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1 Training Details

We show some training details on different datasets omitted in the main paper in Tab. 1. For different
benchmarks, we employ different training settings for fair comparison.

Table 1: Training details on different benckmarks. 80K + 80K means we pretrain 80K iterations on
Pascal VOC trainaug set and finetune 80K on its trainval set. 80K + 40K denotes we pretrain 600K
iterations on COCO dataset and finetune 40K on its trainval set.

Dataset | CropSize | BatchSize | Iterations
ADE20K [10] 512 x 512 16 160K
Cityscapes [2] 1,024 x1,024 8 160K
COCO-Stuff [1] 512 x 512 16 80K
Pascal VOC [3] 512 x 512 16 80K + 80K
Pascal VOC [3] w/ COCO [5] 512 x 512 16 600K + 40K
Pascal Context [7] 480 x 480 16 80K
iSAID [9] 896 x 896 16 160K

2 Ablation about MSCA Head

In addition to using a variant of self-attention as our head, we also used MSCA as our head. Results
in Tab. 2 show Ham head [4] achieves a better performance than MSCA head, which demonstrates a
CNN-style encoder requires a segmentation head with a global receptive field.

3 More Qualitative Results

In the main paper, we show the qualitative results on Cityscapes dataset. Here, we display quali-
tative results on ADE20K dataset in Fig. 1. The figure clearly shows that our method is better at
understanding the details.

4 Visualization results

We adopt Grad-CAM [8] to conduct visualization. As shown in Fig. 2, we can clearly find our
MSCAN shows better visualization results. In particular, when object occupies most of area in an
image (shown in first three columns) or multiple objects in an image (shown in last three columns),
ConvNeXt [6] appears inaccurate, while our MSCAN still works well. It shows the effectiveness of
larger receptive field and multi-scale information aggregation.
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Figure 1: Qualitative results on ADE20K dataset. Left: SegFromer-B2. Middle: SegNeXt-B. Right:
Ground trurh.



Table 2: Performance of different head in decoder. SegNeXt-T w/ Ham means the MSCAN-T encoder
plus the Ham decoder. FLOPs are calculated using the input size of 512x512. Experiments are
conducted on COCO-Stuff dataset.

Architecture | Params. M) ~ GFLOPs | mloU(SS)  mloU (MS)
SegNeXt-T w/ MSCA 4.4 6.7 38.2 38.6
SegNeXt-T w/ Ham [4] 4.3 6.6 38.7 39.1
SegNeXt-S w/ MSCA 14.0 159 42.1 42.4
SegNeXt-S w/ Ham [4] 13.9 15.9 42.2 42.8
SegNeXt-B w/ MSCA 28.0 33.6 45.1 45.5
SegNeXt-B w/ Ham [4] 27.6 34.9 45.8 46.3
SegNeXt-L w/ MSCA 50.1 69.8 459 46.4
SegNeXt-L w/ Ham [4] 48.9 70.0 46.5 47.2

Figure 2: Visualization results by using Grad-CAM [8]. Top: grad-cam figures of ConvNeXt [6].
Bottom: grad-cam figures of our MSCAN.
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