
Figure 8: Haptics-based Curiosity (HaC) Overview Top: An agent perceives a scene visually and
anticipates the force/torque (FT) sensation of interacting with an object. Bottom: The object interac-
tion leads to an unexpected FT sensation, which gives a positive reward to the policy, leading to an
exploration policy that is seeking interactions that are haptically surprising. The agent’s experiences
gained in this way are later relabeled to become task-specific.

7 Supplementary Material

In this Supplementary Material section, we provide additional details concerning various elements
which could not be elaborated on in the main paper. We begin with a detailed description of the
proposed MiniTouch benchmark. We outline the action space, state space, and reward structure for
each of the tasks. This is followed by a closer look into the various aspects of the haptics-control
module including architectures, experimental procedures, hyper-parameters, and additional results.
We include an ablation experiment at the end that investigates the usefulness larger exploration phase
while solving each of the tasks.

7.1 MiniTouch Tasks

This section describes the cross-modal benchmark of simulated manipulation tasks, which we make
use of and release as part of the paper. Unlike these prior simulation benchmarks, we particularly
focus on providing a platform where one can use cross-modal information to solve diverse manipu-
lation tasks. Existing benchmarks Yu et al. [55] do not include touch modality. An overview of the
tasks in MiniTouch is outlined in Figure 2. These tasks are built off Pybullet [54] physics engine
and contain different scene setups for each of the four tasks. The details of each of these tasks are
further expanded. All the four tasks are compiled together as a “MiniTouch” benchmark suitable for
evaluating interaction-based algorithms.

Playing: This environment is intended as a toy task to evaluate interaction frequency and does not
feature any reward beyond interaction count. A cube is placed in a random position on a table at
each episode. The agent needs to localize and interact with the cube.

Pushing: In this task, the agent needs to push an object placed randomly on a table to a target
(visually indicated as a gray cube). The object position is sampled uniformly in polar coordinates
around the target object (i.e. angle 0 to 360 degrees, distance 10 to 20 centimeters). The end
effector’s start position is sampled in the same way as the target position. In addition, the orientation
of the gripper is fixed to be perpendicular to the ground all the time. The robot agent succeeds
and receives a reward of +25 if the distance between the cube and the target object is less than 7
centimeters. A new episode starts if the agent succeeds. The environment also restarts if the cube is
placed or pushed beyond a predefined bounding box comprising of acceptable positions on the table
(i.e. positions that can be reached by the robot hand).

Opening: A cabinet with a door is randomly placed in reach of the agent. The goal is to find the
door handle and open the door. The gripper orientation is fixed to point its fingers towards the door,
parallel to the ground. For this task, the fingers are discretized to be open or closed. In addition, a
fifth element is added to the action vector to control the yaw (relative rotation of the end-effector)
to be able to approach the door. The robot succeeds and receives a reward of +25 when the angle of
the door opening reaches thirty degrees or higher. Similar to the pushing task, a new episode starts
if the agent reaches the goal.

12



Pick-up: In this environment, the agent needs to grasp and lift a randomly placed object. The
agent’s goal is to lift the object 5cm above the table. The agent receives a reward of +25 upon
success. The object is placed uniformly randomly on a table. Similar to the Opening task, the end
effector opening/closing is discretized, meaning when its internal continuous variable is below a
threshold, the gripper closes, otherwise it remains open.

All of the tasks are implemented in the Pybullet physics engine [54], which is a free and open-source
library that enables fast simulation.

7.2 Code

7.2.1 MiniTouch Library:

The task environment used in the experiments is packaged and released as a python library1 that can
be easily plugged into the training code. Setup instructions, code, and other details can be found in
the README file included in the repository.

7.2.2 HaC and baselines:

We used the following open-source implementations for the baselines. We were able to reproduce
the results from their papers before attempting to use them as baselines for our model:

ICM
https://github.com/openai/large-scale-curiosity

Disagreement:
https://github.com/danijar/dreamerv2
https://github.com/pathak22/exploration-by-disagreement

RND:
https://github.com/openai/random-network-distillation

7.3 Experimental Details

State space: The input states are a combination of visual and touch vector input. The visual input
is a grayscale rendering of the scene with dimension 84⇥ 84, pre-processed similarly to Mnih et al.
[59]. Image observations are captured from a static camera overlooking each scene. The touch
vector input is composed of the 3-dimensional end-effector position, 2-dimensional finger position,
ranging from 0 to 1, each denoting how far apart each finger is, and the 6-dimensional force/torque
values. In total, the touch vector is 11-dimensional, S 2 R11.
Action space: Actions are expressed as 4-dimensional continuous vectors. The first three elements
describe the desired offset for the end effector at the next timestep based on its current position. The
last dimension controls the relative desired distance between the two fingers at the next timestep.

Training We use SAC [51] as the optimizer for our agent. Our training is composed of two phases
as described in the main paper. (i)Exploration phase, (ii)Downstream task phase. In the exploratory
phase (curiosity part) agent is trained using our intrinsic reward alone. In the task phase, network
weights are seeded from the ones in the exploratory phase. We also retain the replay buffer from
the exploratory phase in the downstream task phase. Duration of the exploration phase can be
adjusted in the code using a hyper-parameter stop-curiosity. We have two hyper-parameters that
change between the two phases, (i) ↵ and (ii) the learning rate of the SAC algorithm. Details of
hyper-parameters used for our experiments are outlined in Table 2 and Table 3.

1https://github.com/ElementAI/MiniTouch

13



SAC pretraining and training hyperparameters
Parameter type Value

optimizer Adam
Visual network Table 3
learning rate 3.10�5

number of samples per minibatch 128
reward scale 100
replay buffer size 106

number of hidden units per layer 128
number of hidden layers (all networks) 2
activation LeakyReLU
discount factor 0.99

Table 2: SAC parameters during pretraining and training.

(a) (b)

Figure 9: Object Interaction for Opening task. (a) shows the average variance in door angle
across the entire episode (note that the absolute variance is low but corresponds to successful door
openings towards the end of training for HaC) and in (b), we count the number of touch interactions
in the same task.

Encoder network
Layer Number of outputs Kernel size Stride Activation function

Input x 84 ⇤ 84 ⇤ 1
Convolution 20*20*32 8 ⇤ 8 4 LeakyReLU
Convolution 8*8*64 4 ⇤ 4 2 LeakyReLU
Convolution 4*4*124 3 ⇤ 3 1 LeakyReLU
Convolution 2*2*256 2 ⇤ 2 1 LeakyReLU
Fully-connected 256 1 LeakyReLU

Table 3: Visual network.

7.4 Object Interaction

As touched up in the experiments section of the main paper, Figure 9 depicts the touch interaction
and door movement metrics for the Opening task. We make a similar observation to the result
showed in Figure 3 for the Playing task. A higher touch-interaction need not indicate better object-
movement. Agent can resort to constantly engaging with the object in a passive manner. HaC
collects rich interaction data during the exploratory phase and helps the agent in terms of sample
efficiency while solving the downstream tasks.

7.5 Additional Ablations

Does longer exploration help? We observe that having a longer exploratory phase of training with
intrinsic reward alone usually benefits the overall performance. We can observe from Figure 4
that HaC attains decent success in the exploratory phase without any external reward on most of
the tasks. This is because it encourages better associations and a larger collection of interesting
configurations in the replay. The effect of the exploratory step is further studied and the results on

14



Metric Pushing Open Door Pick-up Playing

HaC RND+touch RND HaC RND+touch RND HaC HaC-RND RND HaC RND+touch RND

Exploration " 0.403 0.181 0.077 0.669 0.564 0.380 0.063 0.013 0.005 - - -
Success " 0.733 0.710 0.582 0.983 0.921 0.875 0.891 0.593 0.450 - - -

Episode steps #. 57.84 55.20 97.51 23.34 23.54 37.92 30.54 52.29 89.88 - - -
Touch-interaction " 247.79 227.75 206.02 600.1 411.43 194.22 980.7 894.5 725.1 388.15 312.0 124.5

Table 4: Random Network Distillation (RND) with touch This table compares the mean evalua-
tions for HaC and RND+touch on all the four tasks emphasizing the importance of the cross-modal
association(see text). We omit measuring success and episode steps for playing task since success
there is equivalent to object-interaction and has no explicit goal.

.

all of the downstream tasks with different duration of exploration are compiled in Figure 10. We
depict the episode convergence steps and success rate to visualize the trend as expected.

Touch in Random Network Distillation We created an additional baseline RND+touch similar
to touch in future prediction (ICM+touch) baseline. In this setting, the input to the random target
network and predictor network (that predicts the outcome of target network) consists of both touch
and visual feature vector concatenated. The baseline beats the vision only version by a margin
for both Pushing and picking tasks as shown in the Table. 4, however for the Open-door tasks
the improvement is not that significant. Although RND+touch is comparable with HaC for the
Pushing task on the success rate, HaC has better sample efficiency as measured by episode steps.
We believe this is because object movement is crucial for the pushing task compared to interaction,
and prediction based techniques such as RND could be helpful in such settings.

Comparisons with Generalization to Novel shapes: It is desirable for an agent to be able to handle
diverse shapes in order to be robust across arbitrary manipulation settings. We study this using an
environment in which an object is sampled from a thousand procedurally generated objects. The
objects are dissimilar with respect to shape and mass but are sampled from the same generative
distribution. Out of 1000 different objects, 800 of them are used in the training phase, and we
evaluate the agent’s effectiveness on the remaining 200 unseen object shapes.

Although generalization to novel shapes is not the problem setting our method focuses on. We
perform this proof of concept ablations to investigate that HaC parameters in the exploratory phase
are not just reusable across different tasks with similar shapes (Eg: Playing, Pushing, and Picking),
but also can help generalize when applied to distinctive shapes sampled from a similar distribution.
Figure 11 shows touch interaction and object movement evaluations for a single object exploration
task. We compare HaC with ICM and Disagreement baselines. . The results validate that our model
generalizes to unseen object configurations.

7.6 Real world use cases:

It is possible to define safety boundaries for a robot arm (e.g. don’t hit the table, don’t move outside
the arena boundaries) and have a robot arm autonomously and task-independently collect data for
phase 1 of our method. In addition to this, we would like to point out that (a) in the pushing and
pick-up tasks, only 5-10k steps are required for decent performance on the downstream task and (b)
what we call a “step” is however long it takes the inverse kinematic solver to move the arm to the
new end effector pose (that was generated by the policy). If many of the generated poses cluster
together, that dramatically reduces runtime of the curiosity phase making it more suitable to real-
world applicability. While no real robot data have been used in the experiments, our method is data
agnostic. We note that the physics engine can be replaced by real-world data as there is no bias
introduced in process. The networks used for the curiosity prediction task can be easily adapted, if
needed, to accommodate inputs from a real robotic platform. As a next step and when restrictions
are eased, we plan to implement this method on a physical system and replicate our experiments.

15



Figure 10: Longer exploratory phase helps Success and episode steps evaluations on different
tasks for different lengths of exploratory phase. Darker shading indicates longer exploration.

(a) HaC (b) ICM (c) Disagreement (d) SAC

Figure 11: Generalization to novel shapes baseline comparisons. Each column outlines Success
and Episode steps for HaC, ICM, Disagreement and SAC baselines respectively. Disagreement
has better generalization and reduced variance compared to ICM on the unseen categories. HaC
is comparable to Disagreement on generalization performance while displaying better success and
Episode steps rates.

16


	Introduction
	Related Work
	Proposed Approach
	Problem Formulation
	Haptics-based Prediction
	Regularization Through Forward Dynamics Model
	Training

	Experimental Setting
	MiniTouch Benchmark
	Baseline Comparisons and Metrics

	Results and Discussion
	Ablations

	Conclusion
	Supplementary Material
	MiniTouch Tasks
	Code
	MiniTouch Library:
	HaC and baselines:

	Experimental Details
	Object Interaction
	Additional Ablations
	Real world use cases:


