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ABSTRACT

In this paper, we introduce a novel variation of multi-armed bandits called bandits
with ranking feedback. Unlike traditional bandits, this variation provides feedback
to the learner that allows them to rank the arms based on previous pulls, without
quantifying numerically the difference in performance. This type of feedback is
well-suited for scenarios where the arms’ values cannot be precisely measured
using metrics such as monetary scores, probabilities, or occurrences. Common
examples include human preferences in matchmaking problems. Furthermore,
its investigation answers the theoretical question on how numerical rewards are
crucial in bandit settings. In particular, we study the problem of designing no-
regret algorithms with ranking feedback both in the stochastic and adversarial
settings. We show that, with stochastic rewards, differently from what happens
with non-ranking feedback, no algorithm can suffer a logarithmic regret in the time
horizon T in the instance-dependent case. Furthermore, we provide two algorithms.
The first, namely DREE, guarantees a superlogarithmic regret in T in the instance-
dependent case thus matching our lower bound, while the second, namely R-LPE,
guarantees a regret of Õ(

√
T ) in the instance-independent case. Remarkably, we

show that no algorithm can have an optimal regret bound in both instance-dependent
and instance-independent cases. We also prove that no algorithm can achieve a
sublinear regret when the rewards are adversarial. Finally, we numerically evaluate
our algorithms in a testbed, and we compare their performance with some baseline
from the literature.

1 INTRODUCTION

Multi-armed bandits are well-known sequential decision-making problems where a learner is given
a number of arms whose reward is unknown (Lattimore & Szepesvari, 2017). At every round, the
learner can pull an arm and observe a realization of the reward associated with that arm, which
can be generated stochastically (Auer et al., 2002) or adversarially (Auer et al., 1995). The central
question in multi-armed bandits concerns how to address the exploration/exploitation tradeoff to
minimize the regret between the reward provided by the learning policy and the optimal clairvoyant
algorithm. Interestingly, multi-armed bandits come with several flavors capturing a wide range
of different applications, e.g., with delayed feedback (Vernade et al., 2017; 2020), combinatorial
constraints (Combes et al., 2015), and a continuous set of arms (Kleinberg et al., 2019).

In this paper, we introduce a novel variation of multi-armed bandits that, to the best of our knowledge,
is unexplored so far. We name the model as bandits with ranking feedback. This feedback provides
the learner with a partial observation over the rewards given by the arms. More precisely, the learner
can rank the arms based on the previous pulls they experienced, but they cannot quantify numerically
the difference in performance. Thus, the learner is not allowed to asses how much an arm is better
or worse than another. This type of feedback is well-suited for scenarios where the arms’ values
cannot be precisely measured using metrics such as monetary scores, probabilities, or occurrences,
and naturally applies to various settings, e.g., when dealing with human preferences such as in
matchmaking settings among humans and when the scores cannot be revealed for privacy or security
reasons. This latter case can be found, e.g., in online advertising platforms offering automatic bidding
services as they have no information on the actual revenue of the advertising campaigns since the
advertisers prefer not to reveal these values being sensible data for the companies.1 Remarkably, our

1Notice that a platform can observe the number of clicks received by an advertising campaign, but it cannot
observe the revenue associated with that campaign.
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model poses the interesting theoretical question whether the lack of numerical scores precludes the
design of sublinear regret algorithms or worsens the regret bounds that are achievable when numerical
scores are available.

Related Works. The field most related to bandits with ranking is preference learning, which
aims at learning the preferences of one or more agents from some observations (Fürnkranz &
Hüllermeier, 2010). Let us remark that preference learning has recently gained a lot of attention
from the scientific community, as it enables the design of AI artifacts capable of interacting with
human-in-the-loop (HTL) environments. Indeed, human feedback may be quite misleading when it is
asked to report numerical values, while humans are far more effective at reporting ranking preferences.
The preference learning literature mainly focuses on two kinds of preference observations: pairwise
preferences and ranking. In the first case, the data observed by the learner involves preferences
between two objects, i.e., a partial preference is given to the learner. In the latter, a complete ranking
of the available data is given as feedback. Our work belongs to the latter branch. Preference learning
has been widely investigated by the online learning community, see, e.g., (Bengs et al., 2018).

Precisely, our work presents several similarities with the dueling bandits settings (Yue et al., 2012;
Saha & Gaillard, 2022; Lekang & Lamperski, 2019), where, in each round, the learner pulls two
arms and observes a ranking over them. Nevertheless, although dueling bandits share similarities
to our setting, they present substantial differences. Specifically, in our model, the learner observes
a ranking depending on the arms they have pulled so far. In dueling bandits, the learner observes
an instantaneous comparison between the arms they have just pulled; thus, the outcome of such a
comparison does not depend on the arms previously selected, as is the case of bandits with ranking
feedback. As a consequence, while in bandits with ranking feedback the goal of the learner is to
exploit the arm with the highest mean, in dueling bandits the goal of the learner is to select the arm
winning with the highest probability. Furthermore, while we adopt the classical notion of regret used
in the bandit literature to assess the theoretical properties of our algorithms, in dueling bandits, the
algorithms are often evaluated with a suitable notion of regret, which differs from the classical one.

Dueling bandits have their reinforcement learning (RL) counterpart in the preference-based reinforce-
ment learning (PbRL), see, e.g., (Novoseller et al., 2019) and (Wirth et al., 2017). Interestingly, PbRL
techniques differ from the standard RL approaches in that they allow an algorithm to learn from
non-numerical rewards; this is particularly useful when the environment encompasses human-like
entities (Chen et al., 2022). Furthermore, PbRL provides a bundle of results, ranging from theory (Xu
et al., 2020) to practice (Christiano et al., 2017; Lee et al., 2021). In PbRL, preferences may concern
both states and actions; contrariwise, our framework is stateless since the rewards gained depend only
on the action taken during the learning dynamic. Moreover, the differences outlined between dueling
bandits and bandits with ranking feedback still hold for preference-based reinforcement learning, as
preferences are considered between observations instead of the empirical mean of the accumulated
rewards.

Original Contributions. We investigate the problem of designing no-regret algorithms for bandits
with ranking in both stochastic and adversarial settings. With stochastic rewards, we show that
ranking feedback does not preclude sublinear regret. However, it worsens the upper bounds achievable
by the algorithms. In particular, in the instance-dependent case, we show that no algorithm can
suffer from a logarithmic regret in the time horizon (as instead is possible in the non-ranking
case), and we provide an algorithm, namely DREE (Dynamical Ranking Exploration-Exploitation),
guaranteeing superlogarithmic regret that matches the lower bound. In the instance-independent
case, a crucial question is whether there is an algorithm providing a regret bound better than the
well-known Explore-then-Commit algorithm which trivially guarantees a regret of Õ(T 2/3) in our
case. We design an algorithm, namely R-LPE (Ranking Logarithmic Phased Elimination), which
guarantees a regret of Õ(

√
T ) in the instance-independent case. More importantly, we show that no

algorithm can have an optimal regret bound in both instance-dependent and instance-independent
cases. Furthermore, with adversarial rewards, we show that ranking feedback precludes sublinear
regret, and therefore numerical rewards are strictly necessary in adversarial online learning settings.
Finally, we numerically evaluate our DREE and R-LPE algorithms in a testbed, and we compare their
performance with some baseline from the literature in different settings. We show that our algorithms
dramatically outperform the baselines in terms of empirical regret.
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2 PROBLEM FORMULATION

In this section, we formally state the model of bandits with ranking feedback and discuss the learner-
environment interaction. Subsequently, we define policies and the regret notion both in the stochastic
and in the adversarial settings.

Setting and Interaction. Differently from standard bandits—see, e.g., the work by (Lattimore
& Szepesvari, 2017)—in which the learner observes the reward associated with the pulled arm, in
bandits with ranking feedback the learner can only observe a ranking over the arms based on the
previous pulls. Formally, we assume the learner-environment interaction to unfold as follows.2

(i) At every round t ∈ [T ], where T is the time horizon, the learner chooses an arm it ∈ A :=
[n], where A is the set of available arms and n = |A| < +∞.

(ii) We study both stochastic and adversarial rewards. In the stochastic setting, the environment
draws the reward rt(it) associated with arm it from a probability distribution νit , i.e.,
rt(it) ∼ νit , whereas, in the adversarial setting, rt(it) is chosen adversarially by an
opponent from a bounded set of reward functions.

(iii) There is a bandit feedback on the reward of the arm it ∈ A pulled at round t leading to the
estimate of the empirical mean of it as follows:

r̂t(i) :=

∑
j∈Wt(i)

rj(i)

Zi(t)
,

whereWt(i) := {τ ∈ [t] | iτ = i} and Zi(t) := |Wt(i)|.3 However, the learner observes
the rank over the empirical means {r̂t(i)}i∈A We denote with SA the set containing all
the possible permutations of the elements of set A. Formally, we assume that the ranking
Rt ∈ SA observed by the learner at round t is such that:

r̂t(Rt,i) ≥ r̂t(Rt,j) ∀t ∈ [T ] ∀i, j ∈ [n] s.t. i ≥ j,

whereRt,i ∈ A denotes the i-th element in the rankingRt at round t ∈ [T ].

For the sake of clarity, we provide an example to illustrate bandits with ranking feedback and the
corresponding learner-environment interaction.

Example. We consider an environment with two arms, i.e., A = {1, 2}, in which the learner
plays the first action at rounds t = 1 and t = 3 and the second action at round t = 2, so that
W3(1) = {1, 3} andW3(2) = {2}. Let r1(1) = 1 and r3(1) = 5 be the rewards when playing the
first arm at rounds t = 1 and t = 3, respectively, while let r2(2) = 5 be the reward when playing
the second arm at round t = 2. The empirical means of the two arms and resulting rankings at every
round t ∈ [3] are given by:

r̂t(1) = 1, r̂t(2) = 0 Rt = ⟨1, 2⟩ t = 1

r̂t(1) = 1, r̂t(2) = 5 Rt = ⟨2, 1⟩ t = 2

r̂t(1) = 3, r̂t(2) = 5 Rt = ⟨2, 1⟩ t = 3

.

Policies and Regret. At every round t, the action played by the learner is prescribed by a policy π. In
both the stochastic and adversarial settings, we let the policy π be a randomized map from the history
of the interaction Ht−1 = (R1, i1,R2, i2, . . .Rt−1, it−1) to the set of all the probability distributions
with support A. Formally, we let π : Ht−1 → ∆(A), for t ∈ [T ], such that it ∼ π(Ht−1). As it is
customary in bandits, the learner’s goal is to design a policy π minimizing the cumulative expected
regret, whose formal definition is as follows:

RT (π) = E

[
T∑

t=1

rt(i
∗)− rt(it)

]
,

2Given n ∈ N>0 we denote with [n] := {1, . . . , n}.
3Note that the latter definition is well-posed as long as |Wt(i)| > 0. For each i ∈ A and t ∈ [T ] such that

|Wt(i)| = 0, we let r̂t(i) = 0.
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where the expectation is over the randomness of both the policy and environment in the stochastic
setting, and we let i∗ ∈ argmaxi∈A µi with µi = E [νi], whereas the expectation is over the
randomness of the policy in the adversarial setting and we let i∗ ∈ argmaxi∈A

∑T
t=1 rt(i). For

the sake of simplicity, from here on, we omit the dependence on π, referring to RT (π) as RT .
The impossibility of observing the reward realizations raises several technical difficulties when
designing no-regret algorithms since the approaches adopted for standard (non-ranking) bandits do
not generalize to our case. In the following sections, we discuss how the lack of this information
degrades the performance of the algorithms when the feedback is ranking.

3 ANALYSIS IN THE STOCHASTIC SETTING

Initially, we observe that approaches based on optimism-vs.-uncertainty, such as UCB1, might be
challenging to apply within our framework. This is because the learner lacks the information to
estimate the reward associated with an arm, making it difficult to infer a confidence bound. Therefore,
the most popular class of algorithms one can employ in bandits with ranking feedback is that of
explore-then-commit (EC) algorithms, where the learner either exploits a single arm or explores the
others according to a deterministic or randomized exploration strategy.

In the following, we distinguish the instance-dependent case from the instance-independent one. In
particular, we provide two algorithms, each guaranteeing a sublinear regret in one of the two cases.

3.1 INSTANCE-DEPENDENT LOWER BOUND

It is well-known that standard bandits admit algorithms guaranteeing a regret that is logarithmic in
time horizon T in the instance-dependent case. We show in this section that such a result does not
hold when the feedback is provided as a ranking. More precisely, our result rules out the possibility
of having a logarithmic regret. However, in the next section, we prove that we can get a regret whose
dependence on T is arbitrarily close to a logarithm, thus showing that the extra cost one has to pay in
the instance-dependent case to deal with ranking feedback is asymptotically negligible in T .

Our impossibility result exploits a connection between random walks and arms’ cumulative rewards.
Formally, we define an (asymmetric) random walk as follows.
Definition 1. A random walk is a stochastic process {Gt}t∈N such that:

Gt =

{
0 t = 1

Gt−1 + ϵt t > 1
,

where {ϵt}t∈N is an i.i.d. sequence of random variables, and E[ϵt] is the drift of the random walk.

We model the cumulative reward collected by a specific arm during the learning process as a random
walk, where the drift represents the expected reward associated with that arm. Let us notice that, in
bandits where the feedback is not given as a ranking, the learner can completely observe the evolution
of the random walks, being able to observe the realizations of the reward associated with each pulled
arm. Such observations allow the learner to estimate the difference between the performance of each
pair of arms. For instance, the learner can observe whether two arms perform similarly or, instead,
whether the gap between their performances is significant. Differently, in our case, the learner only
observes the rank without quantify numerically the performance.

This loss of information raises several technical issues that are crucial, especially when the random
walks never switch. Intuitively, in bandits with ranking feedback, we can observe how close the
expected rewards of two arms are only by observing subsequent switches of their positions in the
ranking. However, there is a strictly positive probability that two random walks never switch (thus
leading to no intersection) when they have a different drift E[ϵt] and therefore we may not evaluate
how two arms are close. This is shown in the following lemma.
Lemma 1 (Separation lemma). Let Gt, G

′
t be two independent random walks defined as:

Gt+1 = Gt + ϵt and G′
t+1 = G′

t + ϵ′t,

where G0 = G′
0 = 0 and the drifts satisfy E[ϵt] = p > q = E[ϵ′t],. Then:

P
(
∀t, t′ ∈ N∗ Gt/t ≥ G′

t′/t
′
)
> 0.
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The rationale of the above lemma is that, given two random walks with different drifts, there is a line
separating them with a strictly positive probability. Therefore, with a non-negligible probability, the
empirical mean corresponding to the process with the higher drift upper bounds forever the empirical
mean of the process with the lower drift. In bandits with ranking feedback, such a separation lemma
shows that the problem of distinguishing two different instances is harder than in the standard,
non-ranking feedback case. Before stating our result, as is customary in bandit literature, let us
denote with ∆i := µ∗

i − µi, where we let i∗ ∈ argmaxi∈A µi and µi := E [νi]. Now, we can state
the following result for the instance-dependent case.

Theorem 1 (Instance-dependent lower bound). Let π be any policy for the bandits with ranking
feedback, then, for any C(·) : [0,+∞) → [0,+∞), there is {∆i}i∈[n] and a time horizon T > 0

such that RT >
∑n

i=1 C(∆i) log(T ).

Proof sketch. It is well-known in the bandit literature that, to achieve logarithmic regret, it is necessary
to pull any suboptimal arm at least ∼ log(T )

∆2
i

times. The values of ∆i cannot be estimated without a
switch in the ranking. Since even when ∆is are very small, the optimal arm may remain in the first
position for the whole process, ∆i cannot be estimated, and it is necessary to pull the suboptimal
arms more than O(log(T )) times.

3.2 INSTANCE-DEPENDENT UPPER BOUND

We introduce the Dynamical Ranking Exploration-Exploitation algorithm (DREE). The pseudo-code
is provided in Algorithm 1. As usual in bandit algorithms, in the first n rounds, a pull for each arm is
performed (Lines 2–4). At every subsequent round t > n, the exploitation/exploration tradeoff is
addressed by playing the best arm according to the received feedback unless there is at least one arm
whose number of pulls at t is smaller than a superlogarithmic function f(t) : (0,∞)→ R+.4 More
precisely, the algorithm plays an arm i at round t if it has been pulled less than f(t) times (Lines 5–6),
where ties due to multiple arms pulled less than f(t) times are broken arbitrarily. Instead, if all arms
have been pulled at least f(t) times, the arm in the highest position of the last ranking feedback is
pulled (Lines 7–9). Each round ends once the learner receives the feedback in terms of ranking over
the arms (Line 10). Let us observe that the exploration strategy of Algorithm 1 is deterministic, and
the only source of randomness concerns the realization of the arms’ rewards.

Algorithm 1 Dynamical Ranking Exploration-Exploitation (DREE)

1: for t ∈ [T ] do
2: if t ≤ n then
3: play arm it
4: end if
5: if There is an arm i played less than f(t) times then
6: Play it = i
7: else
8: Play it = Rt−1,1

9: end if
10: Receive updated rankingRt

11: end for

We state the following result, providing the upper regret bound of Algorithm 1 as a function of f .

Theorem 2 (Instance-dependent upper bound). Assume that the reward distribution of every arm is
1-subgaussian. Let f : (0,∞)→ R be a superlogarithmic function in t, then there is a term C(f,∆i)
for each sub-optimal arm i ∈ [n] which does not depend on T , such that Algorithm 1 satisfies:

RT ≤ f(T )

n∑
i=1

∆i + log(T )

n∑
i=1

C(f,∆i).

4A function f(t) is superlogarithmic when lim
t→∞

f(t)
log(t)

= +∞.
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To minimize the asymptotic dependence in T of the cumulative regret suffered by the algorithm,
we can choose, e.g., f : (0,∞) → R as f(t) = log(t)1+δ, where parameter δ > 0 is as small as
possible. However, the minimization of δ comes at the cost of increasing the terms C(f,∆i) as they
grow exponentially as δ > 0 goes to zero as long as ∆i < 1. In particular, the terms C(f,∆i) are
defined as stated in the following corollary.

Corollary 3. Let δ > 0 and f(t) = log(t)1+δ be the sperlogarithmic function used in Algorithm 1,
then we have:

C(f,∆i) =

2∆i

(
e

(
(2/∆2

i )
1/δ

)
+ 1

)
1− e−∆2

i /2

We remark that the term C(f,∆i) depends exponentially on ∆i, suggesting that C(f,∆i) may be
large even when adopting values of δ that are not arbitrarily close to zero.

Furthermore, let us observe that Algorithm 1 satisfies important properties in the instance-dependent
stochastic setting. More precisely, (i) it matches the instance-dependent regret lower-bound, since
f(·) can be chosen arbitrarily close to log(t), (ii) it works without requiring the knowledge of the
time horizon T , thus being an any-time algorithm.

3.3 INSTANCE DEPENDENT/INDEPENDENT TRADE-OFF

In this section, we provide a negative result, showing that no algorithm can perform well in both the
instance-dependent and instance-independent cases, thus suggesting that the two cases need to be
studied separately. Initially, we state the following result that relates to the upper regret bounds in the
two (instance-dependent/independent) cases.

Theorem 4 (Instance Dependent/Independent Trade-off). Let π be any policy for the bandits with
ranking feedback problem. If π satisfies the following properties:

• (instance-dependent upper regret bound) RT ≤
∑n

i=1 C(∆i)T
α

• (instance-independent upper regret bound) RT ≤ nCT β

then, 2α+ β ≥ 1, where α, β ≥ 0.

From Theorem 4, we can easily infer the following impossibility result.

Corollary 5. There is no algorithm for bandits with ranking feedback achieving both subpolynomial
regret in the instance-dependent case, i.e., ∀α > 0, ∃C(·) : RT ≤

∑n
i=1 C(∆i)T

α, and sublinear
regret in the instance-independent case.

To ease the interpretation of Corollary 5, we discuss the performance of Algorithm 1 in the instance-
independent case in the following result.

Corollary 6. For every choice of δ > 0 in f(t) = log(t)1+δ, there is no value of η > 0 for which
Algorithm 1 achieves an instance-independent regret bound of the form RT ≤ O(T 1−η).

The above result shows that Algorithm 1 suffers from linear regret in T in the instance-independent
case except for logarithmic terms.

3.4 INSTANCE-INDEPENDENT UPPER BOUND

The impossibility result stated by Corollary 5 pushes for the need for an algorithm guaranteeing a
sublinear regret in the instance-independent case. Initially, we observe that the standard Explore-then-
Commit algorithm (from here on denoted with EC) proposed by Lattimore & Szepesvari (2017) can
be applied, achieving a regret bound O(T 2/3) in the instance-independent case.

Let us briefly summarize the functioning of the EC algorithm. It divides the time horizon into two
phases as follows: (i) exploration phase: the arms are pulled uniformly for the first m · n rounds,
where m is a parameter of the algorithm one can tune to minimize the regret; (ii) commitment phase:
the arm maximizing the estimated reward is pulled.

6
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In the case of bandits with ranking feedback, the EC algorithm explores the arms in the first m · n
rounds and subsequently pulls the arm in the first position of the ranking feedback received at round
t = m · n. As is customary in standard (non-ranking) bandits, the best regret bound can be achieved
by setting m = ⌈T 2/3⌉, thus obtaining O(T 2/3).

We show that we can get a regret bound better than that of the EC algorithm. In particular, we
provide the Ranking Logarithmic Phased Elimination (R-PLE) algorithm, which breaks the barrier
of O(T 2/3) guaranteeing a regret Õ(

√
T ) when neglecting logarithmic terms. The pseudocode of

R-PLE is reported in Algorithm 2.

R-LPE Algorithm. In order to proper analyze the algorithm, we need to introduce the two following
definitions. Initially, we introduce the definition of the loggrid set as follows,

Definition 2 (Loggrid). Given two real numbers a, b s.t a < b and a constant value T , we define

LG(a, b, T ) :=

{
⌊Tλjb+(1−λj)a⌋ : λj =

j

⌊log(T )⌋ , ∀j = 0, . . . , ⌊log(T )⌋
}
.

Next, we give the notion of active set, which the algorithm employs to cancel out sub-optimal arms.

Definition 3 (Active set). We define the active set Ft(ζ) at the timestep t of the algorithm, the set of
arms

Ft(ζ) :=

a ∈ A : ∀b ∈ A

t∑
τ=1:n|τ

{Rτ (a) > Rτ (b)} ≥ ζ

 .

Where the symbol | stands for ”divide”, so that the condition τ |n means that we are summing only
over the τ which are multiple of n. This condition will be called filtering condition.

Algorithm 2 Ranking Logarithmic Phased Elimination (R-LPE)

1: Initialize S = [n]
2: Initialize L = LG(1/2, 1, T )
3: for t ∈ [T ] do
4: Play it ∈ argmini∈S Zi(t)
5: Update Zi(t) number of times it has been pulled
6: Observe rankingRt

7: if mini∈S Zi(t) ∈ L then
8: α = log(mini∈S Zi(t))

log(T ) − 1
2

9: S = Ft(T
2α)

10: end if
11: end for

Initially, we observe that R-LPE differs from Algorithm 1, as it takes into account the whole history
of the process and not only the last rankingRt received. It also requires the knowledge of T .

Set S denotes the active set of arms used by the algorithm. Initially, set S comprises all the possible
arms available in the problem (Line 1). Furthermore, the set which drives the update of the decision
space S, namely L, is initialized as the loggrid built on parameters 1/2, 1, T (Line 2).

At every round t ∈ [T ], R-LPE chooses the arm from active set S with the minimum number of
pulls, namely i s.t. Zi(t) is minimized (Line 4); ties are broken by index order. Next, the number of
times arm it has been pulled, namely Zi(t), is updated accordingly (Line 5). The peculiarity of the
algorithm is that set S changes every time the condition mini Zi(t) ∈ L is satisfied (Line 7). When
the aforementioned condition is met, the set of active arms S is filtered to avoid the exploration on
sub-optimal arms. Precisely, S is filtered given the time dependent parameter α (Line 8- 9).

Regret Bound. We state the following theorem providing a regret bound to Algorithm 2 in the
instance-independent case.
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Figure 1: Cumulative regret for ∆min < 0.05 (averaged over 50 runs; 95% confidence interval).

Theorem 7. In the stochastic bandits with ranking feedback setting, Algorithm 2 achieves the
following regret bound:

RT ≤ Õ
(
n
√
T
)
,

when n arms are available to the learner.

At first glance, the result presented in Theorem 7 may seem unsurprising. Indeed, there are several
elimination algorithms achieving O(

√
T ) regret bounds in different bandit settings (see, for example,

(Auer & Ortner, 2010; Lattimore et al., 2020; Li & Scarlett, 2022)). Nevertheless, our setting poses
several additional challenges compared to existing ones. For instance, in our framework, it is not
possible to rely on concentration bounds, as the current feedback is heavily correlated with the past
ones. For such a reason, our analysis employs non-trivial arguments, drawing from recent results in
the theory of Brownian Motions, which allow to properly model the particular feedback we propose.

4 ANALYSIS IN THE ADVERSARIAL SETTING

We focus on bandits with ranking feedback in adversarial settings. In particular, we show that no
algorithm provides sublinear regret without statistical assumptions on the rewards.

Theorem 8. In adversarial bandits with ranking feedback, no algorithm achieves o(T ) regret with
respect to the best arm in hindsight with a probability of 1− ϵ for any ϵ > 0.

Proof sketch. The proof introduces three instances in an adversarial setting in a way that no algorithm
can achieve sublinear regret in all the three. The main reason behind such a negative result is that
ranking feedback obfuscates the value of the rewards so as not to allow the algorithm to distinguish
two or more instances where the rewards are non-stationary. The three instances employed in the
proof are divided into three phases such that the instances are similar in terms of rewards for the
first two phases, while they are extremely different in the third phase. In summary, if the learner
receives the same ranking when playing in two instances with different best arms in hindsight, it is
not possible to achieve a small regret in both of them.

5 NUMERICAL EVALUATION

This section presents a numerical evaluation of the algorithms proposed in the paper for the stochastic
settings, namely, DREE and R-LPE. The goal of such a study is to show two crucial results: firstly, the
comparison of our algorithms with a well-known bandit baseline, and secondly, the need to develop
distinct algorithms tailored for instance-dependent and instance-independent scenarios.

8
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Figure 2: Cumulative regret for ∆min ≥ 0.25 (averaged over 50 runs; 95% confidence interval).

To establish a benchmark for comparison, we consider the EC (Explore-Then-Commit) algorithm,
which is one of the most popular algorithms among the explore-then-commit class providing sub-
linear regret guarantees. In the following, we evaluate the DREE algorithm with different choices
of the δ parameter in the function f(t) = log(t)1+δ; precisely, we choose δ ∈ {1.0, 1.5, 2.0}.
Furthermore, we consider four stochastic instances whose specific parameters are discussed below.
In all these instances, we assume the rewards to be drawn from Gaussian random variables with
unit variance, i.e., σ2 = 1, and we let the time horizon be equal to T = 2 · 105. Finally, for each
algorithm, we evaluate the cumulative regret averaged over 50 runs.

We structure the presentation of the experimental results into two groups. In the first, the instances
have a small ∆min, while in the second, the instances have a large ∆min.

Small Values of ∆min We focus on two instances with ∆min < 0.05. In the first of these two
instances, we consider n = 4 arms, and a minimum gap of ∆min = 0.03. In the second instance, we
consider n = 6 arms, with ∆min = 0.03. The expected values of the rewards of each arm are reported
in Appendix D, while the experimental results in terms of average cumulative regret are reported in
Figures 1a–1b. We observe that in the first instance (see Figure 1a) all the DREE algorithms exhibits
a linear regret bound, confirming the strong sensitivity of this family of algorithms on the parameter
∆min in terms of regret bound. In contrast, the R-LPE algorithm exhibits better performances in terms
of regret bound, as its theoretical guarantee are independent on the values of ∆min. Furthermore,
Figure 1b shows that the DREE algorithms (with δ ∈ 1.0, 1.5) achieve a better regret bound when the
number of arms is increased. Indeed, these regret bounds are comparable to the ones achieved by
the R-LPE algorithm. The previous result is reasonable as the presence of ∆i-s in the regret bound
lowers the dependence on the number of arms. It is worth noticing that all our algorithms outperform
the baseline EC.

Large Values of ∆min We focus on two instances with ∆min ≥ 0.25. In the first instance, we
consider n = 4 arms with a minimum gap of ∆min = 0.5 among their expected rewards. In the
second instance, we instead consider a larger number of arms, specifically n = 8, with a minimum
gap equal to ∆min = 0.25. The expected values of the rewards are reported in Appendix D, while the
experimental results in terms of average cumulative regret are provided in Figures 2a–2b. As it clear
from both Figures 2a–2b when ∆min is sufficiently large, the DREE algorithms (with δ ∈ {1.0, 1.5})
achieves better performances with respect both the EC and R-PLE algorithms in terms of cumulative
regret. Furthermore, there is empirical evidence that a small δ guarantees better performance, which
is reasonable according to theory. Indeed, when δ is small, the function f(t), which drives the
exploration, is closer to a logarithm. Also, as shown in Corollary 3, when ∆min is large enough, the
parameter δ affects the dimension of C(f,∆i) more weakly, which results in a better regret bound.

9



Under review as a conference paper at ICLR 2024

REFERENCES

P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. Gambling in a rigged casino: The adversarial
multi-armed bandit problem. In Proceedings of IEEE 36th Annual Foundations of Computer
Science, pp. 322–331, 1995. doi: 10.1109/SFCS.1995.492488.

Peter Auer and Ronald Ortner. Ucb revisited: Improved regret bounds for the stochastic multi-armed
bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Paolo Baldi. Stochastic calculus. In Stochastic Calculus, pp. 215–254. Springer, 2017.

Viktor Bengs, Robert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hüllermeier. Preference-based
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A PROOFS OF INSTANCE DEPENDENT STOCHASTIC ANALYSIS

A.1 PROOF OF INSTANCE DEPENDENT LOWER BOUND AND LEMMAS

Lemma 2 (Separation lemma). Let Gt, G
′
t be two independent random walks defined as:

Gt+1 = Gt + ϵt and G′
t+1 = G′

t + ϵ′t,

where G0 = G′
0 = 0 and the drifts satisfy E[ϵt] = p > q = E[ϵ′t],. Then:

P
(
∀t, t′ ∈ N∗ Gt/t ≥ G′

t′/t
′
)
> 0.

Proof. Let us consider the random walk

G̃t+1 = G̃t + ϵt −
p+ q

2
.

Being E[ϵt− p+q
2 ] > 0, from the well-known fact that a random walk with drift is transient, we know

that there is a strictly positive probability that {G̃t > 0, ∀t > 0}.
On the opposite side, we can see that the random walk

G̃′
t+1 = G̃′

t + ϵ′t −
p+ q

2

satisfies the opposite inequality, E[ϵ′t − p+q
2 ] < 0, so that, for the same reason, the event {G̃′

t <
0, ∀t > 0} has a strictly positive probability.

Therefore, being the two processes independent, one has

P
( ∞⋂

t,t′=1

{G̃t+1 > 0, G̃′
t′+1 < 0}

)
> 0,

which entails:

0 < P
( ∞⋂

t,t′=1

{G̃t > 0, G̃′
t′ < 0}

)
= P

( ∞⋂
t,t′=1

{Gt − t
p+ q

2
> 0, G′

t′ − t′
p+ q

2
< 0}

)
= P

( ∞⋂
t,t′=1

{Gt/t >
p+ q

2
, G′

t′/t
′ <

p+ q

2
}
)

= P
( ∞⋂

t,t′=1

{Gt/t > G′
t′/t

′}
)
.

which can be reformulated as in the statement.

In order to prove the lower bound, we will need the following Lemma.

Lemma 3. Let {Xn}n be a sequence of i.i.d. Bernoulli random variables. Then, for every event
E ∈ Fn, where Fn is the filtration generated by X1, . . . Xn,

PX1,...Xn∼Be(p)(E) ≤ PX1,...Xn∼Be(p′)(E)max
( p

p′
,
1− p

1− p′

)n
12
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Proof. Without loss of generality, let us assume that p′ < p.

PX1,...Xn∼Be(p)(E) =

∫
{0,1}n

1E(x)

n∏
i=1

pxi(1− p)1−xidx

≤
∫
{0,1}n

1E(x)

n∏
i=1

(p/p′)xip′xi(1− p′)1−xidx (1)

≤
( p

p′

)n ∫
{0,1}n

1E(x)

n∏
i=1

p′xi(1− p′)1−xidx

=
( p

p′

)n
PX1,...Xn∼Be(p′)(E).

where Inequality (1) follows from the assumption p′ < p. The other way round can be proved
substituting p and p′.

We can now prove the following instance dependent lower bound.

Theorem 1 (Instance-dependent lower bound). Let π be any policy for the bandits with ranking
feedback, then, for any C(·) : [0,+∞) → [0,+∞), there is {∆i}i∈[n] and a time horizon T > 0

such that RT >
∑n

i=1 C(∆i) log(T ).

Proof. Let p1 = 0.5, p2 = 0.5− ε, p∗2 = 0.5 + ε. Let us consider two problems:

P :

{
ν1 = Be(p1)

ν2 = Be(p2)
P ∗ :

{
ν1 = Be(p1)

ν2 = Be(p∗2)

Clearly, the optimal arm is 1 for P and 2 for P ∗. Let us now define the following event on the
rankings received:

Et =

t⋂
τ=1

{Rt = ⟨1, 2⟩}.

The event Et can be interpreted as ”up to time t, we have always observed the ranking ⟨1, 2⟩”.

Let π be any policy. Then, at least one of the following is true:

• the policy is ”light tail”:

lim inf
t→∞

∑t
τ=1 π(pull 2|Eτ )

log(t)
= cπ < +∞.

• the policy is ”heavy tailed”:

lim sup
t→∞

∑t
τ=1 π(pull 2|Eτ )

log(t)
= +∞.

In this latter case, it is obvious that the regret cannot be logarithmic in t, so we will focus on
light-tailed policies.

Considering the first case, there is a sequence of times tk such that

lim
k

EP [Z2(tk)|Etk ]

log(tk)
= cπ.

Where the expectation is over the random variables of the arms following the distribution given in
(P ). Therefore, by Markov’s inequality, we have, for sufficiently large k,

∀h > 0 PP (Z2(tk) < h|Etk) ≥ 1− 2cπ log(tk)

h
.

13
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Now, notice that the event Z2(tk) < h is contained in the σ−algebra generated by the first h pulls of
2 (and all the pulls of arm 1, but this is irrelevant since ν1 corresponds to the same distribution in the
two problems). Therefore, from Lemma 3 we have:

∀h > 0 PP∗(Z2(tk) < h) ≥
(0.5− ε

0.5 + ε

)h
PP (Z2(tk) < h)

≥
(0.5− ε

0.5 + ε

)h
PP (Z2(tk) < h,Etk)

=
(0.5− ϵ

0.5 + ϵ

)h
PP (Z2(tk) < h|Etk)PP (Etk).

Thus, we have

1. From the previous steps,

∀h > 0 PP (Z2(tk) < h|Etk) ≥ 1− 2cπ log(tk)

h
.

2. inft>0 PP (Et) = q > 0 thanks to Lemma 2.

The two point together entail that

∀h > 0 PP∗(Z2(tk) < h) ≥ q
(
1− 2cπ log(tk)

h

)(0.5− ϵ

0.5 + ϵ

)h
.

Here, for every ε > 0 the inequality 0.5−ε
0.5+ε ≥ 1− 4ε holds, so that

∀h > 0
(0.5− ε

0.5 + ε

)h
≥
(
1− 4ε

)h
,

therefore, taking h = 4cπ log(tk), we have:

P∗
P (Z2(tk) < 2cπ log(tk)) ≥

q

2
e4cπ log(tk) log(1−4ε)

≥ q

2
e−4cπ log(tk)4ε

=
q

2
tk

−4cπ4ε.

If we then put ε < 1
17cπ

, we have this lower bound on the regret in case of instance P ∗:

Rtk |∼P∗ ≥ εEP∗ [(tk − Z2(tk))]

≥ ε(tk − 2cπ log(tk))P∗
P (Z2(tk) < 2cπ log(tk))

≥ 1

2
εtkP∗

P (Z2(tk) < 2cπ log(tk))

≥ q

4
εtk

−16/17tk =
q

4
εtk

1/17.

which grows polynomially with time. Therefore, whichever the value of C(∆i) (which is C(ε) in
this case), we can always find T in the sequence tk such that

Rt|∼P∗ ≥ q

4
εt1/17 > C(ε) log(t).

14
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A.2 PROOF OF INSTANCE DEPENDENT UPPER BOUND

Theorem 2 (Instance-dependent upper bound). Assume that the reward distribution of every arm is
1-subgaussian. Let f : (0,∞)→ R be a superlogarithmic function in t, then there is a term C(f,∆i)
for each sub-optimal arm i ∈ [n] which does not depend on T , such that Algorithm 1 satisfies:

RT ≤ f(T )

n∑
i=1

∆i + log(T )

n∑
i=1

C(f,∆i).

Proof. Let i∗ ∈ [n] be the optimal arm, and let Zi(t) the number of pulls of arm i up to time t. For
any sub-optimal arm ai, we have

E[Zi(t)] =

t∑
τ=1

P(Iτ = i) (2)

=

t∑
τ=1

P(Iτ = i, Zi(τ − 1) < f(τ)) +

t∑
τ=1

P(Iτ = i, Zi(τ − 1) ≥ f(τ)), (3)

where we let Iτ be the arm pulled at time τ ∈ [T ]. We split the proof in two parts, providing a bound
for each term defining Equation (3).

Claim 1: The first term of Equation (3) is bounded by f(t). indeed, notice that if:

t∑
τ=1

1{Iτ = i, Zi(τ − 1) < f(τ)} ≥ f(t),

then, there is t0 ≤ t such that Zi(t0) = f(t)− 1. Thus, we could rewrite the latter term as follows:

t0∑
τ=1

1{Iτ = i, Zi(τ − 1) < f(τ)}+
t∑

τ=t0+1

1{Iτ = i, Zi(τ − 1) < f(τ)}

By definition, the first sum is bounded by f(t), while the second one is bounded by

t∑
τ=t0+1

1{Iτ = i, Zi(τ − 1) < f(t)} = 0.

since, for τ > t0, Zi(τ − 1) ≥ f(t).

Claim 2: The second term is bounded by C(∆i) log(t) for some C(∆i).

We know, by design of the algorithm, that the arm ai can be pulled only if:

1. It has the highest empirical mean.

2. Every other arm has been pulled at least f(t) times, including arm i∗.

In particular, defining the event:
Ei,t := {Zi(t) ≥ f(t)}

we have:
P(Iτ = i, Zi(τ − 1) ≥ f(τ)) ≤ P(X̄i,τ > X̄i∗,τ , Ei,t, Ei∗,t)

which can be true only if at least one of the following holds:

15
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1. X̄i,τ > µi + ∆i/2, which, intersected with Ei,τ , by Hoeffding’s inequality is true with
probability at most:

P(X̄i,τ > µi +∆i/2, Ei,τ ) ≤
∞∑

y=f(τ)

P(X̄i,τ > µi +∆i/2, Zi(τ) = y)

≤
∞∑

y=f(τ)

e−
y∆2

i
2 =

e−
f(τ)∆2

i
2

1− e−∆2
i /2

2. X̄i∗,τ < µ∗ +∆i/2, which, intersected to Ei∗,τ , by Hoeffding’s inequality is also true with
the same probability of before.

Therefore, we have proved that:

t∑
τ=1

P(Iτ = i, Zi(τ − 1) ≥ f(τ)) ≤ 2(1− e−∆2
i /2)−1

t∑
τ=1

e−
f(τ)∆2

i
2 ,

which grows slower than log(t). Indeed, being f(·) superlogathmic, we have:

lim
t→∞

te−
f(t)∆2

i
2 = lim

t→∞
te− log(t)

f(t)∆2
i

2 log(t) = lim
t→∞

t

(
1

t

) f(t)∆2
i

2 log(t)

= 0.

Thus, for every c > 0, we can find t0 satisfying e−
f(t)∆2

i
2 ≤ c

t ∀t ≥ t0, so that:

lim
t→∞

∑t
τ=1 e

− f(τ)∆2
i

2

c log(t)
≤ lim

t→∞

∑t
τ=1 e

− f(τ)∆2
i

2

c
∑t

τ=1
1
τ

≤ lim
t→∞

∑t0
τ=1 e

− f(τ)∆2
i

2

c
∑t

τ=1
1
τ︸ ︷︷ ︸

→0

+

∑t
τ=t0

e−
f(τ)∆2

i
2

c
∑t

τ=t0
1
τ︸ ︷︷ ︸

≤1

≤ 1.

This fact allows us to state (since a convergent sequence is always bounded) that:

C0(∆i) = 2(1− e−∆2
i /2)−1 sup

t>1

∑t
τ=1 e

− f(τ)∆2
i

2

log(t)
< +∞,

proving that for every suboptimal arm i

E[Zi(t)] ≤ f(t) + C0(∆i) log(t)

To conclude the proof, it is sufficient to redefine C(∆i) := ∆iC0(∆i) and see that:

Rt =

N∑
i=1

∆iE[Zi(t)].

Corollary 9. Let δ > 0 and f(t) = log(t)1+δ be the sperlogarithmic function used in Algorithm 1,
then we have:

C(f,∆i) =

2∆i

(
e

(
(2/∆2

i )
1/δ

)
+ 1

)
1− e−∆2

i /2

Proof. Let t0 ∈ N be smallest integer such that:

e−
1
2 log(t)1+δ∆2

i ≤ 1

t
, ∀t ≥ t0 > 1.

16
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By rearranging the latter inequality we have that:

t0 = ⌈e
(
(2/∆2

i )
1/δ

)
⌉.

From the previous proof, it was known that C(∆i, f) = ∆iC0(∆i), where

C0(∆i) = 2(1− e−∆2
i /2)−1 sup

t>1

∑t
τ=1 e

− f(τ)∆2
i

2

log(t)
.

Therefore, we have for this specific choice of f ,

C0(∆i) log(t) ≤ 2(1− e−∆2
i /2)−1

t∑
τ=1

e−
f(τ)∆2

i
2

≤ 2(1− e−∆2
i /2)−1

∑t
τ=1 e

− f(τ)∆2
i

2

log(t)
log(t)

≤ 2(1− e−∆2
i /2)−1

∑t0
τ=1 e

− f(τ)∆2
i

2

log(t)
+

∑t
τ=t0

e−
f(τ)∆2

i
2∑t

τ=t0
1
τ

 log(t)

Where the last step is due to the fact that for t0 > 2 we have
∑t

τ=t0
1
τ ≤ log(t). From this point, we

can note that in the fraction
∑t

τ=t0
e−

f(τ)∆2
i

2∑t
τ=t0

1
τ

for fixed τ , each term of the upper sum e−
f(τ)∆2

i
2 is less

or equal than each term of the lower 1
τ . Therefore, we have∑t

τ=t0
e−

f(τ)∆2
i

2∑t
τ=t0

1
τ

≤ 1.

With this consideration, we are able to conclude:

C0(∆i) ≤ 2(1− e−∆2
i /2)−1

∑t0
τ=1 e

− f(τ)∆2
i

2

log(t)
+

∑t
τ=t0

e−
f(τ)∆2

i
2∑t

τ=t0
1
τ


≤ 2(1− e−∆2

i /2)−1

(
t0

log(t)
+ 1

)
≤ 2(1− e−∆2

i /2)−1 + 2(1− e−∆2
i /2)−1e

(
(2/∆2

i )
1/δ

)
.

Where in the last passage we have used the fact that log(t) > 1 for t > 2. Recollecting all the terms
we have that:

C(∆i, log(t)
1+δ) = ∆iC0(∆i, log(t)

1+δ) ≤ 2∆i(1− e−∆2
i /2)−1(e

(
(2/∆2

i )
1/δ

)
+ 1),

concluding the proof.

B PROOFS IN THE INSTANCE INDEPENDENT STOCHASTIC ANALYSIS

B.1 INSTANCE DEPENDENT/INDEPENDENT TRADE-OFF

Lemma 4. Let us define a random walk

Gt+1 = Gt + ϵt ϵt =

{
1 p

−1 1− p
.

where G0 = 1, with p = 1 +∆/2 > 0.5. Then, we have

P

( ∞⋃
t=1

{Gt ≤ 0}
)

=

(
1−∆

1 +∆

)
.

17
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Proof. Define
fn = P(G0 = n, ∃t : Gt = 0)

which satisfies, for n ≥ 0:
fn = pfn−1 + (1− p)fn+1

with fn = 1 for n ≤ 0. The equation corresponding to the aforementioned dynamical system is:

(1− p)λ2 − λ+ p = 0

which has two solutions:

λ =
1±

√
1− 4p(1− p)

2(1− p)

Thus, we obtain, ∀n > 0

fn = A

(
1 +

√
1− 4p(1− p)

2(1− p)

)n

+B

(
1−

√
1− 4p(1− p)

2(1− p)

)n

where A = 0 (otherwise, the equation does not define a probability) and B = 1 (since f1 → 1 for
∆→ 0). Therefore, from the definition of p:

fn =

(
1−

√
1− 4p(1− p)

2(1− p)

)n

=

(
1−

√
1− 4(1/2−∆/2)(1/2 + ∆/2)

1 + ∆

)n

=

(
1−∆

1 +∆

)n

.

for n = 1 we have the result.

Theorem 4 (Instance Dependent/Independent Trade-off). Let π be any policy for the bandits with
ranking feedback problem. If π satisfies the following properties:

• (instance-dependent upper regret bound) RT ≤
∑n

i=1 C(∆i)T
α

• (instance-independent upper regret bound) RT ≤ nCT β

then, 2α+ β ≥ 1, where α, β ≥ 0.

Proof. Let p1 = 0.5, p2 = 0.5− ε, p∗2 = 0.5 + ε. Let us consider two problems:

P :

{
ν1 = Be(p1)

ν2 = Be(p2)
P ∗ :

{
ν1 = Be(p1)

ν2 = Be(p∗2)

Clearly, the optimal arm is 1 for P and 2 for P ∗. Let us now define the event:

Et =

t⋂
τ=1

{Rt = ⟨1, 2⟩}.

By assumption, policy π has a sub-tα instance-dependent regret, therefore,

∀η > 0, lim sup
t→∞

∑t
τ=1 π(pull 2|Eτ )

tα+η
= 0,

otherwise we would have an instance dependent regret of order tα+η in the simple case of p1 =
1, p2 = 0. This means that:

lim sup
t

EP [Z2(t)|Et]

tα+η
= 0 =⇒ ∃C > 0 ∀t > 0 : EP [Z2(t)|Et] ≤ Ctα+η.

18
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Where EP is the expectation over the random variables of the arms following the distribution given
in (P ). Therefore, by Markov’s inequality, we have,

PP (Z2(t) > 2Ctα+η|Et) ≤
EP [Z2(t)|Et]

2Ctα+η
≤ Ctα+η

2Ctα+η
≤ 1

2
.

Now, note that for every h > 0 the event Z2(t) < h is contained in the σ−algebra generated by the
first h pulls of arm 2 (and all the pulls of arm 1, but this is irrelevant since arm 1 corresponds to the
same distribution in the two problems). Therefore, thanks to Lemma 3 we have:

∀h > 0 PP∗(Z2(t) ≤ h) ≥
(0.5− ε

0.5 + ε

)h
PP (2(t) ≤ h)

≥
(0.5− ε

0.5 + ε

)h
PP (T2(t) ≤ h,Et)

=
(0.5− ε

0.5 + ε

)h
PP (T2(t) ≤ h|Et)PP (Et).

By the previous step, we have PP (Z2(t) ≤ 2Ctα+η|Et) ≥ 1/2, so that:

PP∗(Z2(t) ≤ 2Ctα+η) ≥ 1

2

(0.5− ε

0.5 + ε

)2Ctα+η

PP (Et),

while, thanks to Lemma 4, we have PP (Et) ≥ 1− 1−ε
1+ε ≥ 2ε, meaning that:

PP∗(Z2(t) ≤ 2Ctα+η) ≥ 1

2

(0.5− ε

0.5 + ε

)2Ctα+η
2ε

1 + ε
.

At this point we are using this result to provide a lower bound for the regret in the instance independent
case. Analyzing the instance independent regret, by definition we have to fix t as time horizon and let
the arm gap ε depend on t.

Let us now fix ρ > 1. With the choice ε = t−ρα, we have

PP∗(Z2(t) ≤ 2Ctα+η) ≥ 1

2

(0.5− t−ρα

0.5 + t−ρα

)2Ctα+η

2t−ρα

≥ 1

2

(
1− 4t−ρα

)2Ctα+η
2t−ρα

1 + t−ρα

≥
(
1− 4t−ρα

)2Ctα+η

t−ρα. (4)

At this point if we choose η = α(ρ− 1)/2, the following fact holds:

lim
t→∞

(
1− 4t−ρα

)2Ctα+η

= lim
y→0+

(
1− 4y

)Cy
−(α+η)

ρα

= lim
y→0+

(
1− 4y

)Cy
−α(1/2+ρ/2)

ρα

= lim
y→0+

(
1− 4y

)Cy
−(1/2+ρ/2)

ρ

where in the first equality we substituted y = t−ρα. Here, y
−(1/2+ρ/2)

ρ = y−1 · y ρ−1
2ρ , where the

second exponent is strictly positive.

lim
t→∞

(
1− 4t−ρα

)2Ctα+η

= lim
y→0+

((
1− 4y

)−y
)Cy

ρ−1
2ρ

= lim
y→0+

(1/e4)Cy
ρ−1
2ρ

= 1.
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This limit shows that there is cρ > 0 such that:

(
1− 2t−ρα

)2Ctα+η

≥ cρ ∀t sufficiently big.

Substituting this property in the previously found Equation (4), we get:

PP∗(Z2(t) ≤ 2Ctα(1/2+ρ/2)) ≥ cρ
2
t−ρα,

holding for every ρ > 0 and sufficiently big t.

This proves that, with ε = t−ρα :

Rt|∼P∗ ≥ ε(t− 2Ctα(1/2+ρ/2))P∗
P (Z2(t) ≤ 2Ctα(1/2+ρ/2))

≥ 1

2
t · cρ

2
t−2ρα =

cρ
4
t1−2ρα ∀t sufficiently big.

Therefore, for β ≤ 1− 2ρα it is not possible to have an upper bound for the instance independent
regret. Since this is valid for every ρ > 1, we can also extend the result to any β < 1− 2α, which
leads to the conclusion that the necessary condition to satisfy both:

• (Instance Dependent regret bound)

Rt ≤
n∑

i=1

C(∆i)t
α ∀t > 0

• (Instance Independent regret bound)

Rt ≤ nCtβ ∀t > 0

for the same policy π is
2α+ β ≥ 1.

B.2 PROOFS OF INSTANCE INDEPENDENT REGRET UPPER BOUND

To understand the tractation of the instance independent regret analysis, we will need some results
from the theory of stochastic processes. We devote the following subsections to develope all the
results required to prove the regret bound on the algorithm.

B.2.1 DISCRETIZING THE BROWNIAN MOTION

In this section, we prove some results about the relationship between Random Walk Gi and Brownian
Motion Bt, that will be crucial in the proof of the regret bound. For this scope, we will introduce this
quantity

|Bt + tµ0 < η| =
∫ 1

0

1(−∞,η)(τ)dτ,

corresponding to the Lebesgue measure of the set {t ∈ [0, 1] : Bt + tµ0 < η}.
We start with a lemma that bounds the increments in a standard brownian Motion.
Lemma 5. Let (Bt)t∈[0,1] be a standard Brownian motion. Define

∀i ∈ {0, . . . , n− 1}, Ii := [i/n, (i+ 1)/n].

Then, for every η ≥ 0,

P

(
sup

i∈{0,...,n−1}
(sup
t∈Ii

Bt −Bi/n) ≥ η

)
= P

(
inf

i∈{0,...,n−1}
( inf
t∈Ii

Bt −Bi/n) ≤ −η
)
≤

2
√
n exp

(
−η2n

2σ2

)
η/σ
√
2π

.
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Proof. Indeed, the Brownian motion satisfies:

P

(
sup

i∈{0,...,n−1}
(sup
t∈Ii

Bt −Bi/n) ≥ η

)
= P

(
n−1⋃
i=0

sup
t∈Ii

Bt −Bi/n > η

)

≤
n−1∑
i=0

P
(
sup
t∈Ii

Bt −Bi/n > η

)

=

n−1∑
i=0

2P(B(i+1)/n −Bi/n > η)

=

n−1∑
i=0

2P(N (0, σ2/n) > η)

≤
n−1∑
i=0

2 exp
(
−η2n

2σ2

)
η/σ
√
2nπ

≤
2
√
n exp

(
−η2n

2σ2

)
η/σ
√
2π

.

where the third equality holds from the reflection principle (see (Baldi, 2017)), and last inequality
holds since it is well-known that P(N (0, β2) > y) ≤ exp(−y2/2β2)

y/β
√
2π

for tail bound on Gaussian
distributions.

In the exact same way, we can prove that

P
(

inf
i∈{0,...,n−1}

( inf
t∈Ii

Bt −Bi/n) ≤ −η
)
≤

2
√
n exp

(
−η2n

2σ2

)
η/σ
√
2π

.

Together, the two results imply the thesis.

We are now ready to prove a theorem that links the Brownian Motion and a Random Walk in term of
the probability that each of them stays in the interval [0,∞).
Lemma 6. (Discretization lemma) Let (Gi)i∈{0,...n−1} be a Gaussian 0-mean unit variance random
walk, and µ ∈ R, and (Bt)t∈[0,1] a standard Brownian motion. Then, for every s ∈ (0, 1) we have,

P (|Bt + tµ0 > η| > s)−P (n, η) ≤ P

(
n−1∑
i=0

1(0,∞) (Gi + iµ) > sn

)
≤ P (|Bt + tµ0 > −η| > s)+P (n, η)

and

P (|Bt + tµ0 ≤ η| ≤ s)−P (n, η) ≤ P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ sn

)
≤ P (|Bt + tµ0 ≤ −η| ≤ s)+P (n, η)

with P (n, η) =
2
√
n exp(−η2n/2)

η
√
2π

and µ0 =
√
nµ.

Proof. We only prove the first part, as the second one follows trivially by substituting s ← 1 − s,
µ← −µ, Gi ← −Gi, Bt ← −Bt.

Let (Bt)t∈[0,1] be a standard Brownian motion. Define

∀i ∈ {0, . . . , n− 1}, Ii := [i/n, (i+ 1)/n].

Let us set
µ0 =

√
nµ.
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With this definition, we have the following set inclusions, for any s ∈ [0, 1] and η > 0:

{|Bt + tµ0 > η| > s} =
{∫ 1

0

1(η,∞)(Bτ + τµ0) dτ > s

}
=

{
n−1∑
i=0

∫
Ii

1(η,∞)(Bτ + τµ0) dτ > s

}

⊆
{

n−1∑
i=0

supτ∈Ii1(η,∞)(Bτ + τµ0) > sn

}

⊆
{

n−1∑
i=0

1(0,∞)

(
Bi/n +

i

n
µ0

)
> sn

}
∪
{

sup
i∈{0,...,n−1}

(
sup
t∈Ii

Bt −Bi/n

)
≥ η

}
.

Moreover, it is also true that, using the same passages

{|Bt + tµ0 > −η| > s} =
{∫ 1

0

1(−η,∞)(Bτ + τµ0) dτ > s

}
⊇
{

n−1∑
i=0

1(0,∞)

(
Bi/n +

i

n
µ0

)
> sn

}
∩
{

inf
i∈{0,...,n−1}

( inf
t∈Ii

Bt −Bi/n) ≥ −η
}
.

Now, note that the random variable Bi/n, for i = 1, ..., n has the same distribution of Gi/
√
n, so that

P

(
n−1∑
i=0

1(0,∞)

(
Bi/n +

i

n
µ0

)
> sn

)
= P

(
n−1∑
i=0

1(0,∞)

(√
nBi/n +

i√
n
µ0

)
> sn

)

= P

(
n−1∑
i=0

1(0,∞) (Gi + iµ) > sn

)
.

Therefore, by union bound:

P (|Bt + tµ0 > η| > s) ≤ P

(
n−1∑
i=0

1(0,∞) (Gi + iµ) > sn

)
+P

(
sup

i∈{0,...,n−1}

(
sup
t∈Ii

Bt −Bi/n

)
≥ η

)
,

and

P (|Bt + tµ0 > −η| > s) ≥ P

(
n−1∑
i=0

1(0,∞) (Gi + iµ) > sn

)
−P
(

inf
i∈{0,...,n−1}

( inf
t∈Ii

Bt −Bi/n) ≤ −η
)
.

The proof is completed applying lemma 5 and reordering the terms.

For our setting, it is convenient to state a corollary of the previous result that will be used in the next
proofs.

Corollary 10. Let (Gi)i∈{0,...n−1} be a Gaussian 0-mean unit variance random walk, and µ ∈ R.
Then, for every s ∈ (0, 1) we have,

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ sn

)
∈
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[
P
(∣∣∣∣Bt + tµ0 ≤

2 log(n)√
n

∣∣∣∣ ≤ s

)
−

√
2√

πn log(n)
, P

(∣∣∣∣Bt + tµ0 ≤ −
2 log(n)√

n

∣∣∣∣ ≤ s

)
+

√
2√

πn log(n)

]
,

where µ0 =
√
nµ.

Proof. It is sufficient to make the substitution

η =
2 log(n)√

n
,

in the previous lemma. Indeed, we have

P (n, η) =
2
√
n exp

(
−η2n/2

)
η
√
2π

=
2
√
n exp

(
− log(n)2

)
log(n)√

n

√
2π

=
2n exp

(
− log(n)2

)
log(n)

√
2π

=

√
2√

πn log(n)
.

B.2.2 PROOFS OF FILTERING INEQUALITIES

All the proof of this subsections will be based on the following very powerful result, which studies
the time spent by a Brownian Motion with drift in the half-line [0,∞).
Theorem 11 ((Takács, 1996)). Let Bt be a standard Brownian motion on t ∈ [0, 1], and let us note
as | · | the Lebesgue measure of a set. For µ0 ∈ R and η > 0, we have

P (|Bt + tµ0 ≤ η| ≤ s) = 2

∫ s

0

[
φ(µ0

√
1− τ)√

1− τ
+ µ0Φ(µ0

√
1− τ)

]
×[

φ(η/
√
τ − µ0

√
τ)√

τ
− µ0e

2µ0ηΦ(−η/√τ − µ0

√
τ)

]
dτ,

where

φ(x) :=
1√
2π

e−x2/2 Φ(x) :=

∫ x

−∞
φ(u) du.

With this theorem, we can prove the following crucial results
Theorem 12. Let T be a sufficiently large constant. Let (Gi)i∈{0,...n−1} be a Gaussian 0-mean unit
variance random walk, and µ ∈ R. If µ ≥ CT−α, for some α ∈ (0, 1/2) and C = 4 log(T ), then
setting n = ⌈T 1/2+α⌉ we have

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ T 2α

)
≥ 1− 2T−1/2.

Proof. In the rest of the proof, we will assume, for ease of notation, that T is such that T 1/2+α an
integer, so that n = T 1/2+α. This is done without loss of generality, since substituting n with n+ 1
leads to a negligble difference for T sufficiently big. Applying the discretization corollary 10, we
have that for every s ∈ (0, 1)

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ sn

)
≥ P

(∣∣∣∣Bt + tµ0 ≤
2 log(n)√

n

∣∣∣∣ ≤ s

)
−

√
2√

πn log(n)
, (5)
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where µ0 =
√
nµ. Therefore, by assumption,

µ0 =
√
nµ ≥ (T 1/2+α)1/2CT−α = CT 1/4−α/2.

At this point, we can apply theorem 11 to have, for any η > 0,

P (|Bt + tµ0 ≤ η| ≤ s) = 2

∫ s

0

(
ϕ(µ0

√
1− τ)√

1− τ
+ µ0Φ(µ0

√
1− τ)

)
×
(
ϕ

(
η − µ0τ√

τ

)
1√
τ
− µ0e

2µ0ηΦ

(−η − µ0τ√
τ

))
dτ

which means that

P (|Bt + tµ0 ≤ η| ≤ s) = 1− 2

∫ 1

s

ϕ(µ0

√
1− τ)√

1− τ︸ ︷︷ ︸
(1)

+µ0Φ(µ0

√
1− τ)︸ ︷︷ ︸

(2)



×

ϕ

(
η − µ0τ√

τ

)
1√
τ︸ ︷︷ ︸

(3)

−µ0e
2µ0ηΦ

(−η − µ0τ√
τ

)
︸ ︷︷ ︸

(4)

 dτ.

Here, we have to consider that

• η = 2 log(n)√
n
≤ 2 log(T )T−α/2−1/4

• µ0 ≥ CT 1/4−α/2.

Moreover, to have the thesis, we are interested in a value of s such that sn = T 2α, corresponding to
T−1/2+α. Therefore, in the interval [T−1/2+α, 1], we have

1. Consider term (3):

ϕ

(
η − µ0τ√

τ

)
1√
τ
≤ ϕ

(
η − µ0T

−1/2+α

T−1/4+α/2

)
1

T−1/4+α/2

= ϕ
(
ηT 1/4−α/2 − µ0T

−1/4+α/2
) 1

T−1/4+α/2
.

Here, since η = 2 log(n)√
n

≤ 2 log(T )T−α/2−1/4, the part ηT 1/4−α/2 is bounded by
2 log(T ).

Instead, µ0T
−1/4+α/2 ≥ CT 1/4−α/2T−1/4+α/2 = C.

2. Term (4) is non-negative.

Therefore, for C = 4 log(T ), we have that in the interval [T−1/2+α, 1]

(3) + (4) ≤ ϕ (2 log(T ))
1

T−1/4+α/2
=

1√
2πT−1/4+α/2

e−2 log(T )2 ≤ T−1

√
2π

.

With this inequality, we have
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P
(
|Bt + tµ0 ≤ η| ≤ T−1/2+α

)
= 1− 2

T−1

√
2π

∫ 1

T−1/2+α

(
ϕ(µ0

√
1− τ)√

1− τ
+ µ0Φ(µ0

√
1− τ)

)
dτ

≥ 1− 2
T−1

√
2π

∫ 1

T−1/2+α

1√
2π(1− τ)

+ |µ0|dτ

≥ 1− 2
T−1

√
2π

∫ 1

0

1√
2π(1− τ)

+ |µ0|dτ

= 1− 2
T−1

√
2π

(√
2√
π
+ µ0

)
.

At this point, knownig from the assumptions that n < T , we have µ0 ≤
√
T , which implies

P
(
|Bt + tµ0 ≤ η| ≤ T−1/2+α

)
≥ 1− T−1/2

π
.

Substituting this result into equation 5, we get, for s = T−1/2+α and n ≥ T 1/2+α

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) < T 2α

)
≥ 1− T−1/2

π
−

√
2√

πT 1/2+α log(T 1/2+α)

≥ 1− 2T−1/2.

The second result is the following
Theorem 13. Let T be a sufficiently large constant. Let (Gi)i∈{0,...n−1} be a Gaussian 0-mean
unit variance random walk, and µ ∈ R such that µ ≤ −CT−θ, for some θ ∈ (0, 1/2) and
C = 2

√
log(T ) + 2. Then, for any α ∈ (0, 1/2), setting n = ⌊T 1/2+α⌋ we have

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ T 2α

)
≤ 3T−1/2+θ.

Proof. In the rest of the proof, we will assume, for ease of notation, that T is such that T 1/2+α an
integer, so that n = T 1/2+α. This is done without loss of generality, since substituting n with n+ 1
leads to a negligble difference for T sufficiently large. Applying the discretization corollary 10, we
have that for every s ∈ (0, 1)

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ sn

)
≤ P

(∣∣∣∣Bt + tµ0 ≤ −
2 log(n)√

n

∣∣∣∣ ≤ s

)
+

√
2√

πn log(n)
, (6)

where µ0 =
√
nµ. Therefore, by assumption,

µ0 =
√
nµ ≤ −(T 1/2+α)1/2CT−θ = −CT 1/4+α/2−θ.

Differently from the previous proof, here we cannot directly apply theorem 11, since η = − 2 log(n)√
n

<

0.

Still, we can say that

P
(∣∣∣∣Bt + tµ0 ≤ −

2 log(n)√
n

∣∣∣∣ ≤ s

)
= P

(∣∣∣∣−Bt − tµ0 >
2 log(n)√

n

∣∣∣∣ ≤ s

)
= P

(∣∣∣∣−Bt − tµ0 ≤
2 log(n)√

n

∣∣∣∣ > 1− s

)
.
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At this point, we set η = 2 log(n)√
n

, µ̃0 = −µ0 and Bt = −Bt (it is not necessary to rename it since its
distribution is symmentric). In this way we can apply theorem 11 having that the previous probability
corresponds to

P (|Bt + tµ̃0 ≤ η| > 1− s) = 2

∫ 1

1−s

ϕ(µ̃0

√
1− τ)√

1− τ︸ ︷︷ ︸
(1)

+ µ̃0Φ(µ̃0

√
1− τ)︸ ︷︷ ︸

(2)



×

ϕ

(
η − µ̃0τ√

τ

)
1√
τ︸ ︷︷ ︸

(3)

− µ̃0e
2µ0ηΦ

(−η − µ̃0τ√
τ

)
︸ ︷︷ ︸

(4)

 dτ.

Here, we have to consider that

• η = 2 log(n)√
n
≤ 2 log(T )T−α/2−1/4

• µ̃0 ≥ CT 1/4+α/2−θ.

Moreover, to have the thesis, we are interested in a value of s such that sn = T 2α, corresponding to
T−1/2+α.

Here, is is convenient to divide the proof in two cases, depending on the sign of 1/4 + α/2− θ.

1. Assume (1/4 + α/2− θ > 0). Then, considering term (3) we have that for τ ∈ [1/2, 1]

(3) ≤ ϕ

(
η − µ̃0τ√

τ

)
1√
τ
≤
√
2ϕ
(√

2η − µ̃0/
√
2
)
.

Moreover, since term (4) is nonnegative we also have

(3) + (4) ≤
√
2ϕ
(√

2η − µ̃0/
√
2
)
=

1√
π
e−(

√
2η−µ̃0/

√
2)2/2.

Being 1/4 + α/2− θ > 0 and η < 1, the exponent is less than −(
√
2− C/

√
2)2/2. This

means that for C = 2
√
log(T ) + 2 the full term is bounded by

(3) + (4) ≤ 1√
π
e−(

√
2−C/

√
2)2/2 =

1√
π
e−(
√

2 log(T ))2/2 =
T−1

√
π
.

Substituting this inequality, we get

P
(
|Bt + tµ̃0 ≤ η| > 1− T−1/2+α

)
≤ 2T−1

√
π

∫ 1

1−T−1/2+α

(
ϕ(µ̃0

√
1− τ)√

1− τ
+ µ̃0Φ(µ̃0

√
1− τ)

)
dτ

≤ 2T−1

√
π

∫ 1

1−T−1/2+α

1√
2π(1− τ)

+ |µ̃0|dτ

≤ 2T−1

√
π

(2 + T−1/2+αµ̃0) ≤
6T−1

√
π

.

This quantity is of course less than T−θ, since θ ∈ (0, 1/2) by assumption
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2. Assume (1/4+α/2− θ < 0). In this case, we have, being µ̃0 ≥ 0, the following inequality

P (|Bt + tµ̃0 ≤ η| > 1− s) ≤ P (|Bt ≤ η| > 1− s) .

This simplified form leads to

P (|Bt + tµ̃0 ≤ η| > 1− s) ≤ 2

∫ 1

1−s

ϕ(0)√
1− τ

ϕ

(
η√
τ

)
1√
τ
dτ

≤ 2

∫ 1

1−s

ϕ(0)√
1− τ

ϕ (0)
1√
τ
dτ

=
1

π

∫ 1

1−s

1√
τ(1− τ)

dτ.

Since in our case s = T−1/2+α < 1/2, this can be further simplified as

P (|Bt + tµ̃0 ≤ η| > 1− s) ≤ 1

π

∫ 1

1−s

1√
τ(1− τ)

dτ

=
2

π

∫ 1

1−s

1√
1− τ

dτ

y=1−τ
=

2

π

∫ s

0

1√
y
dy =

4

π

√
s.

This leads to

P
(
|Bt + tµ̃0 ≤ η| > 1− T−1/2+α

)
≤ 4

π
T−1/4+α/2.

By assumption, 1/4 + α/2− θ < 0 the exponent is −1/4 + α/2 < T−1/2+θ. Therefore,
we have

P
(
|Bt + tµ̃0 ≤ η| > 1− T−1/2+α

)
≤ 4

π
T−1/2+θ.

Therefore, we have proved that in both cases

P (|Bt + tµ̃0 ≤ η| > 1− s) ≤ 4

π
T−1/2+θ.

Therefore, applying equation 6 and substituting the value of n, we get

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ T 2α

)
≤ 4

π
T−1/2+θ +

√
2√

πT 1/2+α log(T 1/2+α)
,

which in particular implies

P

(
n−1∑
i=0

1(−∞,0] (Gi + iµ) ≤ T 2α

)
≤ 3T−1/2+θ.

27



Under review as a conference paper at ICLR 2024

B.2.3 REGRET BOUND

Before the actual proof, we are stating a simple proposition about the structure of the loggrid, which
will ease the next computations.

Proposition 14. Let

LG(1/2, 1, T ) :=

{
⌊Tλj+(1−λj)/2⌋ : λj =

j

⌊log(T )⌋ , ∀j = 0, . . . , ⌊log(T )⌋
}
.

The following identities hold

1. LG(1/2, 1, T ) can be equivalently defined as

LG(1/2, 1, T ) :=
{
⌊T 1/2+ j

2⌊log(T )⌋ ⌋, ∀j = 0, . . . , ⌊log(T )⌋
}
.

2. Let ℓj the j−th element of LG(1/2, 1, T ), and αj =
log(ℓj)
log(T ) − 1/2. Then αj =

j
2⌊log(T )⌋ +

o(T−1/2).

3. The ratio of two consecutive values of ℓj is ℓj+1

ℓj
≈ T

1
2⌊log(T )⌋ ∈ [

√
e, 2] for T ≥ 51.

Theorem 7. In the stochastic bandits with ranking feedback setting, Algorithm 2 achieves the
following regret bound:

RT ≤ Õ
(
n
√
T
)
,

when n arms are available to the learner.

Proof. We start the proof from the simpler case where just two arms are available, arm 1 being the
optimal and arm 2 the suboptimal one. Define

∆ = µ1 − µ2 > 0.

Let us call

∆̃ =
∆

4 log(T ) + 2
.

At this point, there are two possibilities,

1. ∆̃ ≤ T−1/2: in this case, the regret cannot be larger than (4 log(T ) + 2)T 1/2, therefore the
thesis is true.

2. ∆̃ > T−1/2: in this case, by assumption, there are two consecutive points ℓj⋆ , ℓj⋆+1 ∈ L
such that

∆̃ ∈
(
T 1/2

ℓj⋆+1
,
T 1/2

ℓj⋆

]
.

This is true due to the fact that that the sequence ℓj spans from T 1/2 to T . By proposition
14, this can be equivalently expressed by saying that

∆̃ ∈
(
T− j⋆+1

2⌊log(T )⌋ , T− j⋆
2⌊log(T )⌋

]
.

We consider only the second case, as the first is already proven.

Let us define the two families of events

Ei(t) := arm i gets discarded at time t.

We are going to prove two inequalities
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• Consider the probability of discarding the optimal arm

P

(
T⋃

t=1

E1(t)

)
= P

 ⋃
t/2∈L

E1(t)


≤

|L|∑
j=1

P(E1(2ℓj)).

Here, we have simply apllied the fact that by design of the algorithm arms can only be
discarded at timesteps t such that t/2 ∈ L and then the union bound. At this point, we have,
by line 9 of the algorithm, the following inclusion between events

E1(2ℓj) ⊂ {1 /∈ F2ℓj (T
2αj )},

where αj =
log(ℓj)
log(T ) − 1

2 . Here, remember that, by definition of the filtering condition, this
event can be again rewritten as

2ℓj∑
τ=1:2|τ

{Rτ,1 = 1} < T 2αj

 =


ℓj∑

τ=1

{R2τ,1 = 1} < T 2αj

 .

Since before the discarding we always alternate between the two arms, we note that the
previous event can be interpreted as the time in which the random walk given by the
difference of the rewards of the two arms stays in (−∞, 0]5:

ℓj∑
τ=1

1{R2τ,1 = 1} =
ℓj∑

τ=1

1 {µ̂2τ,1 ≥ µ̂2τ,2}

=

ℓj∑
τ=1

1(−∞,0]


τ∑

k=1

r2,k −
τ∑

j=1

r1,k︸ ︷︷ ︸
Gτ


Where

∑τ
k=1 r2,k is the cumulative reward of arm 2 and

∑τ
k=1 r1,k is the cumulative reward

of arm 1. Therefore, we have written this quantity as the time spent by the random walk Gτ

in the interval (−∞, 0], for τ = 1, . . . ℓj . The drift term for this random walk is given by

E[r2,k − r1,k] = µ2 − µ1 = −∆.

Therefore, we can apply theorem 13 for the following choice of parameters

(a) α = αj =
j

2⌊log(T )⌋ + o(T−1/2)(proposition 14), which implies n = ⌊T 1/2+αj⌋ = ℓj .

(b) θ = j⋆+1
2⌊log(T )⌋ . (We can use this choice since the drift is

−∆ = − (4 log(T ) + 2)︸ ︷︷ ︸
≥2
√

log(T )+2

∆̃︸︷︷︸
≥T

−
j⋆+1

2⌊log(T )⌋

,

therefore the assumptions of the theorem are respected.)

Applying the theorem, we have

P(E1(2ℓj)) ≤ 3T−1/2+θ = 3T−1/2+ j⋆+1
2⌊log(T )⌋ .

5Techinically, in this case should be (−∞, 0), but being the rewards Gaussian, the event two arms have
exactly the same cumulative reward is negligible.
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Summing over j, we get

P

(
T⋃

t=1

E1(t)

)
≤

|L|∑
j=1

P(E1(2ℓj))

≤ 3 log(T )T−1/2+ j⋆+1
2⌊log(T )⌋ .

• Now, consider the probability that the worst arm gets discarded not after step 2ℓj⋆+1, i.e.

P

2ℓj⋆+1⋃
t=1

E2(t)

 .

Now, let αj⋆+1 =
log(ℓj⋆+1)
log(T ) − 1

2 . By design of the algorithm, at any time step 2ℓj , if an arm
does not satisfy the filtering condition it gets discarded, if it was active before that moment.
Formally,

{2 /∈ F2ℓj⋆+1(T
2αj⋆+1)} ⊂


2ℓj⋆+1⋃
t=1

E2(t)

 .

As before, the event {2 /∈ F2ℓj⋆+1(T
2αj⋆+1)} can be interpreted as the difference between

two random walks being negative, due to the fact that

ℓj⋆+1∑
τ=1

{R2τ,2 = 1} =
ℓj⋆+1∑
τ=1

1 {µ̂2τ,2 ≥ µ̂2τ,1}

=

ℓj⋆+1∑
τ=1

1(−∞,0]


τ∑

k=1

r1,k −
τ∑

j=1

r2,k︸ ︷︷ ︸
Gτ

 .

In this formulation, we have written the quantity of interest for the filtering condition at time
2ℓj⋆+1 as the time spent by the random walk Gτ in the interval (−∞, 0], for τ = 1, . . . ℓj⋆+1.
This time, the drift term is

E[r1,k − r2,k] = µ1 − µ2 = ∆.

Therefore, we can apply theorem 12 for α = αj⋆ , since, by assumption

∆ = (4 log(T ) + 2)︸ ︷︷ ︸
≥4log(T )

∆̃︸︷︷︸
≥T

−
j⋆+1

2⌊log(T )⌋

.

This theorem leads to

P

2ℓj⋆+1⋃
t=1

E2(t)

 ≥ P

ℓj⋆+1∑
τ=1

1(−∞,0] (Gτ ) ≤ T 2αj⋆+1


thm.12
≥ 1− 2T−1/2. (7)

To conclude, note that we can decompose the regret in the following way:

30



Under review as a conference paper at ICLR 2024

RT ≤ T∆P

(
T⋃

t=1

E1(t)

)
︸ ︷︷ ︸

RT,o

+∆2ℓj⋆+1 +∆T

1− P

2ℓj⋆+1⋃
t=1

E2(t)


︸ ︷︷ ︸

RT,ρ

,

where the first part is associated to the discarding of the optimal arm and the second to the fact that
the suboptimal is not discarded fast enough. Precisely, the term ∆2ℓj⋆+1 corresponds to the regret

done in the first 2ℓj⋆+1 time steps in case no arm is discarded, while ∆T
(
1− P

(⋃2ℓj⋆+1

t=1 E2(t)
))

is the regret in case arm 2 is not discarded at step 2ℓj⋆+1 multiplied by ∆T ; being T ≥ 2ℓj⋆+1, this
quantity is an upper bound for the true regret. We can use the results just found to bound both parts.

• Regret due to discarding the optimal arm:

RT,o = T∆P

(
T⋃

t=1

E1(t)

)

≤ T × T− j⋆
2⌊log(T )⌋P

(
T⋃

t=1

E1(t)

)
≤ T × (4 log(T ) + 2)T− j⋆

2⌊log(T )⌋ × 3 log(T )T−1/2+ j⋆+1
2⌊log(T )⌋

= C0T
1/2T− j⋆

2⌊log(T )⌋+
j⋆+1

2⌊log(T )⌋

≤ C0T
1/2T

1
2⌊log(T )⌋

= C0T
1/2e

log(T )
2⌊log(T )⌋ ≤ C0

√
4T 1/2 = 2C0T

1/2.

where C0 := (4 log(T ) + 2)3 log(T ). In this chain of inequalities we have used the result
of the first part of the proof, plus trivial algebraic manipulations.

• Regret due to not discarding the suboptimal arm fast enough

RT,ρ = ∆2ℓj⋆+1 +∆T

1− P

2ℓj⋆+1⋃
t=1

E2(t)


Here, knowing that ∆̃ ∈

(
T 1/2

ℓj⋆+1
, T 1/2

ℓj⋆

]
, the first part is bound by

2ℓj⋆+1(4 log(T ) + 2)
T 1/2

ℓj⋆
= (8 log(T ) + 4)T 1/2 ℓj⋆+1

ℓj⋆
.

where we can use proposition 14 to bound the ratio ℓj⋆+1

ℓj⋆
with 2, so that this part is bounded

by (16 log(T ) + 8)T 1/2.

Finally, about the last part we have by equation 7,

∆T

1− P

2ℓj⋆+1⋃
t=1

E2(t)

 ≤ ∆T
(
1− 1 + 2T−1/2

)
≤ T 1/2∆.

Since ∆ is assumed to be less than one, this part of the regret is bounded by T 1/2.

In the end, summing the two terms RT,o, RT,ρ, we can obtain the following upper bound on the
expected regret:

RT ≤
(
(24 log(T ) + 12) log(T ) + 16 log(T ) + 8 + 1

)√
T ,
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which can be also written as

RT ≤
(
24 log(T )2 + 28 log(T ) + 9

)√
T .

which concludes the proof for two arms. This proof can be easily generalized to an arbitrary number
of arms by making the following steps:

1. Without loss of generality, we can assume that all arms are ordered, so that 0 = ∆1 < ∆2 <
· · · < ∆n.

2. We consider the cases in which for every i < n it holds 2∆i ≤ ∆i+1. It can be proved that
this step is also done without loss of generality, as a general bandit instance can be reduced
to an instance of this type by at most doubling the regret.

3. Fix an arm i with corresponding gap ∆ > T−1/2 (arms with smaller ∆ cannot contribute
significantly to the regret). Similarly to Theorem 6, denote with j⋆ ∈ {0, . . . ⌈log(T )⌉} the

integer such that ∆ ∈
(
T− j⋆+1

2⌊log(T )⌋ , T− j⋆
2⌊log(T )⌋

]
.

4. With the same computation of Theorem 6, it is possible to prove that the probability of i
eliminating an arm with lower index is bounded by Õ

(
T−1/2+ j⋆+1

2⌊log(T )⌋

)
. In the same way

it is proved that the probability of arm i to survive more than ⌊T 1/2+ j
2⌊log(T )⌋ ⌋ rounds when

an arm with lower index is active is bounded by 2T−1/2.

5. From point 4, the expected number E[Zi(T )] of pulls of arm i is bounded by

(2T−1/2 + T−1/2+ j⋆+1
2⌊log(T )⌋ )T + ⌊T 1/2+ j

2⌊log(T )⌋ ⌋ = Õ(T 1/2+ j⋆+1
2⌊log(T )⌋ ),

which makes ∆E[Zi(T )] = Õ(T 1/2). By multiplying this by the number of arms (n), we
obtain the desired result.

C PROOF FOR ADVERSARIAL SETTING

Theorem 8. In adversarial bandits with ranking feedback, no algorithm achieves o(T ) regret with
respect to the best arm in hindsight with a probability of 1− ϵ for any ϵ > 0.

Proof. This negative result follows from the impossibility to achieve RT ≤ CT regret by any
algorithm, with C properly set constant and probability 1 − ϵ̄, in all three instances reported next.
Please notice that, this result implies that even the No-Regret property cannot be achieved in the
Bandit with Ranking Feedback setting.

Without loss of generality we consider rewards function bounded in [0, 10]. Consider three instances,
with two arms a0, a1 for each and the associated rewards, defined as follows:

Instance 1 :

{
a0 : 1

2 ∀t ∈ 1 , 1
2 ∀t ∈ 2 , 1

2 ∀t ∈ 3

a1 : 0 ∀t ∈ 1 , 0 ∀t ∈ 2 , 0 ∀t ∈ 3

Instance 2 :

{
a0 : δ ∀t ∈ 1 , 0 ∀t ∈ 2 , 0 ∀t ∈ 3

a1 : 0 ∀t ∈ 1 , 1 ∀t ∈ 2 , 1 ∀t ∈ 3

Instance 3 :

{
a0 : δ ∀t ∈ 1 , 0 ∀t ∈ 2 , 10 ∀t ∈ 3

a1 : 0 ∀t ∈ 1 , 1 ∀t ∈ 2 , 0 ∀t ∈ 3
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where Phase 1 is made by the first T/4 rounds, Phase 2 is made by the next T/4 rounds, Phase
3 is made by the last T/2 rounds and δ is near to 0.

In phase 1 all the instances have the same ranking feedback, as the first action gives higher rewards
with respect to the second one. To make instance 1 receive RT ≤ CT , it is necessary:

1

2
T − 1

2
E[na0

] ≤ CT ⇒ E[na0
] ≥ (1− 2C)T (8)

where na0 is the number of times the first arm has been pulled, and the expected value is taken on the
randomization of the algorithm. From previous equation we obtain that in all instances:

E
[
n

1

a0

]
≥ (1− 2C)T − 3

4
T = (1− C1)T/4 (9)

where C1 = 8C, na0
is the number of time the first arm has to be pulled in phase 1 and the

inequality is computed considering that a0 is played in all the next phases.
By reverse Markov inequality:

P
(
n

1

a0 > (1− C̄1)T/4

)
≥ C̄1 − C1

C1
(10)

Setting the probability equal to 9/10 we obtain:

C̄1 = 10C1 (11)

from which follow that with probability 9/10 we have:

n
1

a0 > (1− 10C1)T/4 (12)

and consequently:

n
1

a1 ≤ 10C1T/4. (13)

We observe that in the second Phase, Instances 2 and 3 have the same feedback. Proceeding as
done before, to make instance 2 receive RT ≤ CT it is necessary:

3

4
T − E [na1 ] ≤ CT ⇒ E[na1 ] ≥

(
3

4
− C

)
T (14)

From previous equation we obtain that in instances 2 and 3 :

E
[
n

2

a1

]
≥
(
3

4
− C

)
T − T/2 = (1− C2)T/4 (15)

where the inequality is computed considering that a1 is played in the next phases and C2 = 4C. By
Reverse Markov Inequality, we obtain that, with probability 9/10:

n
2

a1 > (1− 10C2)T/4 (16)

and consequently:

n
2

a0 ≤ 10C2T/4 (17)
We neglect the δ value for now, as it can be chosen to be insignificant with respect to the previous
computation.
Now we focus on the third phase, in which instance 2 should play:

E
[
n

3

a1

]
≥
(
3

4
− C

)
T − T/4 = (1− C3)T/2, (18)

where C3 = 2C. By Reverse Markov Inequality, we obtain that, with probability 9/10:

n
3

a1 > (1− 10C3)T/2 (19)
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and consequently:

n
3

a0 ≤ 10C3T/2 (20)
Now, we compute the number of rounds needed in the third instance to switch the ranking in the third
phase, namely q. Notice that, until this switch, the last two instances receive the same feedback.
We compute q in the best-case scenario (that is, when small q value is sufficient to allow the switch)
that satisfies the constraints previously shown. Precisely, q is computed so that the empirical mean of

arm a0 is greater then the arm a1 one, given that n
1

a0 > (1− 10C1)T/4 and n
2

a1 > (1− 10C2)T/4.
Formally:

0(1− 10C1)T/4 + 10q

q + (1− 10C1)T/4
≥ 0C110T/4 + (1− 10C2)T/4 + 0T/2

10C1T/4 + (1− 10C2)T/4 + T/2
(21)

We now show that for proper C value we can lower bound the right side with 1
4 . In particular:

0C110T/4 + (1− 10C2)T/4 + 0T/2

10C1T/4 + (1− 10C2)T/4 + T/2
>

1

4
⇒ C < 1/200 (22)

which means that, for C < 1
200 , we can substitute the right side of the equation with 1

4 to simplify the
computation. Moreover, notice that gap between 1

4 and 0C110T/4+(1−10C2)T/4+0T/2
10C1T/4+(1−10C2)T/4+T/2 allowed us to

neglect the computations with δ. Then:

0(1− 10C1)T/4 + 10q

q + (1− 10C1)T/4
≥ 1/4⇒ q ≥ 4

39

(
1

4
− 20C

)
T/4 (23)

To achieve a contradiction, it sufficient to find C so that q + n
3

a1 > T/2; indeed, the previous
inequality shows the impossibility to gain enough rewards to make the ranking change and, at the
same time, guarantee the minimum rewards to make instance 2 No-Regret. Given that the ranking
switch is a necessary condition to make instance 3 No-Regret, the result of impossibility follows for:

4

39

(
1

4
− 20C

)
T/4 + (1− 20C)T/2 > T/2⇒ C <

1

1640
(24)

To conclude the proof, we show that the intersection between the events derived by Reverse Markov
Inequality (namely Ei with i ∈ [3]) holds with constant probability:

P

⋂
i∈[3]

Ei

 = 1− P

⋃
i∈[3]

Ec
i


≥ 1−

∑
i∈[3]

P(Ec
i )

= 1− 3

10
=

7

10

where the inequality holds by Union Bound. Substituting all the previous results in the definition of
Regret we obtain, with probability 7

10 = 1− ϵ̄ and C < 1
1640 , RT ≥ CT = Ω(T ) which concludes

the proof.

D EXPERIMENTS

For the sake of clarity, we report in the followings additional details on the four instances presented
in Figures 1,2:

• Instance of Figure 1a: time horizon T = 2 · 105, arms n = 4, mean reward vector

µ = [0.9, 1.05, 1.12, 1.15],

unitary variance for each arm, ∆min = 0.03;
• Instance of Figure 1b: time horizon T = 2 · 105, arms n = 6, mean reward vector

µ = [0.03, 0.07, 0.1, 0.08, 0.97, 1],

unitary variance for each arm, ∆min = 0.03;
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(a) Instance with ∆min = 0.03 and all the gaps small
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(b) Instance with ∆min = 0.03 and the other gaps big

Figure 3: Normalized cumulative regret for ∆min < 0.05 (averaged over 50 runs; 95% confidence
interval).
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(a) Instance with ∆min = 0.5
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(b) Instance with ∆min = 0.25

Figure 4: Normalized cumulative regret for ∆min ≥ 0.25 (averaged over 50 runs; 95% confidence
interval).

• Instance of Figure 2a: time horizon T = 2 · 105, arms n = 4, mean reward vector

µ = [0.05, 0.25, 0.5, 1.0],

unitary variance for each arm, ∆min = 0.5;

• Instance of Figure 2b: time horizon T = 2 · 105, arms n = 8, mean reward vector

µ = [0.05, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 1.0],

unitary variance for each arm, ∆min = 0.25;

D.1 NORMALIZED REGRET

In the following, we propose additional plots related to the four instances previously described. In
particular, we plot the normalized cumulative regret, computed as Rt/

√
t, ∀t ∈ [T ]. This empirical

evaluation shows that, empirically, R-LPE attains a regret bound of order Õ
(√

T
)

.

D.2 DETAILED EXPLANATION OF THE EXPERIMENTS

In this section, we report all the details of the experiments performed in the paper. These are important
to ensure the truthfullness of the results and the claims based on empirical validation.
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Training Details In the main paper we have presented four experiments, each corresponding to
a different environment. Each experiment is performed for fifty random seeds, ad the computation
is split in 10 parallel processes by the library joblib. The overall computational time for one
experiment is around 337.92 seconds, that is roughly five minutes and one half.

Compute As stated, the numerical simulations resulted to be very fast. For this reason, it was not
necessary to run them on a server, and we used a personal computer with the following specifications:

• CPU: 11th Gen Intel(R) Core(TM) i7-1165G7 2.80 GHz

• RAM: 16,0 GB

• Operating system: Windows 11

• System type: 64 bit

Reproducibility Due to the stochastic nature of the bandit problem, all the simulations have been
repeated several times. We have performed all the experiments with 50 different random seeds,
corresponding precisely to the first 50 natural numbers. The seed influences the generation of the
reward by the environment, while all algorithms proposed, being deterministic, are independent on
the seed.
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