
state, and with what probability, etc. We can therefore spec-
ify non-trivial modal tasks by providing a number of PCTL
formulas, and allowing the reward function to depend on the
truth values of these formulas. That is, we could consider
a setup that is analogous to that which we give in Defini-
tion 5, but where the “affordances” are replaced by PCTL
formulas. It should then be possible to learn tasks specified
in this manner by using the techniques of Wang et al. [2020]
to learn the values of the PCTL formulas, and then using
ordinary RL to train on the resulting reward function.

References

Satinder Singh, Tommi Jaakkola, Michael L. Littman, and
Csaba Szepesvári. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine
Learning, 38:287–308, 2000.

Joar Skalse and Alessandro Abate. Misspecification in
inverse reinforcement learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 2023.

Joar Skalse, Niki Howe, Krasheninnikov Dima, and David
Krueger. Defining and characterizing reward hacking.
In Proceedings of the 33rd International Conference on
Neural Information Processing Systems, 2022.

Yu Wang, Nima Roohi, Matthew West, Mahesh
Viswanathan, and Geir E. Dullerud. Statistically
model checking pctl specifications on Markov decision
processes via reinforcement learning. In 2020 59th IEEE
Conference on Decision and Control (CDC), pages 1392–
1397, 2020. doi: 10.1109/CDC42340.2020.9303982.

	Proofs
	Tasks as Optimal Policies
	More MORL Objectives
	A Method for Solving Modal Tasks

