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Appendix — Legolas: Deep Leg-Inertial Odometry

In this Appendix, we include additional details about the following:

A Further details regarding the training of Legolas such as improvements to the chosen archi-
tecture and details of data collection.

B Elaborations of the loss used to train Legolas.

C Explanation of the steps taken to improve deployment of the baseline methods and details
of the deployment of Legolas.

D Additional trajectories visualizations on the validation dataset and in real-world deploy-
ments.

A Further Training and Data Collection Details of Legolas
Training and data collection details are provided to improve the reproducibility of Legolas.

A.1 Training Details

During deployment, it was found that the default 1D ResNet architecture [37] had too many pa-
rameters, causing slower than desired model prediction on real-world hardware. Fine-tuning of the
model, by reducing the number of residual layers from 3 to 2 decreased the number of parameters
in the network from 4.7M to 1.5M allowing for successful deployment. As shown in Tab. 3, this led
to no substantial change in the relevant metrics.

# Model Parameter Sized | RPEQ1im |  ATE, |

1 4™ 0.045 0.017
2 1.5M (Ours) 0.050 0.016

Table 3: Effect of Model Size on Validation Performance. While decreasing the size of the model
reduced model performance in RPEQ1m, ATE, improved slightly when using the smaller model.
Due to the changes not substantially changing the relevant metrics, but boosting on-board speed, the
smaller model was utilized for deployment.

A.2 Data Collection

The only difference in Legolas for training the pose prediction model P for the Go2 and Lite3
occurs during dataset collection, the ‘urdf” file that describes the robot’s kinematics is changed for
the respective robots.

| X £
\ o 1
y |
Ry WP
Ty €
» 29\ N \&

Figure 5: Snapshot of robots collecting trajectories in simulation as performed in Sec. 3.1.

To collect a given trajectory, a robot follows its policy & with a random velocity command with
a target linear velocity uniformly sampled from [—2.0,2.0] ™. A target linear velocity between
[—0.15,0.15] ™* is instead set to O in order to add standing and rotating in-place behaviors into our
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dataset. A target angular velocity in yaw is then uniformly sampled from [—7, 7] 22, If an angular

S
velocity is chosen between [—0.05, 0.05] %i, the angular velocity is set to 0 to create more walking
forward behaviors in our dataset as this is a common motion in the real world. This large range of
linear and angular velocities covers the full range of motions possible with 7. A visualization of the

training environment can be found in Fig. 5.

B Training Loss Details

# Rotation Representation \ RPEQ1m | ATE, |

1 Yaw-Pitch-Roll 0.233 0.023
2 6D [45] (Ours) 0.050 0.016

Table 4: 6D rotation improves validation metrics. Predicting changes in the 6D rotation produced
better odometry prediction (RPEQ1m decreased by 78.5%) when compared to predicting the changes
in yaw, pitch, and roll.

During training and deployment, different rotation representations were utilized. Using a 6D rep-
resentation [45] during training improved performance on relevant metrics on the validation split
as demonstrated in Tab. 4. More specifically, during training, APp is a 6D representation, and
the ground-truth incremental motion of the robot is converted into a 6D representation. Otherwise,
during deployment and data collection, a matrix representation is utilized.

C Robotics Experiment Details

Legolas is deployed on real-world hardware with a frequency of 50 Hz to match the frequency used
in the simulator. However, with the optimizations provided in Sec. A.1, the model is capable of
being run at up to 600 Hz on the Jetson Orin Nano.

During deployment of Legolas, the incremental motion of the robot is predicted at every time step.
To estimate the trajectory of the robot, these predictions are accumulated. After converting the
output of the models to an SE(3) matrix at some arbitrary step i, S;, the state at the current step, j,
can be computer as S = 5;5;_1...5.

C.1 Visual-Inertial Odometry Deployment Details

(a) 0.0 seconds (b) 0.25 seconds (c) 0.5 seconds (d) 0.75 seconds (e) 1.0 seconds

Figure 6: Quick motions and large changes in rotation occuring over one second. These quick
motions cause degraded image captures on the quadruped affecting the deployment of the visual
baseline. Changes in pitch (Fig. 6a,6b,6c,6d,6¢e) and roll (Fig. 6a and Fig. 6e) are notable.

VINS-Fusion found successful deployment when carefully tuned using tools including
‘imu_utils’ [39, 46] and ‘Kalibr’ [40]. imu_tools is utilized to retrieve relevant IMU statistics used
by both the EKF and VINS-Fusion baselines such as the gyroscope’s and accelerometer’s bias and
noise. Kalibr was used to find the extrinsic matrix of the camera frame with respect to the IMU
frame and to find the timing offset between the camera and the IMU. With these steps, more manual
fine-tuning of the parameters was required for deployment.

However, direct deployment to outdoor environments of the previously tuned and measured param-
eters failed. We found that quick motions and rotations such as the one visualized in Fig. 6 became

13



434 exaggerated on a quadruped robot. Furthermore, interactions between the sun and the onboard cam-

435 era caused degraded depth prediction and tracking. Using a polarized film with a metal shield around
436 the camera reduced this error mode, but still didn’t lead to consistent results as shown in Fig. 7.

(a) Stereo camera without shield (b) Stereo camera with shield and (c) Stereo camera with shield and
and full cloud coverage. full cloud coverage. no cloud coverage.

Figure 7: A camera shield is necessary for VINS-Fusion deployment. Without the camera shield,
the stereo camera equipped on the robot fails to capture the scene due to interference. However, we

still find issues with outdoor deployment of VINS-Fusion if the environment is sunny even when
equipped with shielding.
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D Additional Trajectory Rollouts

Additional validation rollouts: Fig. 8 demonstrates the superior trajectory reconstruction of using
the full sensing suite rather than just the IMU. The use of the full sensing suite allows Legolas to
directly predict the incremental motions of the robot rather than rely on analytical models of the
robot.

Additional real-world rollouts: Supplementing the rollout given in Fig. 3a, additional rollouts are
visualized. Fig. 9 demonstrates the robot moving in a straight line in an indoor scene. In this
scenario Legolas tracks the straight line while VINS-Fusion suffers from losing visual tracking due
to reflections on the floor. Fig. 10 demonstrates the robot moving in a double circular pattern
in an indoor environment. In this scenario, Legolas is able to track the ground-truth. The EKF
baseline is capable of reproducing a similar shape up until the 1st completed loop where its trajectory
reconstruction degrades.

Ours IMU Only
0 0
2 -2
-4 -4
E
>
_6 _6 -
-8 -89
—10 A —10 A
-4 -2 0 2 4 6 -4 -2 0 2 4 6 8
x[m] : . x[m]
— Estimate — Ground Truth
Qurs IMU Only
5.0 1 5.0 1
E
= 2.5 2.5
0.0 e 0.0
0 5 10 15 20 0 5 10 15 20
x [m] x [m]
— Estimate Ground Truth

Figure 8: Top-Down visualization of rollouts of Legolas trained with different sensing modal-
ities. Legolas demonstrates improved odometry prediction through its use of the full sensing suite
on the robot. Previous work has attempted to estimate displacements through learning with only the
IMU sensor, this produces inferior predictions.
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Figure 9: Straight line rollout. In this scenario the robot moves in a straight line for approximately
23 meters. Legolas tracks the trajectory, while VINS-Fusion suffers from losing visual tracking
around t(s) = 37 and the estimated position of the robot jumps.
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Figure 10: Circular rollout. In this scenario the robot moves in a circle two times, both VINS-
Fusion and Legolas are capable of tracking the ground-truth trajectory. EKF tracks closely until the
first loop is completed. BC is able to track the heading, but poorly track x and y positions.
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