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A SAMPLE OF IMAGE COLLAPSE

In this section, we present examples where image collapse occurs. Figure 6 illustrates stego images
based on the mean of zm. When the mean is 0, similar to that of Gaussian noise, the diffusion
model successfully generates high-quality images. However, when the mean is higher or lower than
0, the images become brighter or darker, respectively. Figure 7 showcases stego images based on
the variance of zm. When the variance is 1, similar to that of Gaussian noise, the diffusion model
successfully generates high-quality images, too. However, when the variance is high, the models
fail to generate meaningful images, and when the variance is low, the images are oversimplified.
Figure 8 demonstrates three cases where the values of zm are not independent.

B TRICK FOR HIGHER ACCURACY

We introduce an additional projection called multi-channels projection, which enables the hiding of
small messages with higher accuracy compared to other projections.

Settings In this approach, two players, the sender and the receiver, are required to share additional
information compared to existing projections. Unlike the projections mentioned in the main paper,
they need to share a binary codebook, C ∈ {0, 1}3×W×H .

Multi-channels projection To improve accuracy, the sender hides multiple copies of the same
message within a single image following the MB projection, and sends it. However, in this scenario,
the values of zm are not independent, leading to image collapse as shown in Figure 8(a). To address
this issue, we utilize a codebook that is independent of the messages, ensuring the independence
of zm values. Before generating stego images, the sender modifies the sign of zm where C is 0.
Similarly, the receiver also modifies the sign of the extracted zm where C is 0. By checking the
messages multiple times, the receiver achieves higher accuracy.

Experiments We use the same experimental settings as described in Section 4. We consider two
cases for the multi-channel projection. In the first case, both players use the same codebook, while
in the second case, the players change their codebook for each stego image generated. We hide
messages with a capacity of 1.0 bpp, and the messages are replicated to three channels.

The results of the multi-channel projection are presented in Table 6. We observe that using the
multi-channel projection yields higher accuracy compared to the MB projection when hiding 1.0
bpp messages. However, when the codebook is not changed, the anti-detection ability of the multi-
channel projection decreases, likely due to the similarity among images generated with the same
codebook.

C MESSAGE ACCURACY ACCORDING TO IMAGE FORMAT

In this section, we present the accuracy results based on quantization to the image formats, PNG and
TIFF. We evaluate the accuracy for different datasets and all of our projection techniques, as shown
in Table 7.

The results show that saving the images in TIFF format yields higher accuracy compared to the PNG
and JPEG formats. Saving images in integer-type formats results in data loss and leads to distortion
in the ODE solution of the reversed process of diffusion models.

D IMPLEMENTATION DETAILS

In our experiments, we use the official code of PFGM++ (Xu et al., 2023) built upon the official
code of EDM (Karras et al., 2022). We adopt the same hyper-parameters as EDM and PFGM++. We
set σmax = σT = 80, σmin = 0.002, and ρ = 7. These hyper-parameters determine the standard
deviation of x(t), which represents the noise in the denoising process. When the number of denoising
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Figure 6: The influence of the mean value on stego images.
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Figure 7: The influence of the variance value on stego images.

(a) (b) (c)

Figure 8: Three examples of stego images where the values of zm are not independent. (a) The
values within the same pixel share the same sign. (b) The inputs of first and second channel are the
same. (c) The algorithm of se-S2IRT with hyper-parameter K = 2.
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Table 6: Results of the MB projection and multi-channel projection hiding 1.0 bpp messages. ∗:
changing the codebook for each sampling.

Datasets Projection Acc ↑ Pe ↑ Fid ↓

FFHQ
MB (1.0 bpp) 98.12 0.427 2.77
Multi-channel 99.88 0.274 2.42
Multi-channel∗ 99.81 0.307 2.46

AFHQ
MB (1.0 bpp) 98.03 0.396 2.21
Multi-channel 99.76 0.321 4.43
Multi-channel∗ 99.71 0.395 4.18

inference steps is N , the standard deviation of the noise after denoising i times is as follows:

σmax
1
ρ +

i

N − 1
(σmin

1
ρ − σmax

1
ρ ). (3)

For our method, we use Heun’s sampler (Karras et al., 2022), which is based on Heun’s method (As-
cher & Petzold, 1998) for sampling images. Heun’s method is a numerical integrator that reduces
errors through performing two calculations in each step. In the extraction function, denoted as f−1

θ ,
we employ Heun’s method to estimate zm, which corresponds to the reversible calculation of Heun’s
sampler using the same hyper-parameters.

E ABLATION STUDIES ON HIGH-RESOLUTION MODELS

We extend our method to high-resolution models, which generate images at a resolution of 256×256
pixels. We utilize pre-trained EDM models as provided by the authors of the Consistency mod-
els (Song et al., 2023) and pre-trained ADM (Dhariwal & Nichol, 2021) models trained on LSUN
Cat and Bedroom (Yu et al., 2015) datasets. We generate 100 stego images to evaluate accuracy of
message extraction.

Pre-trained EDM The accuracy results of high-resolution pre-trained EDM models are presented
in Table 8. While the MB method achieves reasonably favorable performance, it’s important to note
that the EDM is primarily designed for generating low-resolution images, a resolution of 32×32 or
64×64 pixels. Thus, EDM might not be optimal to generate high-resolution images. We anticipate
that enhancements in the EDM approach could potentially improve the performance of our method
in high-resolution settings. Additional samples images are provided in Figure 9 and 10.

Pre-trained ADM We verify the applicability of the MN method to the pre-trained ADM in these
experiments. In this experiment, we reduce the sampling steps to 100 from 1000. Additionally, we
skip the final sampling step due to the different structure of ADM compared to EDM. While ADM
produces images using discrete time steps, EDM generates images using continuous time steps.

The result of the pre-trained models are shown in Table 9. To stabilize the performance, we in-
corporate rejection sampling in the experiment. When the accuracy of message extraction is lower
than 0.5, we only resample a Gaussian noise and generate stego images while keeping the hidden
messages unchanged. We observe that certain stego images generated using the Cat dataset were
unsuccessful in recovering the hidden messages, as depicted in Figure 11.

The results of ADM show similar or higher performance in message accuracy compared to the MN
method. This can be attributed to the structure of ADM. However, using ADM comes with a high
computational cost and results in lower image quality when compared to using pre-trained EDM.

F APPLYING ON PRE-TRAINED TEXT-TO-IMAGE MODELS

Our method can be extended to large-scale text-to-image models, which generate images with text
guidance. In this case, the sender and the receiver should share two additional pieces of information:
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Table 7: The extracted message accuracy from 1000 images. The same set of secrets is applied to all
experiments.

Datasets Projection Bpp w/o quantization To TIFF To PNG To JPEG

AFHQ

MN
1.0 97.71 97.62 87.35 79.25
2.0 97.39 97.28 85.80 77.75
3.0 97.55 97.45 86.52 78.27

MB
1.0 100.00 100.00 98.01 90.63
2.0 100.00 100.00 98.18 90.09
3.0 100.00 100.00 99.14 92.49

MC
1.0 99.98 99.97 92.72 78.34
2.0 99.98 99.97 90.99 75.76
3.0 99.99 99.98 93.48 77.93

Multi-bits

4.0 99.98 99.98 96.34 86.42
5.0 99.94 99.93 93.16 81.89
6.0 99.91 99.89 91.58 78.94
9.0 99.20 99.13 83.18 70.97

FFHQ

MN
1.0 98.60 98.45 87.92 79.23
2.0 98.56 98.38 86.64 78.30
3.0 98.60 98.42 87.00 78.26

MB
1.0 100.00 100.00 97.96 89.78
2.0 100.00 100.00 98.10 89.75
3.0 100.00 100.00 98.64 90.32

MC
1.0 100.00 99.99 93.33 77.18
2.0 100.00 99.99 92.16 76.26
3.0 100.00 100.00 93.46 76.85

Multi-bits

4.0 100.00 99.99 95.61 84.77
5.0 99.99 99.97 92.45 80.57
6.0 99.99 99.97 91.08 77.82
9.0 99.71 99.64 82.25 69.82

CIFAR-10

MN
1.0 97.55 97.38 84.51 76.40
2.0 97.54 97.36 83.72 76.19
3.0 97.62 97.36 84.49 76.58

MB
1.0 100.00 100.00 94.51 85.11
2.0 100.00 99.99 94.23 84.22
3.0 100.00 99.99 94.78 84.26

MC
1.0 99.97 99.94 84.91 70.83
2.0 99.97 99.93 84.54 69.98
3.0 99.98 99.95 85.26 70.65

Multi-bits

4.0 99.94 99.91 89.54 78.50
5.0 99.90 99.85 86.16 75.15
6.0 99.86 99.79 83.98 72.51
9.0 98.93 98.71 75.96 66.14

Table 8: Results of message accuracy using pre-trained high-resolution EDM.

Method Cat Bedroom
1 bpp 2 bpp 3 bpp 1 bpp 2 bpp 3 bpp

MN 78.17 78.37 78.00 73.44 73.07 73.62
MB 89.34 90.40 90.80 82.47 82.76 83.04
MC 75.99 76.51 76.51 68.20 67.66 69.24
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(a) MN method with 3 bpp (b) MB method with 3 bpp (c) MC method with 3 bpp

Figure 9: Stego images generated by pre-trained EDM model with LSUN Cat dataset.

(a) MN method with 3 bpp (b) MB method with 3 bpp (c) MC method with 3 bpp

Figure 10: Stego images generated by pre-trained EDM model with LSUN Bedroom dataset.

input text prompt and guidance scale. We use Stable diffusion (Rombach et al., 2022) v1.4, an open-
source model trained in the latent space of VAE (Kingma & Welling, 2013). During inference, the
diffusion model generates 4×64×64 latent features, which are then decoded to 512×512 size images
with VAE. Thus, Diffusion-Stego can conceal 0.0625 bpp messages when using Stable diffusion.
Figure 12 shows the samples generated by Stable diffusion using the MB projection.

We also measure message accuracy using Stable Diffusion. Specifically, we generated 20 images
for each example text provided by the demo page of Stable Diffusion and calculated the accuracy
for 0.0625 bpp messages using the MB method. The results for message accuracy are presented in
Table 10, and sample images can be found in Figure 13.

The result demonstrate that message accuracy depends on the text conditions, and the task of
Diffusion-stego does not affect the generation of text conditions in Stable diffusion.

G COMPARISON WITH LISO

We conducted a comparison between Diffusion-stego and LISO (Chen et al., 2022). LISO com-
prises two tasks: training the encoder and optimization through iterations, similar to FNNS (Kishore
et al., 2021). For these experiments, we mainly use FFHQ dataset and pre-trained EDM to train and
evaluate both LISO and Diffusion-stego.

Training LISO To compare LISO and Diffusion-stego, we generate FFHQ 64×64 images and
use them as cover images in LISO model. However, we observed that training LISO model with
generated images shows low performance, it is because that LISO is designed to use with high-
resolution images. We train LISO model with 1000 FFHQ 1024×1024 images, and the ablation
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(a) Acc : 18.63% (b) Acc : 39.78% (c) Acc : 91.09% (d) Acc : 96.16%

Figure 11: Failure case (a),(b) and successful case (c), (d) of ADM with LSUN Cat dataset.

Table 9: Accuracy results of the pre-trained ADM. If the accuracy is below 0.5, we perform a re-
sampling procedure involving only random noise while keeping the message fixed in the rejection
sampling task.

Method Cat Cat (Rejection) Bedroom

MN 1 bpp 70.89 88.74 87.20
MN 2 bpp 73.22 88.91 87.81
MN 3 bpp 69.28 88.92 87.88

results are presented in Table I. In comparison experiment, we employ LISO models trained with
high-resolution images for evaluation.

Experiments In this experiment, we generate the same number of images used to the experiments
of the Section 4. We hide 3 bpp message using LISO and Diffusion-stego with the MB method,
and Table 12 shows the results. Using the LISO model yielded higher accuracy compared to using
Diffusion-stego; images generated with LISO are more distinguishable than those generated with
Diffusion-stego.

This result shows that generative steganography methods are effective in concealing secret mes-
sages within low-resolution settings. When working with low-resolution images, the objects within
the images are often compact. This indicates that there is limited space available for hiding secrets.
We hypothesize that the difficulty in training LISO using low-resolution generated images stems
from this issue. In such compact conditions, generative steganography methods that can utilize im-
age objects as the secrets, offer advantages for effective secret hiding than image steganography
methods.

H POTENTIAL SOCIAL IMPACT

We propose a powerful generative steganography that can enhance information security. In scenarios
involving wiretapping and vulnerable communications, Diffusion-Stego provides protection against
third-party players attempting to access user information. However, it also introduces certain risks
as malicious individuals or industrial spies may exploit it to compromise corporate confidentiality.
Since our generative steganography approach relies on pre-trained diffusion models, it becomes
susceptible to such exploitation. Further research in steganalysis and developing safeguards against
the misuse of pre-trained diffusion models is necessary to address these risks.

I ADDITIONAL SAMPLES

We present additional samples of stego images generated by pre-trained models trained on AFHQv2
and FFHQ 64×64 datasets in Figure 15, 16, and 17. The stego images generated using the CIFAR-10
dataset are displayed in Figure 18 and 19.
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(a) (b)

(c) (d)

Figure 12: Sample stego images generated by Stable diffusion. Stable diffusion can generate high-
quality images while hiding secret messages. (a) ‘A painting of Gogh’ (Acc: 92.09%). (b) ‘A pho-
tograph of a surfer’ (Acc: 98.25%). (c) ‘A photograph of a corgi sitting on a couch’ (Acc: 97.04%).
(d) ‘A photograph of a teddy bear taking a photo’ (Acc: 98.04%).

(a) (b) (c) (d) (e)

Figure 13: Stego images generated by Stable Diffusion with 5 different text conditions : (a)-A high
tech solarpunk utopia in the Amazon rainforest, (b)-A pikachu fine dining with a view to the Eiffel
Tower, (c)-A mecha robot in a favela in expressionist style, (d)-an insect robot preparing a delicious
meal, (e)-A small cabin on top of a snowy mountain in the style of Disney, artstation.

Table 10: Result of message accuracy using Stable diffusion models and the MB method.
Metric Amazon Eiffel Tower Mecha robot Insect robot Cabin

Acc↑ 96.81 93.22 98.14 96.96 97.59
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Table 11: Result of training LISO models with different images. Using high-resolution images for
training shows higher performance.

Models Acc ↑ SSIM↑ PSNR↑
LISO with generated images ( 64×64 ) 92.19 0.827 23.31

LISO with high-resolution images ( 1024×1024 ) 99.98 0.919 28.52

Table 12: Comparison result of LISO and Diffusion-stego.
Method Acc ↑ Pe ↑ Fid ↓

Diffusion-stego (MB) 98.76 0.310 4.30
LISO 99.98 0.001 74.3

Figure 14: Stego images generated by LISO and pre-trained EDM.
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𝑷𝒓𝑵

1.0 bpp 3.0 bpp2.0 bpp

𝑷𝒓𝑩

𝑷𝒓𝑪

Figure 15: AFHQv2 64×64 stego images with pre-trained EDM models.

𝑷𝒓𝑵

1.0 bpp 3.0 bpp2.0 bpp

𝑷𝒓𝑩

𝑷𝒓𝑪

Figure 16: FFHQ 64×64 stego images with pre-trained EDM models.
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AFHQ

FFHQ

4.0 bpp 6.0 bpp5.0 bpp

Figure 17: Stego images with pre-trained EDM models and the multi-bits projection.

(a) MN (b) MB (c) MC

Figure 18: CIFAR-10 stego images with pre-trained EDM models hiding 3.0 bpp messages.

(a) 4.0 bpp (b) 5.0 bpp (c) 6.0 bpp

Figure 19: CIFAR-10 stego images with pre-trained EDM models and the multi-bits projection.
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