
Appendix – Legolas: Deep Leg-Inertial Odometry382

In this Appendix, we include additional details about the following:383

A Further details regarding the training of Legolas such as improvements to the chosen archi-384

tecture and details of data collection.385

B Elaborations of the loss used to train Legolas.386

C Explanation of the steps taken to improve deployment of the baseline methods and details387

of the deployment of Legolas.388

D Additional trajectories visualizations on the validation dataset and in real-world deploy-389

ments.390

A Further Training and Data Collection Details of Legolas391

Training and data collection details are provided to improve the reproducibility of Legolas.392

A.1 Training Details393

During deployment, it was found that the default 1D ResNet architecture [37] had too many pa-394

rameters, causing slower than desired model prediction on real-world hardware. Fine-tuning of the395

model, by reducing the number of residual layers from 3 to 2 decreased the number of parameters396

in the network from 4.7M to 1.5M allowing for successful deployment. As shown in Tab. 3, this led397

to no substantial change in the relevant metrics.398

# Model Parameter Sized RPE@1m ↓ ATEu ↓
1 4.7M 0.045 0.017
2 1.5M (Ours) 0.050 0.016

Table 3: Effect of Model Size on Validation Performance. While decreasing the size of the model
reduced model performance in RPE@1m, ATEu improved slightly when using the smaller model.
Due to the changes not substantially changing the relevant metrics, but boosting on-board speed, the
smaller model was utilized for deployment.

A.2 Data Collection399

The only difference in Legolas for training the pose prediction model P for the Go2 and Lite3400

occurs during dataset collection, the ‘urdf’ file that describes the robot’s kinematics is changed for401

the respective robots.402

Figure 5: Snapshot of robots collecting trajectories in simulation as performed in Sec. 3.1.

To collect a given trajectory, a robot follows its policy π̂ with a random velocity command with403

a target linear velocity uniformly sampled from [−2.0, 2.0] m
s . A target linear velocity between404

[−0.15, 0.15] m
s is instead set to 0 in order to add standing and rotating in-place behaviors into our405
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dataset. A target angular velocity in yaw is then uniformly sampled from [−π, π] rad
s . If an angular406

velocity is chosen between [−0.05, 0.05] rad
s , the angular velocity is set to 0 to create more walking407

forward behaviors in our dataset as this is a common motion in the real world. This large range of408

linear and angular velocities covers the full range of motions possible with π̂. A visualization of the409

training environment can be found in Fig. 5.410

B Training Loss Details411

# Rotation Representation RPE@1m ↓ ATEu ↓
1 Yaw-Pitch-Roll 0.233 0.023
2 6D [45] (Ours) 0.050 0.016

Table 4: 6D rotation improves validation metrics. Predicting changes in the 6D rotation produced
better odometry prediction (RPE@1m decreased by 78.5%) when compared to predicting the changes
in yaw, pitch, and roll.

During training and deployment, different rotation representations were utilized. Using a 6D rep-412

resentation [45] during training improved performance on relevant metrics on the validation split413

as demonstrated in Tab. 4. More specifically, during training, ∆PR is a 6D representation, and414

the ground-truth incremental motion of the robot is converted into a 6D representation. Otherwise,415

during deployment and data collection, a matrix representation is utilized.416

C Robotics Experiment Details417

Legolas is deployed on real-world hardware with a frequency of 50 Hz to match the frequency used418

in the simulator. However, with the optimizations provided in Sec. A.1, the model is capable of419

being run at up to 600 Hz on the Jetson Orin Nano.420

During deployment of Legolas, the incremental motion of the robot is predicted at every time step.421

To estimate the trajectory of the robot, these predictions are accumulated. After converting the422

output of the models to an SE(3) matrix at some arbitrary step i, Si, the state at the current step, j,423

can be computer as S = SjSj−1...S0.424

C.1 Visual-Inertial Odometry Deployment Details425

(a) 0.0 seconds (b) 0.25 seconds (c) 0.5 seconds (d) 0.75 seconds (e) 1.0 seconds

Figure 6: Quick motions and large changes in rotation occuring over one second. These quick
motions cause degraded image captures on the quadruped affecting the deployment of the visual
baseline. Changes in pitch (Fig. 6a,6b,6c,6d,6e) and roll (Fig. 6a and Fig. 6e) are notable.

VINS-Fusion found successful deployment when carefully tuned using tools including426

‘imu utils’ [39, 46] and ‘Kalibr’ [40]. imu tools is utilized to retrieve relevant IMU statistics used427

by both the EKF and VINS-Fusion baselines such as the gyroscope’s and accelerometer’s bias and428

noise. Kalibr was used to find the extrinsic matrix of the camera frame with respect to the IMU429

frame and to find the timing offset between the camera and the IMU. With these steps, more manual430

fine-tuning of the parameters was required for deployment.431

However, direct deployment to outdoor environments of the previously tuned and measured param-432

eters failed. We found that quick motions and rotations such as the one visualized in Fig. 6 became433
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exaggerated on a quadruped robot. Furthermore, interactions between the sun and the onboard cam-434

era caused degraded depth prediction and tracking. Using a polarized film with a metal shield around435

the camera reduced this error mode, but still didn’t lead to consistent results as shown in Fig. 7.436

(a) Stereo camera without shield
and full cloud coverage.

(b) Stereo camera with shield and
full cloud coverage.

(c) Stereo camera with shield and
no cloud coverage.

Figure 7: A camera shield is necessary for VINS-Fusion deployment. Without the camera shield,
the stereo camera equipped on the robot fails to capture the scene due to interference. However, we
still find issues with outdoor deployment of VINS-Fusion if the environment is sunny even when
equipped with shielding.
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D Additional Trajectory Rollouts437

Additional validation rollouts: Fig. 8 demonstrates the superior trajectory reconstruction of using438

the full sensing suite rather than just the IMU. The use of the full sensing suite allows Legolas to439

directly predict the incremental motions of the robot rather than rely on analytical models of the440

robot.441

Additional real-world rollouts: Supplementing the rollout given in Fig. 3a, additional rollouts are442

visualized. Fig. 9 demonstrates the robot moving in a straight line in an indoor scene. In this443

scenario Legolas tracks the straight line while VINS-Fusion suffers from losing visual tracking due444

to reflections on the floor. Fig. 10 demonstrates the robot moving in a double circular pattern445

in an indoor environment. In this scenario, Legolas is able to track the ground-truth. The EKF446

baseline is capable of reproducing a similar shape up until the 1st completed loop where its trajectory447

reconstruction degrades.448

Figure 8: Top-Down visualization of rollouts of Legolas trained with different sensing modal-
ities. Legolas demonstrates improved odometry prediction through its use of the full sensing suite
on the robot. Previous work has attempted to estimate displacements through learning with only the
IMU sensor, this produces inferior predictions.
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Figure 9: Straight line rollout. In this scenario the robot moves in a straight line for approximately
23 meters. Legolas tracks the trajectory, while VINS-Fusion suffers from losing visual tracking
around t(s) = 37 and the estimated position of the robot jumps.
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Figure 10: Circular rollout. In this scenario the robot moves in a circle two times, both VINS-
Fusion and Legolas are capable of tracking the ground-truth trajectory. EKF tracks closely until the
first loop is completed. BC is able to track the heading, but poorly track x and y positions.
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