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Abstract

We initiate the study of dynamic regret minimization for goal-oriented reinforce-
ment learning modeled by a non-stationary stochastic shortest path problem with
changing cost and transition functions. We start by establishing a lower bound
Ω((B?SAT?(∆c + B2

?∆P ))1/3K2/3), where B? is the maximum expected cost
of the optimal policy of any episode starting from any state, T? is the maxi-
mum hitting time of the optimal policy of any episode starting from the initial
state, SA is the number of state-action pairs, ∆c and ∆P are the amount of
changes of the cost and transition functions respectively, and K is the number
of episodes. The different roles of ∆c and ∆P in this lower bound inspire us
to design algorithms that estimate costs and transitions separately. Specifically,
assuming the knowledge of ∆c and ∆P , we develop a simple but sub-optimal
algorithm and another more involved minimax optimal algorithm (up to loga-
rithmic terms). These algorithms combine the ideas of finite-horizon approxi-
mation [Chen et al., 2022a], special Bernstein-style bonuses of the MVP algo-
rithm [Zhang et al., 2020], adaptive confidence widening [Wei and Luo, 2021], as
well as some new techniques such as properly penalizing long-horizon policies.
Finally, when ∆c and ∆P are unknown, we develop a variant of the MASTER
algorithm [Wei and Luo, 2021] and integrate the aforementioned ideas into it to
achieve Õ(min{B?S

√
ALK, (B2

?S
2AT?(∆c +B?∆P ))1/3K2/3}) regret, where

L is the unknown number of changes of the environment.

1 Introduction

Goal-oriented reinforcement learning studies how to achieve a certain goal with minimal total cost in
an unknown environment via sequential interactions. It has often been modeled as online learning
in an episodic Stochastic Shortest Path (SSP) model, where in each episode, starting from a fixed
initial state, the learner sequentially takes an action, suffers a cost, and transits to the next state, until
the goal state is reached. The performance of the learner can be measured by her regret, generally
defined as the difference between her total cost and that of a sequence of benchmark policies (one for
each episode).

Despite the recent surge of studies on this problem, all previous works consider minimizing static
regret, a special case where the benchmark policy is the same for every episode. This is reasonable
only for (near) stationary environments where one single policy performs well over all episodes.
In reality, however, the environment is often non-stationary with both the cost function and the
transition function changing over episodes, making static regret an unreasonable metric. Instead, the
desired objective is to minimize dynamic regret, where the benchmark policy for each episode is the
optimal policy for that corresponding environment, and the hope is to obtain sublinear dynamic regret
whenever the non-stationarity is not too large.
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Based on this motivation, we initiate the study of dynamic regret minimization for non-stationary
SSP and develop the first set of results. Specifically, our contributions are as follows:

• To get a sense on the difficulty of the problem, we start by establishing a dynamic regret lower
bound in Section 3. Specifically, we prove that Ω((B?SAT?(∆c + B2

?∆P ))1/3K2/3) regret is
unavoidable, where B? is the maximum expected cost of the optimal policy of any episode starting
from any state, T? is the maximum hitting time of the optimal policy of any episode starting
from the initial state, S and A are the number of states and actions respectively, ∆c and ∆P are
the amount of changes of the cost and transition functions respectively, and K is the number of
episodes. Note the different roles of ∆c and ∆P here — the latter is multiplied with an extra B2

?
factor, which we find surprising for a technical reason discussed in Section 3. More importantly,
this inspires us to estimate costs and transitions independently in subsequent algorithm design.

• For algorithms, we first present a simple one (Algorithm 2 in Section 5) that achieves sub-optimal
regret of Õ((B?SATmax(∆c+B2

?∆P ))1/3K2/3), where Tmax ≥ T? is the maximum hitting time
of the optimal policy of any episode starting from any state. Except for replacing T? with the
larger quantity Tmax, this bound is optimal in all other parameters. Moreover, this also translates
to a minimax optimal regret bound in the finite-horizon setting (a special case of SSP), making
Algorithm 2 the first model-based algorithm with the optimal (SA)1/3 dependency.
• To improve the Tmax dependency to T?, in Section 6, we present a more involved algorithm

(Algorithm 4) that achieves a near minimax optimal regret bound matching the earlier lower bound
up to logarithmic terms.

• Both algorithms above require the knowledge of ∆c and ∆P . Moreover, for a special kind of
non-stationary environments where the cost/transition function only changes L times, they are not
able to achieve a more favorable dynamic regret bound of the form

√
LK. To overcome these

issues altogether, in Section 7, we develop a variant of the MASTER algorithm [Wei and Luo,
2021] and integrate the earlier algorithmic ideas into it, which finally leads to a (sub-optimal)
Õ(min{B?S

√
ALK, (B2

?S
2AT?(∆c + B?∆P ))1/3K2/3}) regret bound without knowing the

non-stationarity ∆c, ∆P , or L.

Techniques All our algorithms are built on top of a finite-horizon approximation scheme first
proposed by Cohen et al. [2021] and later improved by Chen et al. [2022a]; see Section 4. Both the
sub-optimal Algorithm 2 and the optimal Algorithm 4 are then developed based on ideas from the
MVP algorithm [Zhang et al., 2020] (for the finite-horizon setting), which adopts a UCBVI-style
update rule [Azar et al., 2017] with a special Bernstein-style bonus term. The sub-optimal algorithm
further integrates the idea of adaptive confidence widening [Wei and Luo, 2021] into the UCBVI-style
update by subtracting a bias from the cost function uniformly over all state-action pairs, which helps
control the magnitude of the estimated value function. The minimax optimal algorithm, on the other
hand, adds a positive correction term to the cost function to penalize long-horizon policies, which
helps improve the Tmax dependency to T?. It also incorporates several non-stationarity tests to ensure
that the algorithm resets its knowledge of the environment when the amount of non-stationarity is
large. Both algorithms maintain (update and reset) cost and transition estimation independently,
which is the key to achieve the correct B? dependency for both the ∆c-related and ∆P -related terms.

To handle unknown non-stationarity, we adopt the idea of the MASTER algorithm from [Wei and
Luo, 2021]. Although the nature of MASTER is a blackbox reduction, we cannot apply it directly
due to the presence of the correction term that changes continuously and brings extra challenges in
tracking the learner’s performance. We handle this by redesigning the first non-stationarity test of
the MASTER algorithm. Specifically, we maintain multiple running averages of the estimated value
function to detect different levels of non-stationarity.

Related Work Static regret minimization in SSP has been heavily studied in recent years, for both
stochastic costs [Tarbouriech et al., 2020, Cohen et al., 2020, 2021, Tarbouriech et al., 2021, Chen
et al., 2021a, Jafarnia-Jahromi et al., 2021, Vial et al., 2021, Min et al., 2021, Chen et al., 2022a] and
adversarial costs [Rosenberg and Mansour, 2021, Chen et al., 2021b, Chen and Luo, 2021, Chen et al.,
2022b]. To the best of our knowledge, we are the first to study dynamic regret for non-stationary SSP.

There is also a surge of studies on online learning in non-stationary environments, ranging from
bandits [Auer et al., 2019, Chen et al., 2019, 2021c, Russac et al., 2020, Faury et al., 2021, Abbasi-
Yadkori et al., 2022, Suk and Kpotufe, 2021] to reinforcement learning [Gajane et al., 2018, Ortner
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et al., 2020, Cheung et al., 2020, Fei et al., 2020, Mao et al., 2021, Zhou et al., 2020, Touati and
Vincent, 2020, Domingues et al., 2021, Wei and Luo, 2021, Ding and Lavaei, 2022, Lykouris et al.,
2021, Wei et al., 2022]. Compared to previous work, the model we study is quite general and
subsumes multi-armed bandit and finite-horizon reinforcement learning. On the other hand, it also
introduces extra and unique challenges as we will discuss.

2 Preliminaries

A non-stationary SSP instance consists of state space S, action space A, initial state sinit ∈ S, goal
state g /∈ S, a set of cost mean functions {ck}Kk=1 with ck ∈ [0, 1]S×A, and a set of transition
functions {Pk}Kk=1 with Pk = {Pk,s,a}(s,a)∈S×A and Pk,s,a ∈ ∆S+ , where S+ = S ∪ {g}, ∆S+ is
the simplex over S+, and K is the number of episodes. The set of cost and transition functions are
unknown to the learner and determined by the environment before learning starts.

The learning protocol is as follows: the learner interacts with the environment for K episodes.
In episode k, starting from the initial state sinit, the learner sequentially takes an action, incurs a
cost, and transits to the next state until reaching the goal state. We denote by (ski , a

k
i , c

k
i , s

k
i+1) the

i-th state-action-cost-afterstate tuple observed in episode k, where cki is sampled from an unknown
distribution with support [0, 1] and mean ck(ski , a

k
i ), and ski+1 is sampled from Pk,ski ,aki . We denote

by Ik the total number of steps in episode k, such that skIk+1 = g.

Learning Objective Intuitively, in each episode the learner aims at finding a policy that minimizes
the total cost of reaching the goal state. Formally, a policy π ∈ AS assigns an action π(s) to each
state s ∈ S, and its expected cost for episode k starting from a state s is denoted as V πk (s) =

E
[∑Ik

i=1 ck(ski , π(ski ))|Pk, sk1 = s
]

where the expectation is with respect to the randomness of next
states ski+1 ∼ Pk,ski ,π(ski ) and the number of steps Ik before reaching g. The optimal policy π?k for

episode k is then the policy that minimizes V πk (s) for all s. Using V ?k as a shorthand for V π
?
k

k , we
formally define the dynamic regret of the learner as

RK =

K∑
k=1

(
Ik∑
i=1

cki − V ?k (sinit)

)
.

When Ik =∞ for some k, we let RK =∞.
Remark 1. Note that our learning setting does not fall into the general non-stationary reinforcement
learning framework in [Wei and Luo, 2021]. In their framework, they fix a policy to play throughout
an episode, and the cost incurs by any policy is bounded. While in our case, the learner may follow
several different policies within an episode. This is necessary since under unknown and changing
transition, the learner may not be able to identify a proper policy (which reaches the goal state with
probability 1) at the beginning of an episode, and committing to a single policy within an episode
may lead to infinite regret.

Several parameters play a key role in characterizing the difficulty of this problem: B? =
maxk,s V

?
k (s), the maximum cost of the optimal policy of any episode starting from any state;

T? = maxk T
π?k
k (sinit) (where Tπk (s) is expected number of steps it takes for policy π to reach the

goal in episode k starting from state s), the maximum hitting time of the optimal policy of any
episode starting from the initial state; Tmax = maxk,s T

π?k
k (s), the maximum hitting time of the

optimal policy of any episode starting from any state; ∆c =
∑K−1
k=1 ‖ck+1 − ck‖∞, the amount

of non-stationarity in the cost functions; and finally ∆P =
∑K−1
k=1 maxs,a ‖Pk+1,s,a − Pk,s,a‖1,

the amount of non-stationarity in the transition functions. Throughout the paper we assume the
knowledge of B?, T?, and Tmax, and also B? ≥ 1 for simplicity. ∆c and ∆P are assumed to be
known for the first two algorithms we develop, but unknown for the last one.

Other Notations For a value function V ∈ RS+ and a distribution P over S+, define PV =
Es′∼P [V (s′)] (mean) and V(P, V ) = Es′∼P [V (s′)2]− (PV )2 (variance). Let S = |S| and A = |A|
be the number of states and actions respectively. The notation Õ(·) hides all logarithmic dependency
including lnK and ln 1

δ for some failure probability δ ∈ (0, 1). Also define a value function upper
bound B = 16B?. For integers s and e, we define [s, e] = {s, s+ 1, . . . , e} and [e] = {1, . . . , e}.
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Algorithm 1 Finite-Horizon Approximation of SSP

Input: Algorithm A for finite-horizon MDP M̊ with horizon H = 4Tmax ln(8K).
Initialize: interval counter m← 1.
for k = 1, . . . ,K do

1 Set sm1 ← sinit.
2 while sm1 6= g do
3 Feed initial state sm1 to A, h← 1.
4 while True do
5 Receive action amh from A, play it, and observe cost cmh and next state smh+1.
6 Feed cmh and smh+1 to A.
7 if h = H or smh+1 = g or A requests to start a new interval then
8 Hm ← h. break.
9 else h← h+ 1.

10 Set sm+1
1 = smHm+1 and m← m+ 1.

3 Lower Bound

To better understand the difficulty of learning non-stationary SSP, we first establish the following
dynamic regret lower bound.

Theorem 1. In the worst case, the learner’s regret is at least Ω((B?SAT?(∆c +B2
?∆P ))1/3K2/3).

The lower bound construction is similar to that in [Mao et al., 2021], where the environment is
piecewise stationary. In each stationary period, the learner is facing a hard SSP instance with a
slightly better hidden state. Details are deferred to Appendix B.2.

In a technical lemma in Appendix B.1, we show that for any two episodes k1 and k2, the change of
the optimal value function due to non-stationarity satisfies V ?k1(sinit)−V ?k2(sinit) ≤ (∆c +B?∆P )T?,
with only one extra B? factor for the ∆P -related term. We thus find our lower bound somewhat
surprising since an extra B2

? factor shows up for the ∆P -related term. This comes from the fact that
constructing the hard instance with perturbed costs requires a larger amount of perturbation compared
to that with perturbed transitions; see Theorem 7 and Theorem 8 for details.

More importantly, this observation implies that simply treating these two types of non-stationarity as
a whole and only consider the non-stationarity in value function as done in [Wei and Luo, 2021] does
not give the right B? dependency. This further inspires us to consider cost and transition estimation
independently in our subsequent algorithm design.

4 Basic Framework: Finite-Horizon Approximation

Our algorithms are all built on top of the finite-horizon approximation scheme of [Cohen et al., 2021],
whose analysis is greatly simplified and improved by [Chen et al., 2022a], making it applicable to our
non-stationary setting as well. This scheme makes use of an algorithm A that deals with a special
case of SSP where each episode ends within H = Õ(Tmax) steps, and applies it to the original SSP
following Algorithm 1. Specifically, call each “mini-episode” A is facing an interval. At each step h
of interval m, the learner receives the decision amh from A, takes this action, observes the cost cmh ,
transits to the next state smh+1, and then feed the observation cmh and smh+1 to A (Line 5 and Line 6).
The interval m ends whenever one of the following happens (Line 7): the goal state is reached, H
steps have passed, or A requests to start a new interval.1 In the first case, the initial state sm+1

1 of the
next interval m+ 1 will be set to sinit, while in the other two cases, it is naturally set to the learner’s
current state, which is also smHm+1 where Hm is the length of interval m (see Line 10). At the end of
each interval, we artificially let A suffer a terminal cost cf (smHm+1) where cf (s) = 2B?I{s 6= g}.

1This last condition is not present in prior works. We introduce it since later our instantiation of A will
change its policy in the middle of an interval, and creating a new interval in this case allows us to make sure that
the policy in each interval is always fixed, which simplifies the analysis.
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Algorithm 2 Non-Stationary MVP
Parameters: window sizes Wc (for costs) and WP (for transitions), and failure probability δ.
Initialize: for all (s, a, s′), C(s, a)← 0, M(s, a)← 0, N(s, a)← 0, N(s, a, s′)← 0.
Initialize: Update(1).
for m = 1, . . . ,M do

for h = 1, . . . ,H do
1 Play action amh ← argminaQh(smh , a), receive cost cmh and next state smh+1.

C(smh , a
m
h )

+← cmh , M(smh , a
m
h )

+← 1, N(smh , a
m
h )

+← 1, N(smh , a
m
h , s

m
h+1)

+← 1.2

2 if smh+1 = g or M(smh , a
m
h ) = 2l or N(smh , a

m
h ) = 2l for some integer l ≥ 0 then

break (which starts a new interval).

3 if Wc divides m then reset C(s, a)← 0 and M(s, a)← 0 for all (s, a).
4 if WP divides m then reset N(s, a, s′)← 0 and N(s, a)← 0 for all (s, a, s′).

Update(m+ 1).
Procedure Update(m)

VH+1(s)← 2B?I{s 6= g}, Vh(g)← 0 for h ≤ H , ι← 211 · ln
(

2SAHKm
δ

)
, and x← 1

mH .
for all (s, a) do

N+(s, a)← max{1,N(s, a)}, M+(s, a)← max{1,M(s, a)}, c̄(s, a)← C(s,a)
M+(s,a) ,

ĉ(s, a)← max
{

0, c̄(s, a)−
√

c̄(s,a)ι
M+(s,a) −

ι
M+(s,a)

}
, P̄s,a(·)← N(s,a,·)

N+(s,a) .

while True do
for h = H, . . . , 1 do

5 bh(s, a)← max
{

7
√

V(P̄s,a,Vh+1)ι
N+(s,a) , 49B

√
Sι

N+(s,a)

}
for all (s, a).

6 Qh(s, a)← max{0, ĉ(s, a) + P̄s,aVh+1 − bh(s, a)− x} for all (s, a).
Vh(s)← minaQh(s, a) for all s.

7 if maxs,a,hQh(s, a) ≤ B/4 then break; else x← 2x.

This procedure (adaptively) generates a non-stationary finite-horizon Markov Decision Process (MDP)
that A faces: M̊ = (S,A, g, {cm}Mm=1, {Pm}Mm=1, cf , H). Here, cm = ck(m) and Pm = Pk(m)

where k(m) is the unique episode that interval m belongs to, and M is the total number of intervals
over K episodes, a random variable determined by the interactions. Note that cm and Pm always
lie in the oblivious sets {ck}Kk=1 and {Pk}Kk=1 respectively, but cm and Pm are not oblivious since
their values depend on the interaction history. Let V π,m1 (s) be the expected cost (including the
terminal cost) of following policy π starting from state s in interval m. Define the regret of A over

the first M ′ intervals in M̊ as R̊M ′ =
∑M ′

m=1(
∑Hm+1
h=1 cmh − V

π?k(m),m

1 (sm1 )) where we use cmHm+1

as a shorthand for the terminal cost cf (smHm+1). Following similar arguments as in [Cohen et al.,
2021, Chen et al., 2022a], the regret inM and M̊ are close in the following sense.

Lemma 1. Algorithm 1 ensures RK ≤ R̊M +B?.

See Appendix C for the proof. Based on this lemma, in following sections we focus on developing
the finite-horizon algorithm A and analyzing how large R̊M is. Note, however, that while this
finite-horizon reduction is very useful, it does not mean that our problem is as easy as learning
non-stationary finite-horizon MDPs and that we can directly plug in an existing algorithm as A. Great
care is still needed when designing A in order to obtain tight regret bounds as we will show.

5 A Simple Sub-Optimal Algorithm

In this section, we present a relatively simple finite-horizon algorithm A for M̊ which, in combination
with the reduction of Algorithm 1, achieves a regret bound that almost matches our lower bound
except that T? is replaced by Tmax. The key steps are shown in Algorithm 2. It follows the ideas

2z
+← y is a shorthand for z ← z + y.
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of the MVP algorithm [Zhang et al., 2020] and adopts a UCBVI-style update rule (Line 6) with a
Bernstein-type bonus term (Line 5) to maintain a set of Qh functions, which then determines the
action at each step in a greedy manner (Line 1). The two crucial new elements are the following.
First, in the update rule Line 6, we subtract a positive value x uniformly over all state-action pairs
so that ‖Qh‖∞ is of order O(B?) (recall B = 16B?), and we find the (almost) smallest such x via
a doubling trick (Line 7). This is similar to the adaptive confidence widening technique of [Wei
and Luo, 2021], where they increase the size of the transition confidence set to ensure a bounded
magnitude on the estimated value function; our approach is an adaptation of their idea to the UCBVI
style update rule.

Second, we periodically restart the algorithm (by resetting some counters and statistics) in Line 3
and Line 4. While periodic restart is a standard idea to deal with non-stationarity, the novelty here
is a two-scale restart schedule: we set one window size Wc related to costs and another one WP

related to transitions, and restart after every Wc intervals or every WP intervals. As mentioned, this
two-scale schedule is inspired by the lower bound in Section 3, which indicates that cost estimation
and transition estimation play different roles in the final regret and should be treated separately.

Another small modification is that we start a new interval when the visitation to some (s, a) doubles
(Line 2), which helps remove Tmax dependency in lower-order terms and is important for following
sections. With all these elements, we prove the following regret guarantee of Algorithm 2.

Theorem 2. For any M ′ ≤ M , with probability at least 1 − 22δ Algorithm 2 ensures R̊M ′ =

Õ
(
M ′
(√

B?SA
(

1/Wc + B?/WP

)
+B?SA (1/Wc + S/WP )

)
+ (∆cWc +B?∆PWP )Tmax

)
.

Thus, with a proper tunning of Wc and WP (that is in term of M ′), Algorithm 2 ensures R̊M ′ =

Õ((B?SATmax(∆c + B2
?∆P ))1/3M ′

2/3
). However, this does not directly imply a bound on R̊M

since M is a random variable (and the tunning above would depend on M ). Fortunately, to resolve
this it suffices to perform a doubling trick on the number of intervals, that is, first make a guess
on M , and then double the guess whenever M exceeds it. We summarize this idea in Algorithm 3.
Finally, combining it with Algorithm 1, Lemma 1, and the simplified analysis of [Chen et al., 2022a]
which is able to bound the total number of intervals M in terms of the total number of episodes K
(Lemma 16), we obtain the following result (all proofs are deferred to Appendix D).
Theorem 3. With probability at least 1−22δ, applying Algorithm 1 with A being Algorithm 3 ensures
RK′ = Õ((B?SATmax(∆c +B2

?∆P ))1/3K ′
2/3

) (ignoring lower order terms) for any K ′ ≤ K.

Note that Theorem 3 actually provides an anytime regret guarantee (that is, holds for any K ′ ≤ K),
which is important in following sections. Compared to our lower bound in Theorem 1, the only
sub-optimality is in replacing T? with the larger quantity Tmax. Despite its sub-optimality for SSP,
however, as a side result our algorithm in fact implies the first model-based finite-horizon algorithm
that achieves the optimal dependency on SA and matches the minimax lower bound of [Mao et al.,
2021]. Specifically, in previous works, the optimal SA dependency is only achievable by model-free
algorithms, which unfortunately have sub-optimal dependency on the horizon by the current analysis
(see [Mao et al., 2021, Lemma 10]). On the other hand, existing model-based algorithms for finite
state-action space all follow the idea of extended value iteration, which gives sub-optimal dependency
on S and also brings difficulty in incorporating entry-wise Bernstein confidence sets.3 Our approach,
however, resolves all these issues. See Appendix D.4 for more discussions.

Technical Highlights The key step of our proof for Theorem 2 is to bound the term∑M ′

m=1

∑Hm
h=1 V(Pmsmh ,amh , V

?,m
h+1 − V mh+1), where V mh+1 is the value of Vh+1 at the beginning of

interval m, and V ?,mh+1 is the optimal value function of M̊ in interval m (formally defined in Ap-
pendix A). The standard analysis on bounding this term requires V ?,mh+1 (s) − V mh+1(s) ≥ 0, which
is only true in a stationary environment due to optimism. To handle this in non-stationarity envi-
ronments, we carefully choose a set of constants {zmh } so that V ?,mh+1 (s) + zmh − V mh+1(s) ≥ 0

(Lemma 18), and then apply similar analysis on
∑M ′

m=1

∑Hm
h=1 V(Pmsmh ,amh , V

?,m
h+1 − V mh+1) =∑M ′

m=1

∑Hm
h=1 V(Pmsmh ,amh , V

?,m
h+1 + zmh − V mh+1). See Lemma 20 for more details.

3Note that the transition non-stationarity ∆P is defined via L1 norm. Thus, naively applying entry-wise
confidence widening to Bernstein confidence sets introduces extra dependency on S.
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Algorithm 3 Non-Stationary MVP with a Doubling Trick
for n = 1, 2, . . . do

Initialize an instance of Algorithm 2 with Wc = d(B?SA)1/3(2n−1/(∆cTmax))2/3e and WP =
d(SA)1/3(2n−1/(∆PTmax))2/3e, and execute it in intervals m = 2n−1, . . . , 2n − 1.

Algorithm 4 MVP with Non-Stationarity Tests
Parameters: window sizes Wc and WP , coefficients c1, c2, sample probability p, and failure
probability δ.
Initialize: ResetC(), ResetP(), Update(1).
for m = 1, . . . ,M do

for h = 1, . . . ,H do
Play action amh ← argmina Q̌h(smh , a), receive cost cmh and next state smh+1.

C(smh , a
m
h )

+← cmh , M(smh , a
m
h )

+← 1, N(smh , a
m
h )

+← 1, N(smh , a
m
h , s

m
h+1)

+← 1.

1 χ̂c
+← cmh − ĉ(smh , amh ), χ̂P +← V̌h+1(smh+1)− P̄smh ,amh V̌h+1.

if smh+1 = g or M(smh , a
m
h ) = 2l or N(smh , a

m
h ) = 2l for some integer l ≥ 0 then

break (which start a new interval).

2 if χ̂c > χcm (defined in Lemma 24) then ResetC(). (Test 1)
3 if χ̂P > χPm (defined in Lemma 25) then ResetC() and ResetP(). (Test 2)
4 if νc = Wc then ResetC().
5 if νP = WP then ResetC() and ResetP().

νc
+← 1, νP +← 1, Update(m+ 1).

6 if
∥∥V̌h∥∥∞ > B/2 for some h (Test 3) then
ResetC(), with probability p execute ResetP(), and Update(m+ 1).

Procedure Update(m)
V̌H+1(s)← 2B?I{s 6= g}, V̌h(g)← 0 for all h ≤ H , and ι← 211 · ln

(
2SAHKm

δ

)
.

7 ρc ← min{ c1√
νc
, 1

28H }, ρ
P ← min{ c2√

νP
, 1

28H }, η ← ρc +BρP .
for all (s, a) do

N+(s, a)← max{1,N(s, a)}, M+(s, a)← max{1,M(s, a)}, c̄(s, a)← C(s,a)
M+(s,a) ,

P̄s,a(·)← N(s,a,·)
N+(s,a) , ĉ(s, a)← max

{
0, c̄(s, a)−

√
c̄(s,a)ι

M+(s,a) −
ι

M+(s,a)

}
,

8 č(s, a)← ĉ(s, a) + 8η.
for h = H, . . . , 1 do

bh(s, a)← max

{
7
√

V(P̄s,a,V̌h+1)ι
N+(s,a) , 49B

√
Sι

N+(s,a)

}
for all (s, a).

Q̌h(s, a) = max{0, č(s, a) + P̄s,aV̌h+1 − bh(s, a)} all (s, a).
V̌h(s) = argmina Q̌h(s, a) for all s.

Procedure ResetC()
νc ← 1, χ̂c ← 0, C(s, a)← 0, M(s, a)← 0 for all (s, a).

Procedure ResetP()
νP ← 1, χ̂P ← 0, N(s, a, s′)← 0, N(s, a)← 0 for all (s, a, s′).

6 A Minimax Optimal Algorithm

In this section, we present an improved algorithm that achieves the minimax optimal regret bound up
to logarithmic terms, starting with a refined version of Algorithm 2 shown in Algorithm 4. Below, we
focus on describing the new elements introduced in Algorithm 4 (that is, Lines 1-3 and 6-4).4

The main challenge in replacing Tmax with T? is that the regret due to non-stationarity accumulates
along the learner’s trajectory, which can be as large as O((∆c +B?∆P )H) since the horizon is H

4Line 4 and Line 5, althogh written in a different form, are similar to Line 3 and Line 4 of Algorithm 2.
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Algorithm 5 A Two-Phase Variant of Algorithm 1
Initialize: Phase 1 algorithm instance A1 and Phase 2 algorithm instance A2.
Execute Algorithm 1 with A = A1 for every first interval of an episode, and A = A2 otherwise.

(recall H = Õ(Tmax)). Moreover, bounding the number of steps needed for the learner’s policy to
reach the goal is highly non-trivial due to the changing transitions. Our main idea to address these
issues is to incorporate a correction term η (computed in Line 7) into the estimated cost (Line 4) to
penalize policies that take too long to reach the goal. This correction term is set to be an upper bound
of the learner’s average regret per interval (defined through ρc and ρP in Line 7). It introduces the
effect of canceling the non-stationarity along the learner’s trajectory when it is not too large. When
the non-stationarity is large, on the other hand, we detect it through two non-stationary tests (Line 2
and Line 3), and reset the knowledge of the environment (more details to follow).

However, this correction leads to one issue: we cannot perform adaptive confidence widening (that
is, the −x bias) anymore as it would cancel out the correction term. To address this, we introduce
another test (Line 6, Test 3) to directly check whether the magnitude of the estimated value function
is bounded as desired. If not, we reset again since that is also an indication of large non-stationarity.

We now provide some intuitions on the design of Test 1 and Test 2. First, one can show that the
two quantities χ̂c and χ̂P we maintain in Line 1 are such that their sum is roughly an upper bound
on the estimated accumulated regret. So directly checking whether χ̂c + χ̂P is too large would be
similar to the second test of the MASTER algorithm [Wei and Luo, 2021]. Here, however, we again
break it into two tests where Test 1 only guards the non-stationarity in cost, and Test 2 mainly guards
the non-stationarity in transition. Note that Test 2 also involves cost information through V̌ , but our
observation is that we can still achieve the desired regret bound as long as the ratio of the number of
resets caused by procedures ResetC() and ResetP() is of order Õ(B?). This inspires us to reset both
the cost and the transition estimation when Test 2 fails, but reset the transition estimation only with
some probability p (eventually set to 1/B?) when Test 3 fails.

For analysis, we first establish a regret guarantee of Algorithm 4 in an ideal situation where the first
state of each interval is always sinit. (Proofs of this section are deferred to Appendix E.)

Theorem 4. Let c1 =
√
B?SA/T?, c2 =

√
SA/T?, Wc = d(B?SA)1/3(K/(∆cT?))

2/3e, WP =
d(SA)1/3(K/(∆PT?))

2/3e, and p = 1/B?. Suppose sm1 = sinit for all m ≤ K, then Algorithm 4
ensures R̊K = Õ((B?SAT?(∆c +B2

?∆P ))1/3K2/3) (ignoring lower order terms) with probability
at least 1− 40δ.

The reason that we only analyze this ideal case is that, if the initial state is not sinit, then even the
optimal policy does not guarantee T? hitting time by definition. This also inspires us to eventually
deploy a two-phase algorithm slightly modifying Algorithm 1: feed the first interval of each episode
into an instance of Algorithm 4, and the rest of intervals into an instance of Algorithm 3 (see
Algorithm 5). Thanks to the large terminal cost, we are able to show that the regret in the second
phase is upper bounded by a constant, leading to the following final result.

Theorem 5. Algorithm 5 with A1 being Algorithm 4 and A2 being Algorithm 3 ensures RK =
Õ((B?SAT?(∆c+B2

?∆P ))1/3K2/3) (ignoring lower order terms) with probability at least 1− 64δ.

Ignoring logarithmic and lower-order terms, our bound is minimax optimal. Also note that the bound
is sub-linear (in K) as long as ∆c and ∆P are sub-linear (that is, not the worst case).

7 Learning without Knowing ∆c and ∆P

To handle unknown non-stationarity, we combine our algorithmic ideas in previous sections with a
new variant of the MASTER algorithm [Wei and Luo, 2021]. The original MASTER algorithm is
a blackbox reduction that takes a base algorithm for (near) stationary environments as input, and
turns it into another algorithm for non-stationarity environments. For many problems (including
multi-armed bandits, contextual bandits, linear bandits, finite-horizon or infinite-horizon MDPs),
Wei and Luo [2021] show that the final algorithm achieves optimal regret without knowing the
non-stationarity. While powerful, MASTER can not be directly used in our problem to achieve the
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same strong result. As we will discuss, some modification is needed, and even with this modification,
some extra difficulty unique to SSP still prevents us from eventually obtaining the optimal regret.

Specifically, in order to obtain T? dependency, we again follow the two-phase procedure Algorithm 5
and instantiate a MASTER algorithm with a different base algorithm in each phase. In Phase 1,
since it is unclear how to update cost and transition estimation independently under the framework
of MASTER, we adopt a simpler version of Algorithm 4 as the base algorithm, which performs
synchronized cost and transition estimation and a simpler non-stationarity test; see Algorithm 6 (all
algorithms/proofs in this section are deferred to Appendix F due to space limit). In Phase 2, we use
Algorithm 2 as the base algorithm.

Our version of the MASTER algorithm (Algorithm 8) requires a different Test 1 compared to
that in [Wei and Luo, 2021], which is essential due to the presence of the correction terms in
Algorithm 6. Specifically, it no longer makes sense to simply maintain the maximum of estimated
value functions over the past intervals, since the cost function combined with the correction term is
changing adaptively, and a large correction term will interfere with the detection of a small amount
of non-stationarity. Our key observation is that for a base algorithm scheduled on a given range by
MASTER, the average of its correction terms within the same range is of the desired order that does
not interfere with non-stationarity detection. This inspires us to maintain multiple running averages
of the estimated value functions with different scales (see Line 2 of Algorithm 8). Then, to detect a
certain level of non-stationarity, we refer to the running average with the matching scale (see Line 3).

We show that the algorithm described above achieves the following regret guarantee without knowl-
edge of the non-stationarity.
Theorem 6. Let A1 be an instance of Algorithm 8 with Algorithm 6 as the base algorithm and A2 be
an instance of Algorithm 8 with Algorithm 2 as the base algorithm. Then Algorithm 5 with A1 and
A2 ensures with high probability (ignoring lower order terms):

RK = Õ
(

min
{
B?S
√
ALK,B?S

√
AK + (B2

?S
2A(∆c +B?∆P )T?)

1/3K2/3
})

,

where L = 1 +
∑K−1
k=1 I{Pk+1 6= Pk or ck+1 6= ck} is the number changes of the environment (plus

one). Moreover, this is achieved without the knowledge of ∆c, ∆P , or L.

The advantage of this result compared to Theorem 5 is two-fold. First, it adapts to different levels of
non-stationarity (∆c, ∆P , and L) automatically. Second, it additionally achieves a bound of order
Õ(B?S

√
ALK), which could be much better than that in Theorem 5; for example, when L = O(1),

the former is a
√
K-order bound while the latter is of order K2/3. As discussed in [Wei and Luo,

2021], this is a unique benefit brought by the MASTER algorithm and is not achieved by any other
algorithms even with the knowledge of L.

The disadvantage of Theorem 6, on the other hand, is its sub-optimality in the B? dependency for
the ∆c-related term and the S dependency for both terms. The extra B? dependency is due to the
synchronized cost and transition estimation. As mentioned, it is unclear how to update cost and
transition estimation independently as we do in Algorithm 4 under the framework of MASTER,
which we leave as an important future direction. On the other hand, the extra S dependency comes
from the fact that the lower-order term in the regret bound of the base algorithm affects the final regret
bound (see the statement of Theorem 13). Specifically, the lower-order term is B?S2A instead of
B?SA, which eventually leads to extra S dependency. How to remove the extra S factor in the base
algorithm, or eliminate the undesirable lower-order term effect brought by the MASTER algorithm,
is another important future direction.

8 Conclusion

In this work, we develop the first set of results for dynamic regret minimization in non-stationary SSP,
including a (near) minimax optimal algorithm and two others that are either simpler or advantageous
in some other cases. Besides the immediate next step such as improving our results when the non-
stationarity is unknown, our work also opens up many other possible future directions on this topic,
such as extension to more general settings with function approximation. It would also be interesting
to study more adaptive dynamic regret bounds in this setting. For example, our B? and T? are defined
as the maximum optimal expected cost and hitting time over all episodes, which is undesirable if only
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a few episodes admit a large optimal expected cost or hitting time. Ideally, some kind of (weighted)
average would be a more reasonable measure in these cases.
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Extra Notations We first define (or restate) some notations used throughout the whole Appendix.

• Let ∆c,[i,j] =
∑j−1
τ=i

∥∥cτ+1 − cτ
∥∥
∞, ∆P,[i,j] =

∑j−1
τ=i maxs,a

∥∥P τ+1
s,a − P τs,a

∥∥
1
. It is

straightforward to verify that ∆c,[1,M ] = ∆c and ∆P,[1,M ] = ∆P .

• Define ∆c,m = ∆c,[icm,m] and ∆P,m = ∆P,[iPm,m], where icm and iPm are the first intervals
after the last resets of M and N before interval m respectively.

• For all algorithms, denote by ĉm, c̄m, P̄ms,a, bmh , N+
m, M+

m, ιm the value of ĉ, c̄, P̄s,a, bh,
N+, M+, ι at the beginning of interval m, and define ĉmh = ĉm(smh , a

m
h ), c̄mh = c̄(smh , a

m
h ),

Nm
h = N+(smh , a

m
h ), and Mm

h = M+(smh , a
m
h ). We also slightly abuse the notation and

write bm(smh , a
m
h ) as bmh when there is no confusion.
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• Define c̃m(s, a) = 1
M+
m(s,a)

∑m−1
m′=icm

∑Hm′
h=1 c

m′
(s, a)I{(sm′

h , am
′

h ) = (s, a)}, c̃mh =

c̃m(smh , a
m
h ), P̃ms,a = 1

N+
m(s,a)

∑m−1
m′=iPm

∑Hm′
h=1 P

m′

s,a I{(sm
′

h , am
′

h ) = (s, a)}, P̄mh = P̄msmh ,amh ,

and P̃mh = P̃msmh ,amh .

• Denote by Lc,[i,j] and LP,[i,j] one plus the number of resets of M and N within intervals
[i, j] respectively, and define Lc,m = Lc,[1,m], LP,m = LP,[1,m], Lm = Lc,m + LP,m for
any m ≥ 1.

• Define f c(m) (or fP (m)) as the earliest interval at or after interval m in which the learner
resets M (or N).

• Define mm
h = I{Mm(smh , a

m
h ) = 0}, nmh = I{Nm(smh , a

m
h ) = 0}, CM ′ =∑M ′

m=1

∑Hm+1
h=1 cmh , and bonus function bm(s, a, V ) = max

{
7

√
V(P̄ms,a,V )ιm

N+
m(s,a)

, 49B
√
Sιm

N+
m(s,a)

}
.

• Define Tπ
?,m

h (s) (or Tπ
?,m

h (s, a)) as the hitting time (reaching g or layer H + 1) of
π?k(m) starting from state s (or state-action pair (s, a)) in layer h w.r.t transition Pm, such

that Tπ
?,m

h (s, a) = 1 + Pms,aT
π?,m
h+1 , Tπ

?,m
h (s) = Tπ

?,m
h (s, π?k(m)(s)), and Tπ

?,m
H+1 (s) =

Tπ
?,m

H+1 (s, a) = Tπ
?,m

h (g) = Tπ
?,m

h (g, a) = 0.

• For notational convenience, we often write V
π?k(m),m

h as V π
?,m

h .

• Define (x)+ = max{0, x}.

Optimal Value Functions of M̊ We denote by Q?,mh and V ?,mh the optimal value functions in
interval m. It is not hard to see that they can be defined recursively as follows: V ?,mH+1 = cf and for
h ≤ H ,

Q?,mh (s, a) = cm(s, a) + Pms,aV
?,m
h+1 , V ?,mh (s) = min

a
Q?,mh (s, a).

For notational convenience, we also let Q?,mH+1(s, a) = V ?,mH+1(s) for any (s, a) ∈ S ×A.

Lemma 2. For any m ≥ 1 and h ≤ H + 1, Q?,mh (s, a) ≤ Qπ
?,m
h (s, a) ≤ 4B?.

Proof. This is simply by Qπ
?,m
h (s, a) ≤ 1 + maxs V

?
k (s) + 2B? ≤ 4B?.

Auxiliary Lemmas Below we provide auxiliary lemmas used throughout the whole Appendix and
for all algorithms.

Lemma 3. With probability at least 1 − 3δ,
∑M ′

m=1

∑Hm
h=1(cm(smh , a

m
h ) − ĉmh ) ≤

3
∑M ′

m=1

∑Hm
h=1

(√
c̄mh ιm
Mm
h

+ ιm
Mm
h

)
+
∑M ′

m=1

∑Hm
h=1 ∆c,m ≤ Õ

(√
SALc,M ′CM ′ + SALc,M ′

)
+

2
∑M ′

m=1

∑Hm
h=1 ∆c,m and

∑M ′

m=1

∑Hm
h=1

(√
c̄mh ιm
Mm
h

+ ιm
Mm
h

)
≤ Õ(

√
SALc,M ′CM ′ + SALc,M ′ +√

SALc,M ′
∑M ′

m=1

∑Hm
h=1 ∆c,m) for any M ′ ≤M .

Proof. First note that by Lemma 49, with probability at least 1−δ, for anym ≥ 1 and (s, a) ∈ S×A,

c̃m(s, a)− c̄m(s, a) ≤

√
c̄m(smh , a

m
h )

M+
m(s, a)

+
1

M+
m(s, a)

. (1)
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For the first inequality in the first statement, note that

M ′∑
m=1

Hm∑
h=1

(cm(smh , a
m
h )− ĉmh )

≤
M ′∑
m=1

Hm∑
h=1

(
c̃m(smh , a

m
h )− c̄m(smh , a

m
h ) +

√
c̄mh ιm
Mm

h

+
ιm
Mm

h

+ mm
h

)
+

M ′∑
m=1

Hm∑
h=1

∆c,m

(definition of ĉmh and cm(smh , a
m
h ) ≤ c̃m(smh , a

m
h ) + ∆c,m + mm

h )

≤ 3

M ′∑
m=1

Hm∑
h=1

(√
c̄mh ιm
Mm

h

+
ιm
Mm

h

)
+

M ′∑
m=1

Hm∑
h=1

∆c,m. (Eq. (1) and mm
h ≤ 1

Mm
h

)

The second inequality in the first statement simply follows from applying AM-GM inequality on
the second statement. To prove the second statement, first note that by Lemma 49, Cauchy-Schwarz
inequality, and Lemma 11, with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

c̄mh = Õ

 M ′∑
m=1

Hm∑
h=1

(
c̃mh +

√
c̄mh
Mm

h

+
1

Mm
h

)
= Õ

 M ′∑
m=1

Hm∑
h=1

c̃mh +

√√√√SALc,M ′

M ′∑
m=1

Hm∑
h=1

c̄mh + SALc,M ′

 .

Solving a quadratic inequality w.r.t
∑M ′

m=1

∑Hm
h=1 c̄

m
h (Lemma 45) gives

∑M ′

m=1

∑Hm
h=1 c̄

m
h =

Õ(
∑M ′

m=1

∑Hm
h=1 c̃

m
h + SALc,M ′). Therefore, with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

(√
c̄mh ιm
Mm

h

+
ιm
Mm

h

)
= Õ


√√√√SALc,M ′

M ′∑
m=1

Hm∑
h=1

c̄mh + SALc,M ′


(Cauchy-Schwarz inequality and Lemma 11)

= Õ


√√√√SALc,M ′

M ′∑
m=1

Hm∑
h=1

c̃mh + SALc,M ′


= Õ


√√√√SALc,M ′

M ′∑
m=1

Hm∑
h=1

∆c,m +

√√√√SALc,M ′

M ′∑
m=1

Hm∑
h=1

cm(smh , a
m
h ) + SALc,M ′


= Õ


√√√√SALc,M ′

M ′∑
m=1

Hm∑
h=1

∆c,m +
√
SALc,M ′CM ′ + SALc,M ′

 . (Lemma 50)

This completes the proof.

Lemma 4. With probability at least 1 − δ, for any m ≥ 1, (s, a) ∈ S × A and s′ ∈ S+,∣∣∣P̃ms,a(s′)− P̄ms,a(s′)
∣∣∣ ≤√ P̃ms,a(s′)ιm

2N+
m(s,a)

+ ιm
2N+

m(s,a)
≤
√

P̄ms,a(s′)ιm

N+
m(s,a)

+ ιm
N+
m(s,a)

.

Proof. The first inequality hold with probability at least 1 − δ/2 by applying Lemma 49 for each
(s, a) ∈ S × A and s′ ∈ S+. Also by Lemma 50, we have P̃ms,a(s′) ≤ 2P̄ms,a(s′) + ιm

2N+
m(s,a)

for
any (s, a) ∈ S ×A, s′ ∈ S+ with probability at least 1− δ/2. Substituting this back and applying√
a+ b ≤

√
a+
√
b proves the second inequality.

Lemma 5. With probability at least 1 − δ, for any (s, a) ∈ S × A and m ≥ 1, ĉm(s, a) ≤
cm(s, a) + ∆c,m.
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Proof. For any (s, a) and m ≥ 1, when Mm(s, a) = 0, the statement clearly holds since c̄m(s, a) =
0. Otherwise, by Lemma 49 and Lemma 50, with probability at least 1− δ, for all (s, a) and m ≥ 1
simultaneously,

|c̄m(s, a)− c̃m(s, a)| ≤ 3

√
c̃m(s, a)

M+
m(s, a)

ln
32SAm5

δ
+

2 ln 32SAm5

δ

M+
m(s, a)

≤ 3

√√√√(2c̄m(s, a) +
12 ln 4SAm

δ

M+
m(s,a)

)
M+

m(s, a)
ln

32SAm5

δ
+

2 ln 32SAm5

δ

M+
m(s, a)

≤

√
c̄m(s, a)ιm

M+
m(s, a)

+
ιm

M+
m(s, a)

.

(2)
Therefore, by max{0, a} −max{0, b} ≤ max{0, a− b},

ĉm(s, a)− cm(s, a) ≤ ĉm(s, a)− c̃m(s, a) + ∆c,m

≤ max

{
0, c̄m(s, a)− c̃m(s, a)−

√
c̄m(s, a)ιm

M+
m(s, a)

− ιm

M+
m(s, a)

}
+ ∆c,m ≤ ∆c,m,

where the last step is by Eq. (2).

Lemma 6. Given function V ∈ [−B,B]S+ for some B > 0, we have with probability at least 1− δ,

|(P̃ms,a − P̄ms,a)V | ≤ Õ
(√

SV(Pms,a,V )

N+
m(s,a)

+ SB
N+
m(s,a)

)
+

B∆P,m

64 for any m ≥ 1.

Proof. Note that with probability at least 1− δ,

|(P̃ms,a − P̄ms,a)V | = |(P̃ms,a − P̄ms,a)(V − Pms,aV )|

= Õ

∑
s′

√ P̃ms,a(s′)

N+
m(s, a)

|V (s′)− Pms,aV |+
B

N+
m(s, a)

 (Lemma 4)

= Õ

√SP̃mh (V − Pms,aV )2

N+
m(s, a)

+
SB

N+
m(s, a)

 (Cauchy-Schwarz inequality)

= Õ

(√
SPmh (V − Pms,aV )2

N+
m(s, a)

+
SB

N+
m(s, a)

+B

√
S∆P,m

N+
m(s, a)

)
.

Applying AM-GM inequality completes the proof.

Lemma 7. With probability at least 1−δ, V(P̄mh , V
m
h+1) ≤ 2V(Pmh , V

m
h+1)+Õ

(
SB2

Nm
h

)
+2B2∆P,m

for any m ≥ 1.

Proof. Note that:

V(P̄mh , V
m
h+1) ≤ P̄mh (V mh+1 − Pmh V mh+1)2 (

∑
i pixi∑
i pi

= argminz
∑
i pi(xi − z)2)

= V(Pmh , V
m
h+1) + (P̄mh − Pmh )(V mh+1 − Pmh V mh+1)2

≤ V(Pmh , V
m
h+1) + (P̄mh − P̃mh )(V mh+1 − Pmh V mh+1)2 +B2∆P,m

≤ V(Pmh , V
m
h+1) + Õ

B
√
SP̃mh (V mh+1 − Pmh V mh+1)2

Nm
h

+
SB2

Nm
h

+B2∆P,m

(Lemma 4 and Cauchy-Schwarz inequality)

≤ V(Pmh , V
m
h+1) + Õ

(
B

√
SV(Pmh , V

m
h+1)

Nm
h

+B2

√
S∆P,m

Nm
h

+
SB2

Nm
h

)
+B2∆P,m

≤ 2V(Pmh , V
m
h+1) + Õ

(
SB2

Nm
h

)
+ 2B2∆P,m. (AM-GM inequality)
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Lemma 8. Given an oblivious set of value functions V with |V| ≤ (2HK)6 and ‖V ‖∞ ≤ B for any
V ∈ V , we have with probability at least 1− δ, for any V ∈ V , (s, a) ∈ S ×A, and m ≥ 1, |(P̄ms,a−

P̃ms,a)V | ≤
√

V(Pms,a,V )ιm

N+
m(s,a)

+ 17Bιm
N+
m(s,a)

+
B∆P,m

64 and |(P̄ms,a − P̃ms,a)V | ≤
√

2V(P̄ms,a,V )ιm

N+
m(s,a)

+ 3B
√
Sιm

N+
m(s,a)

.

Proof. For each (s, a) ∈ S ×A and V ∈ V , by Lemma 49, with probability at least 1− δ
2SA(2HK)6 ,

for any m ≥ 1

|(P̄ms,a − P̃ms,a)V | ≤ 1

N+
m(s, a)


√√√√Nm(s,a)∑

i=1

V(Pmis,a , V )ιm +Bιm

 . (3)

Denote by mi the interval where the i-th visits to (s, a) lies in among those Nm(s, a) visits, we have

1

N+
m(s, a)

Nm(s,a)∑
i=1

V(Pmis,a , V ) =
1

N+
m(s, a)

Nm(s,a)∑
i=1

Pmis,a (V − Pmis,aV )2

≤ 1

N+
m(s, a)

Nm(s,a)∑
i=1

Pmis,a (V − Pms,aV )2 ≤ V(Pms,a, V ) +B2∆P,m,

where the second last inequality is by
∑
i pixi∑
i pi

= argminz
∑
i pi(xi − z)2. Thus by Eq. (3),

|(P̄ms,a − P̃ms,a)V | ≤

√
V(Pms,a, V )ιm

N+
m(s, a)

+
Bιm

N+
m(s, a)

+B

√
∆P,mιm

N+
m(s, a)

≤

√
V(Pms,a, V )ιm

N+
m(s, a)

+
17Bιm

N+
m(s, a)

+
B∆P,m

64
. (AM-GM inequality)

Moreover, again by
∑
i pixi∑
i pi

= argminz
∑
i pi(xi − z)2,

1

N+
m(s, a)

Nm(s,a)∑
i=1

V(Pmis,a , V ) ≤ 1

N+
m(s, a)

Nm(s,a)∑
i=1

Pmis,a (V − P̄ms,aV )2

≤ V(P̄ms,a, V ) + (P̃ms,a − P̄ms,a)(V − P̄ms,aV )2 ≤ V(P̄ms,a, V ) +B

√
SV(P̄ms,a, V )ιm

N+
m(s, a)

+
SB2ιm

N+
m(s, a)

(Lemma 4 and Cauchy-Schwarz inequality)

≤ 2V(P̄ms,a, V ) +
2SB2ιm

N+
m(s, a)

. (AM-GM inequality)

Thus by Eq. (3), |(P̄ms,a − P̃ms,a)V | ≤
√

2V(P̄ms,a,V )ιm

N+
m(s,a)

+ 3B
√
Sιm

N+
m(s,a)

.

Lemma 9. For any sequence of value functions {V mh }m,h with ‖V mh ‖∞ ∈ [0, B], we

have with probability at least 1 − δ, for all M ′ ≥ 1,
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

m
h+1) =

Õ
(∑M ′

m=1 V
m
Hm+1(smHm+1)2 +

∑M ′

m=1

∑Hm
h=1B(V mh (smh )− Pmh V mh+1)+ +B2

)
.

Proof. We decompose the sum of variance as follows:

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) =

M ′∑
m=1

Hm∑
h=1

(
Pmh (V mh+1)2 − V mh+1(smh+1)2

)
+

M ′∑
m=1

Hm∑
h=1

(
V mh+1(smh+1)2 − V mh (smh )2

)
+

M ′∑
m=1

Hm∑
h=1

(
V mh (smh )2 − (Pmh V

m
h+1)2

)
.
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For the first term, by Lemma 49 and Lemma 47, with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

(
Pmh (V mh+1)2 − V mh+1(smh+1)2

)
= Õ


√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , (V
m
h+1)2) +B2


= Õ

B
√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +B2

 .

The second term is clearly upper bounded by
∑M ′

m=1 V
m
Hm+1(smHm+1)2, and the third term is upper

bounded by 2B
∑M ′

m=1

∑Hm
h=1(V mh (smh ) − Pmh V

m
h+1)+ by a2 − b2 ≤ (a + b)(a − b)+. Putting

everything together and solving a quadratic inequality (Lemma 45) w.r.t
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

m
h+1)

completes the proof.

Lemma 10. For any value functions {V mh }m,h such that ‖V mh ‖∞ ≤ B, with probability at least
1− δ, for any M ′ ≥ 1,

M ′∑
m=1

Hm∑
h=1

bm(smh , a
m
h , V

m
h+1)

= Õ


√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +BS1.5ALP,M ′ +B

√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

∆P,m

 .

Proof. Note that:

M ′∑
m=1

H∑
h=1

bm(smh , a
m
h , V

m
h+1) = Õ

 M ′∑
m=1

Hm∑
h=1

√V(P̄mh , V
m
h+1)

Nm
h

+
B
√
S

Nm
h


= Õ


√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(P̄mh , V
m
h+1) +BS1.5ALP,M ′


(Cauchy-Schwarz inequality and Lemma 11)

= Õ


√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +BS1.5ALP,M ′ +B

√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

∆P,m

 .

(Lemma 7, Lemma 11, and
√
a+ b ≤

√
a+
√
b)

Lemma 11. For any M ′ ≥ 1,
∑M ′

m=1

∑Hm
h=1

1
Mm
h

= Õ(SALc,M ′) and
∑M ′

m=1

∑Hm
h=1

1
Nm
h

=

Õ(SALP,M ′).

Proof. This simply follows from the fact that the sum of 1
Mm
h

(or 1
Nm
h

) between consecutive resets of

Mm
h (or Nm

h ) is of order Õ(SA).

Lemma 12.
∑M ′

m=1 I{Hm < H, smHm+1 6= g} = Õ(SALM ′) for any M ′ ≤M .

Proof. This simply follows from the fact that between consecutive resets of M or N, the number of
times that the number of visits to some (s, a) is doubled is Õ(SA).

Lemma 13. Suppose r(m) = min{ c1√
m

+ c2, c3}, ∆ ∈ RN+

+ is a non-stationarity measure, and

define ∆[i,j] =
∑j−1
i=1 ∆(i). If for a given interval J , there is a way to partition J into ` intervals

{Ii}`i=1 with Ii = [si, ei] such that ∆[si,ei+1] > r(|Ii|+1) for i ≤ `−1 (note that |Ii| = ei−si+1),
then ` ≤ 1 + (2c−1

1 ∆J )2/3|J |1/3 + c−1
3 ∆J .
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Proof. Note that

∆J ≥
`−1∑
i=1

∆[si,ei+1] >

`−1∑
i=1

r(|Ii|+ 1) ≥
`−1∑
i=1

min
{
c1(|Ii|+ 1)−1/2, c3

}
≥

`−1∑
i=1

min
{c1

2
|Ii|−1/2, c3

}
=

`1∑
i=1

c1
2
|Ii|−1/2 + `2c3,

where in the last step we assume |Ii| is decreasing in i without loss of generality and `1 + `2 = `− 1.
The inequality above implies `2 ≤ c−1

3 ∆J and

`1 =

`1∑
i=1

|Ii|−
1
3 |Ii|

1
3 ≤

(
`1∑
i=1

|Ii|−1/2

) 2
3
(

`1∑
i=1

|Ii|

) 1
3

≤
(

2∆J
c1

) 2
3

|J | 13

(Hölder’s inequality with p = 3
2 and q = 3)

Combining them completes the proof.

B Omitted Details in Section 3

In this section we provide omitted proofs and discussions in Section 3.

B.1 Optimal Value Change w.r.t Non-stationarity

Below we provide a bound on the change of optimal value functions w.r.t cost and transition non-
stationarity.

Lemma 14. For any k1, k2 ∈ [K], V ?k1(sinit)− V ?k2(sinit) ≤ (∆c +B?∆P )T?.

Proof. Denote by q?k2(s, a) (or q?k2(s)) the number of visits to (s, a) (or s) before reaching g following
π?k2 . By the extended value difference lemma [Shani et al., 2020, Lemma 1] (note that their result is
for finite-horizon MDP, but the nature generalization to SSP holds), we have

V ?k1(sinit)− V ?k2(sinit)

=
∑
s

q?k2(s)(V ?k1(s)−Q?k1(s, π?k2(s))) +
∑
s,a

q?k2(s, a)(Q?k1(s, a)− ck2(s, a)− Pk2,s,aV ?k1)

≤
∑
s,a

q?k2(s, a)(ck1(s, a)− ck2(s, a) + (Pk1,s,a − Pk2,s,a)V ?k1) ≤ (∆c +B?∆P )T?.

where in the last inequality we apply ‖ck1 − ck2‖∞ ≤ ∆c,(Pk1,s,a − Pk2,s,a)V ?k1 ≤
maxs,a ‖Pk1,s,a − Pk2,s,a‖1

∥∥V ?k1∥∥∞ ≤ B?∆P , and
∑
s,a q

?
k2

(s, a) ≤ T?.

We also give an example showing that the bound in Lemma 14 is tight up to a multiplication
factor. Consider an SSP instance with only one state sinit and one action ag, such that c(sinit, ag) =
B?
T?

, P (g|sinit, ag) = 1
T?

, and P (sinit|sinit, ag) = 1 − P (g|sinit, ag) with 1 ≤ B? ≤ T?. The
optimal value of this instance is clearly B?. Now consider another SSP instance with perturbed
cost function c′(sinit, ag) = B?

T?
+ ∆c and perturbed transition function P ′(g|sinit, ag) = 1

T?
− ∆P

2 ,
P ′(sinit|sinit, ag) = 1− P ′(g|sinit, ag) with max{∆c,∆P } ≤ 1

T?
. The optimal value function in this

instance is
B?
T?

+ ∆c

1
T?
− ∆P

2

=
B? + T?∆c

1− T?∆P

2

≤ (B? + T?∆c)(1 + T?∆P ) = B? + (∆c +B?∆P )T? + T 2
?∆c∆P

≤ B? + 2(∆c +B?∆P )T?,

where in the first inequality we apply 1
1−x ≤ 1 + 2x for x ∈ [0, 1

2 ]. Thus the optimal value difference
between these two SSPs is of the same order of the upper bound in Lemma 14.
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B.2 Proof of Theorem 1

For the ease of analysis, in this section we consider SSP instances with different action set at different
state similar to [Chen et al., 2021b]. The meaning of SA is still the total number of state-action pairs
in the SSP instance.

For any B?, T?, SA,K with B? ≥ 1, T? ≥ 3B?, and K ≥ SA ≥ 10, we define a set of SSP
instances {MK

i,j}i,j with i, j ∈ {0, 1, . . . , N} and N = SA. The instanceMK
i?,j? is constructed as

follows:

• There are N + 1 states {sinit, s1, . . . , sN}.
• At sinit, there are N actions a1, . . . , aN ; at si for i ∈ [N ] there is only one action ag .

• c(sinit, ai) = 0 and c(si, ag) ∼ Bernoulli(B?+εc,K I{i 6=i?}
T?

) for i ∈ [N ], where εc,K =
1−1/N

4

√
NB?/K.

• P (si|sinit, ai) = 1, P (g|sj , ag) =
1+εP,K I{j=j?}

T?
, and P (sj |sj , ag) = 1 − P (g|sj , ag),

where εP,K = 1−1/N
4

√
N/K.

Note that for anyMK
i,j , the expected hitting time is upper bounded by T? + 1, the expected cost of

optimal policy is upper bounded by 2B?, and the number of state-action pairs is upper bounded by
2N . We then use {MK

i,j}i,j to prove static regret lower bounds (note that static regret and dynamic
regret are the same without non-stationarity, that is, ∆c = ∆P = 0) based on cost perturbation and
transition perturbation respectively, which serve as the cornerstones of the proof of Theorem 1.

Theorem 7. For any B?, T?, SA,K with B? ≥ 1, T? ≥ 3B?, K ≥ SA ≥ 10, and any learner, there
exists an SSP instance based on cost perturbation such that the regret of the learner after K episodes
is at least Ω(

√
B?SAK).

Proof. Consider a distribution of SSP instances which is uniform over {MK
i,0}i for i ∈ [N ]. Let

Ei be the expectation w.r.tMK
i,0, Pi be the distribution of learner’s observations w.r.tMK

i,0, and
Ki the number of visits to state i in K episodes. Also let εc = εc,K . The expected regret over this
distribution of SSPs can be lower bounded as

E[RK ] =
1

N

N∑
i=1

Ei[RK ] ≥ 1

N

N∑
i=1

Ei[K −Ki]εc = εc

(
K − 1

N

N∑
i=1

Ei[Ki]

)
.

Note thatMK
0,0 has no “good” state. By Pinsker’s inequality:

Ei[Ki]− E0[Ki] ≤ K ‖Pi − P0‖1 ≤ K
√

2KL(P0, Pi).

By the divergence decomposition lemma [Lattimore and Szepesvári, 2020, Lemma 15.1], we have:

KL(P0, Pi) = E0[Ki] · T? · KL(Bernoulli((B? + εc)/T?),Bernoulli(B?/T?))

≤ E0[Ki] · T? ·
ε2c/T

2
?

B?
T?

(1− B?
T?

)
≤ 2ε2c
B?

E0[Ki].

([Gerchinovitz and Lattimore, 2016, Lemma 6])

Therefore, by Cauchy-Schwarz inequality,

N∑
i=1

Ei[Ki] ≤
N∑
i=1

(
E0[Ki] + 2εcK

√
E0[Ki]/B?

)
≤ K + 2εcK

√
NK/B?.

Plugging this back and by the definition of εc, we obtain

E[RK ] ≥ εcK

(
1− 1

N
− 2εc

√
K

NB?

)
=

(1− 1/N)2

8

√
B?NK = Ω(

√
B?SAK).

This completes the proof.
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Theorem 8. For any B?, T?, SA,K with B? ≥ 1, T? ≥ 3B?, K ≥ SA ≥ 10, and any learner, there
exists an SSP instance based on transition perturbation such that the regret of the learner after K
episodes is at least Ω(B?

√
SAK).

Proof. Consider a distribution of SSP instances which is uniform over {MK
0,j}j for j ∈ [N ]. Let

Ej be the expectation w.r.tMK
0,j , Pj be the distribution of learner’s observations w.r.tMK

0,j , and
Kj the number of visits to state j in K episodes. Also let εP = εP,K . The expected regret over this
distribution of SSPs can be lower bounded as

E[RK ] =
1

N

N∑
j=1

Ej [RK ] ≥ 1

N

N∑
j=1

Ej [K −Kj ] ·B?
(

1− 1

1 + εP

)

≥ B?εP
2

K − 1

N

N∑
j=1

Ej [Kj ]

 .

Note thatMK
0,0 has no “good” state. By Pinsker’s inequality:

Ej [Kj ]− E0[Kj ] ≤ K ‖Pj − P0‖1 ≤ K
√

2KL(P0, Pj).

By the divergence decomposition lemma [Lattimore and Szepesvári, 2020, Lemma 15.1], we have:

KL(P0, Pj) = E0[Kj ] · KL(Geometric(1/T?),Geometric((1 + εP )/T?))

= E0[Kj ] · T? · KL(Bernoulli(1/T?),Bernoulli((1 + εP )/T?))

≤ E0[Kj ] · T? ·
ε2P /T

2
?

1+εP
T?

(1− 1+εP
T?

)
≤ 2ε2PE0[Kj ].

([Gerchinovitz and Lattimore, 2016, Lemma 6] and εP ≤ 1
4 )

Therefore, by Cauchy-Schwarz inequality,

N∑
j=1

Ej [Kj ] ≤
N∑
j=1

(
E0[Kj ] + 2εPK

√
E0[Kj ]

)
≤ K + 2εPK

√
NK.

Plugging this back and by the definition of εP , we obtain

E[RK ] ≥ B?εPK

2

(
1− 1

N
− 2εP

√
K

N

)
≥ (1− 1/N)2

16
B?
√
NK = Ω(B?

√
SAK).

This completes the proof.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We construct a hard non-stationary SSP instance as follows: we divide K
episodes into L = Lc+LP epochs. Each of the first Lc epochs has length K

2Lc
, and the corresponding

SSP is uniformly sampled from {MK/(2Lc)
i,0 }i∈[N ] independently; each of the last LP epochs has

length K
2LP

, and the corresponding SSP is uniformly sampled from {MK/(2LP )
0,j }j∈[N ] independently.

By Theorem 7 and Theorem 8, the regrets in each of the first Lc epochs and each of the last LP epochs
are of order Ω(

√
B?SAK/Lc) and Ω(B?

√
SAK/LP ) respectively. Moreover, the total change in

cost and transition functions are upper bounded by εcLc
T?

and 2εPLP
T?

respectively with εc = εc, K2Lc
and εP = εP, K

2LP

. Now let εcLcT?
= ∆c and 2εPLP

T?
= ∆P , we have Lc = ( 4∆cT?

1−1/N )2/3( K
2NB?

)1/3

and LP = ( 2∆PT?
1−1/N )2/3( K2N )1/3, and the dynamic regret is of order Ω(Lc ·

√
B?SAK/Lc + LP ·

B?
√
SAK/LP ) = Ω((B?SAT?(∆c +B2

?∆P ))1/3K2/3).
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C Omitted Details in Section 4

Notations Under the protocol of Algorithm 1, for any k ∈ [K], denote by Mk the number of
intervals in the first k episodes. Clearly, M = MK .

The following lemma is a more general version of Lemma 1.

Lemma 15. For any K ′ ∈ [K], RK′ ≤ R̊MK′ +B?.

Proof. Let Ik be the set of intervals in episode k. Then the regret in episode k satisfies

∑
m∈Ik

Hm∑
h=1

cmh − V ?k (sk1) =
∑
m∈Ik

(
Hm∑
h=1

cmh − V
π?,m
1 (sm1 )

)
+
∑
m∈Ik

V π
?,m

1 (sm1 )− V ?k (sk1)

≤
∑
m∈Ik

(Cm − V π
?,m

1 (sm1 )) +
B?
2K

,

where the last step is by the definition of cmHm+1 and V π
?,m

1 (sm1 ) ≤ V ?k (sm1 ) + B?
2K ≤

3
2B? by

Lemma 46. Summing up over k completes the proof.

Lemma 16. Suppose algorithm A ensures R̊M ′ = Õ(γ0 + γ1M
′1/3 + γ 1

2
M ′

1/2
+ γ2M

′2/3)

for any number of intervals M ′ ≤ M with cetain probability. Then with the same probability,
MK′ = Õ(K ′ + γ0/B? + (γ1/B?)

3/2 + (γ 1
2
/B?)

2 + (γ2/B?)
3) and R̊MK′ = Õ(γ1K

′1/3 +

γ 1
2
K ′

1/2
+ γ2K

′2/3 + γ
3/2
1 /B

1/2
? + γ2

1
2

/B? + γ3
2/B

2
? + γ0) for any K ′ ∈ [K].

Proof. Fix a K ′ ∈ [K]. For any M ′ ≤MK′ , let Cg = {m ∈ [M ′] : smHm+1 = g}. Then,

R̊M ′ =
∑
m∈Cg

(Cm − V π
?,m

1 (sm1 )) +
∑
m/∈Cg

(Cm − V π
?,m

1 (sm1 ))

= Õ
(
γ0 + γ1M

′1/3 + γ 1
2
M ′

1/2
+ γ2M

′2/3
)
. (4)

Note that V π
?,m

1 (sm1 ) ≤ V ?k(m)(s
m
1 ) + B?

2K ≤
3
2B? by Lemma 46. Moreover, Cm ≥ 2B? when

m /∈ Cg. Therefore, Cm − V π
?,m

1 (sm1 ) ≥ − 3B?
2 for m ∈ Cg and Cm − V π

?,m
1 (sm1 ) ≥ B?

2 for
m /∈ Cg . Reorganizing terms and by |Cg| ≤ K ′, we get:

B?M
′

2
≤ 2B?K

′ + Õ
(
γ0 + γ1M

′1/3 + γ 1
2
M ′

1/2
+ γ2M

′2/3
)
.

Solving a quadratic inequality w.r.t. M ′, we get M ′ = Õ(K ′ + γ0/B? + (γ1/B?)
3/2 + (γ 1

2
/B?)

2 +

(γ2/B?)
3). Define γ = γ0/B? + (γ1/B?)

3/2 + (γ 1
2
/B?)

2 + (γ2/B?)
3. Plugging the bound on M ′

back to Eq. (4), we have

R̊M ′ = Õ
(
γ0 + γ1K

′1/3 + γ 1
2
K ′

1/2
+ γ2K

′2/3 + γ1γ
1/3 + γ 1

2
γ1/2 + γ2γ

2/3
)

= Õ
(
γ0 + γ1K

′1/3 + γ 1
2
K ′

1/2
+ γ2K

′2/3 + γ
3/2
1 /B

1/2
? + γ2

1
2
/B? + γ3

2/B
2
? +B?γ

)
= Õ

(
γ0 + γ1K

′1/3 + γ 1
2
K ′

1/2
+ γ2K

′2/3 + γ
3/2
1 /B

1/2
? + γ2

1
2
/B? + γ3

2/B
2
?

)
,

where in the second last step we apply Young’s inequality for product (xy ≤ xp/p+ yq/q for x ≥ 0,
y ≥ 0, p > 1, q > 1, and 1

p + 1
q = 1). Putting everything together and setting M ′ = MK′ completes

the proof.

D Omitted Details in Section 5

Extra Notations Let Qmh , V mh , xm be the value of Qh, Vh, and x at the beginning of interval m,
and QmH+1(s, a) = V mH+1(s) for any (s, a) ∈ S ×A.
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D.1 Proof of Theorem 2

We first prove two lemmas related to the optimism of Qmh . Define the following reference value
function: Q̊mh (s, a) = (ĉm(s, a)+ P̄ms,aV̊

m
h+1−bm(s, a, V̊ mh+1)− x̊m)+ for h ∈ [H], where V̊ mh (s) =

argmina Q̊
m
h (s, a) for h ∈ [H], V̊ mH+1 = cf , Q̊mH+1(s, a) = V̊ mH+1(s) for any (s, a) ∈ S × A, and

x̊m = ∆c,m + 4B?∆P,m.

Lemma 17. With probability at least 1− 2δ, Q̊mh (s, a) ≤ Q?,mh (s, a) for m ≤M .

Proof. We prove this by induction on h. The base case of h = H + 1 is clearly true. For h ≤ H , by
Lemma 48, for any (s, a) ∈ S ×A:

Q̊mh (s, a) = ĉm(s, a) + P̄ms,aV̊
m
h+1 − bm(s, a, V̊ mh+1)− x̊m

≤ ĉm(s, a) + P̄ms,aV
?,m
h+1 − b

m(s, a, V ?,mh+1 )− x̊m (by the induction step)

= ĉm(s, a) + P̃ms,aV
?,m
h+1 + (P̄ms,a − P̃ms,a)V ?,mh+1 − b

m(s, a, V ?,mh+1 )− x̊m
(i)
≤ ĉm(s, a) + P̃ms,aV

?,m
h+1 − x̊m

(ii)
≤ cm(s, a) + Pms,aV

?,m
h+1 = Q?,mh (s, a),

where in (i) we apply Lemma 8 with |{V ?,mh }m,h| ≤ HK + 1 to obtain (P̄ms,a − P̃ms,a)V ?,mh+1 −
bm(s, a, V ?,mh+1 ) ≤ 0; in (ii) we apply Lemma 5, Lemma 2, and the definition of x̊m.

Lemma 18. With probability at least 1−2δ,Qmh (s, a) ≤ Q?,mh (s, a)+(∆c,m+4B?∆P,m)(H−h+1)
and xm ≤ max{ 1

mH , 2(∆c,m + 4B?∆P,m)}.

Proof. The second statement simply follows from Lemma 17, Q?,mh (s, a) ≤ Qπ
?,m
h (s, a) ≤

4B? = B/4 by Lemma 2, and the computing procedure of xm. We now prove Qmh (s, a) ≤
Q̊mh (s, a) + (∆c,m + 4B?∆P,m)(H − h+ 1) by induction on h, and the first statement simply fol-
lows from Q̊mh (s, a) ≤ Q?,mh (s, a) (Lemma 17). The statement is clearly true for h = H + 1.
For h ≤ H , by the induction step and

∥∥V mh+1

∥∥
∞ ≤ B/4 from the update rule, we have

V mh+1(s) ≤ min{B/4, V̊ mh+1(s) + (∆c,m + 4B?∆P,m)(H − h)} ≤ V̊ mh+1(s) + ymh+1 ≤ B for
any s ∈ S+, where ymh = min{B/4, (∆c,m + 4B?∆P,m)(H − h+ 1)}. Thus,

P̄ms,aV
m
h+1 − bm(s, a, V mh+1)− xm ≤ P̄ms,a(V̊ mh+1 + ymh+1)− bm(s, a, V̊ mh+1 + ymh+1)

(Lemma 48 and xm ≥ 0)

≤ P̄ms,aV̊ mh+1 − bm(s, a, V̊ mh+1)− x̊m + (∆c,m + 4Bm? ∆P,m)(H − h+ 1),

where in the last inequality we apply definition of x̊m and bm(s, a, V̊ mh+1 + ymh+1) = bm(s, a, V̊ mh+1)

since constant offset does not change the variance. Then, Qmh (s, a) ≤ Q̊mh (s, a) + (∆c,m +

4B?∆P,m)(H − h+ 1) by the update rule of Qmh and the definition of Q̊mh .

We are now ready to prove the main theorem, from which Theorem 2 is a simple corollary.

Theorem 9. Algorithm 2 ensures with probability at least 1 − 22δ, for any M ′ ≤ M , R̊M ′ =

Õ(
√
B?SALc,M ′M ′ + B?

√
SALP,M ′M ′ + B?SALc,M ′ + B?S

2ALP,M ′ +
∑M ′

m=1(∆c,m +
B?∆P,m)H).
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Proof. Note that with probability at least 1− 2δ:

R̊M ′ ≤
M ′∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V
?,m
1 (sm1 )

)
(V ?,m1 (sm1 ) ≤ V π

?,m
1 (sm1 ))

≤
M ′∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V m1 (sm1 )

)
+

M ′∑
m=1

(∆c,m + 4B?∆P,m)H (Lemma 18)

≤
M ′∑
m=1

Hm∑
h=1

(
cmh + V mh+1(smh+1)− V mh (smh )

)
+

M ′∑
m=1

(∆c,m + 4B?∆P,m)H + Õ (B?SALM ′)

(cmHm+1 = Õ(B?) and Lemma 12)

≤
M ′∑
m=1

Hm∑
h=1

(
(cmh − ĉmh ) + (V mh+1(smh+1)− Pmh V mh+1) + (Pmh − P̄mh )V mh+1 + bmh

)
+ 2

M ′∑
m=1

(∆c,m + 4B?∆P,m)H + Õ (B?SALM ′) ,

where the last step is by the definitions of V mh (smh ), xm ≤ max{ 1
mH , 2(∆c,m + 4B?∆P,m)}

(Lemma 18), max{a, b} ≤ a+b
2 , and

∑M ′

m=1

∑Hm
h=1

1
mH = Õ(1). Now we bound the first three sums

separately. For the first term, with probability at least 1− 4δ,

M ′∑
m=1

Hm∑
h=1

(cmh − ĉmh ) =

M ′∑
m=1

Hm∑
h=1

(cmh − cm(smh , a
m
h )) +

M ′∑
m=1

Hm∑
h=1

(cm(smh , a
m
h )− ĉmh )

≤ Õ
(√

CM ′ +
√
SALc,M ′CM ′ + SALc,M ′

)
+ 2

M ′∑
m=1

∆c,mH. (Lemma 49 and Lemma 3)

For the second term, by Lemma 49, with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

(V mh+1(smh+1)− Pmh V mh+1) = Õ


√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +B?


= Õ


√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 ) +

√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 − V mh+1) +B?

 ,

(VAR[X + Y ] ≤ 2(VAR[X] + VAR[Y ]) and
√
a+ b ≤

√
a+
√
b)
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which is dominated by the upper bound of the third term below. For the third term, by Pmh V
m
h+1 ≤

P̃mh V
m
h+1 + 4B?(∆P,m + nmh ), with probability at least 1− 2δ,

M ′∑
m=1

Hm∑
h=1

(Pmh − P̄mh )V mh+1 ≤
M ′∑
m=1

Hm∑
h=1

(P̃mh − P̄mh )V mh+1 +

M ′∑
m=1

Hm∑
h=1

4B?(∆P,m + nmh )

≤
M ′∑
m=1

Hm∑
h=1

(
(P̃mh − P̄mh )V ?,mh+1 + (P̃mh − P̄mh )(V mh+1 − V

?,m
h+1 ) + 4B?n

m
h

)
+

M ′∑
m=1

4B?∆P,mH

= Õ

 M ′∑
m=1

Hm∑
h=1

√V(Pmh , V
?,m
h+1 )

Nm
h

+
SB?
Nm
h

+

√
SV(Pmh , V

m
h+1 − V

?,m
h+1 )

Nm
h

+

M ′∑
m=1

B?∆P,mH


(nmh ≤ 1

Nm
h

, Lemma 8 with |{V ?,mh+1}m,h| ≤ HK + 1, and Lemma 6)

= Õ


√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 ) +

√√√√S2ALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 − V mh+1)


+ Õ

B?S2ALP,M ′ +

M ′∑
m=1

B?∆P,mH

 . (Cauchy-Schwarz inequality and Lemma 11)

Moreover, by Lemma 10, with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

bmh = Õ


√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1) +B?S

1.5ALP,M ′ +B?

√√√√SAHLP,M ′

M ′∑
m=1

∆P,m


= Õ


√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 ) +

√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
m
h+1 − V

?,m
h+1 )


+ Õ

B?S1.5ALP,M ′ +

M ′∑
m=1

B?∆P,mH

 .

(VAR[X + Y ] ≤ 2VAR[X] + 2VAR[Y ],
√
a+ b ≤

√
a+
√
b, and AM-GM inequality)

which is dominated by the upper bound of the third term above. Putting everything together, we have
with probability at least 1− 11δ,

R̊M ′ = Õ

√SALc,M ′CM ′ +B?SALc,M ′ +

√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 ) +B?S

2ALP,M ′


+ Õ


√√√√S2ALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 − V mh+1) +

M ′∑
m=1

(∆c,m +B?∆P,m)H


= Õ

(√
SALc,M ′CM ′ +

√
B?SALP,M ′CM ′ +B?SALc,M ′ +B?S

2ALP,M ′

)
+ Õ

 M ′∑
m=1

(∆c,m +B?∆P,m)H

 . (Lemma 19, Lemma 20 and AM-GM inequality)

Note that R̊M ′ =
∑M ′

m=1(Cm − V π
?,m

1 (sm1 )) ≥ CM ′ − 4B?M
′ (Lemma 2). Reorganizing terms

and solving a quadratic inequality (Lemma 45) w.r.t CM ′ gives CM ′ = Õ(B?M
′) ignoring lower

order terms. Plugging this back completes the proof.

Proof of Theorem 2. Note that by by Line 3 and Line 4 of Algorithm 2, we have Lc ≤ dM
′

Wc
e,

LP ≤ d M
′

WP
e, and the number of intervals between consecutive resets of M (or N) are upper bounded
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by Wc (or WP ), which gives

M ′∑
m=1

(∆c,m +B?∆P,m)H ≤
M ′∑
m=1

(∆c,fc(m) +B?∆P,fP (m))H ≤ (Wc∆c +B?WP∆P )H

Applying Theorem 9 completes the proof.

D.2 Proof of Theorem 3

We first show that Algorithm 3 ensures an anytime regret bound in M̊.

Theorem 10. With probability at least 1 − 22δ, Algorithm 3 ensures for any M ′ ≤ M ,
R̊M ′ = Õ((B?SATmax∆c)

1/3M ′
2/3

+B?(SATmax∆P )1/3M ′
2/3

+ (B?SATmax∆c)
2/3M ′

1/3
+

B?(S
2.5ATmax∆P )2/3M ′

1/3
+ (∆c +B?∆P )Tmax) .

Proof. It suffices to prove the desired inequality for M ′ ∈ {2n − 1}n∈N+
. Sup-

pose M ′ = 2N − 1 for some N ≥ 1. By the doubling scheme, we run Al-
gorithm 2 on intervals [2n−1, 2n − 1] for n = 1, . . . , N , and the regret on intervals
[2n−1, 2n − 1] is of order Õ((B?SATmax∆c)

1/3(2n−1)2/3 + B?(SATmax∆P )1/3(2n−1)2/3 +
(B?SATmax∆c)

2/3(2n−1)1/3 +B?(S
2.5ATmax∆c)

2/3(2n−1)1/3 + (∆c +B?∆P )Tmax) by Theo-
rem 2 and the choice of Wc and WP . Summing over n completes the proof.

Proof of Theorem 3. By Lemma 16 and Theorem 10 with γ0 = (∆c + B?∆P )Tmax,
γ1 = (B?SATmax∆c)

2/3 + B?(S
2.5ATmax∆P )2/3, γ 1

2
= 0, and γ2 = (B?SATmax∆c)

1/3 +

B?(SATmax∆P )1/3, we have γ
3/2
1 /B

1/2
? = Õ(B

1/2
? SATmax∆c + B?S

2.5ATmax∆P ),
γ3

2/B
2
? = Õ(SATmax∆c/B

2
? +B?SATmax∆P ), and thus R̊MK′ = Õ((B?SATmax∆c)

1/3K ′
2/3

+

B?(SATmax∆P )1/3K ′
2/3

+ (B?SATmax∆c)
2/3K ′

1/3
+ B?(S

2.5ATmax∆P )2/3K ′
1/3

+

B
1/2
? SATmax∆c +B?S

2.5ATmax∆P ) for any K ′ ∈ [K]. Then by Lemma 15, we obtain the same
bound as R̊MK′ for RK′ .

D.3 Auxiliary Lemmas

Lemma 19. With probability at least 1− 2δ,
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

?,m
h+1 ) = Õ

(
B?CM ′ +B2

?

)
for

any M ′ ≤M .

Proof. Applying Lemma 9 with
∥∥V ?,mh

∥∥
∞ ≤ 4B? (Lemma 2), with probability at least 1− 2δ,

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 )

= Õ

 M ′∑
m=1

V ?,mHm+1(smHm+1)2 +

M ′∑
m=1

Hm∑
h=1

B?(V
?,m
h (smh )− Pmh V

?,m
h+1 )+ +B2

?


= Õ

(
B?CM ′ +B2

?

)
,

where in the last step we apply

(V ?,mh (smh )− Pmh V
?,m
h+1 )+ ≤ (Q?,mh (smh , a

m
h )− Pmh V

?,m
h+1 )+ ≤ cm(smh , a

m
h ),

and
∑M ′

m=1

∑Hm
h=1 c

m(smh , a
m
h ) = Õ(

∑M ′

m=1

∑Hm
h=1 c

m
h ) by Lemma 50.

Lemma 20. With probability at least 1 − 9δ, for any M ′ ≤ M ,
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

?,m
h+1 −

V mh+1) = Õ(B?
√
B?SALP,M ′CM ′ + B?

√
SALc,M ′CM ′ + B2

?S
2ALP,M ′ + B2

?SALc,M ′ +∑M ′

m=1B?(∆c,m +B?∆P,m)H).
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Proof. Let zmh = min{B/4, (∆c,m+4B?∆P,m)H}I{h ≤ H}. By Lemma 18 and ‖V mh ‖∞ ≤ B/4,
we have V ?,mh (s) + zmh ≥ V mh (s) for all s ∈ S+. Moreover, by Lemma 12,

M ′∑
m=1

(V ?,mHm+1(smHm+1) + zmHm+1 − V mHm+1(smHm+1))2

≤
M ′∑
m=1

(zmHm+1)2I{smHm+1 = g}+ Õ

B2
?

M ′∑
m=1

I{Hm < H, smHm+1 6= g}


= 4B?

M ′∑
m=1

(∆c,m + 4B?∆P,m)H + Õ
(
B2
?SALM ′

)
.

Also note that

(∗) =

M ′∑
m=1

B?

Hm∑
h=1

(V ?,mh (smh )− V mh (smh )− Pmh V
?,m
h+1 + Pmh V

m
h+1 + zmh − zmh+1)+

≤
M ′∑
m=1

B?

Hm∑
h=1

(
cm(smh , a

m
h ) + P̃mh V

m
h+1 − V mh (smh ) + 4B?n

m
h

)
+

+ 2

M ′∑
m=1

B?(∆c,m + 4B?∆P,m)H

(V ?,mh (smh ) ≤ Q?,mh (smh , a
m
h ), zmh ≥ zmh+1, and Pmh V

m
h+1 ≤ P̃mh V mh+1 + 4B?(n

m
h + ∆P,m))

≤
M ′∑
m=1

B?

Hm∑
h=1

(cm(smh , a
m
h )− ĉmh + (P̃mh − P̄mh )V ?,mh+1 + (P̃mh − P̄mh )(V mh+1 − V

?,m
h+1 ) + bmh )+

+ 3

M ′∑
m=1

B?(∆c,m + 4B?∆P,m)H + 4B2
?

M ′∑
m=1

Hm∑
h=1

nmh + Õ (B?) ,

where the last step is by the definitions of V mh (smh ), xm ≤ max{ 1
mH , 2(∆c,m + 4B?∆P,m)}

(Lemma 18), max{a, b} ≤ a+b
2 , and

∑M ′

m=1

∑Hm
h=1

1
mH = Õ(1). Now by Lemma 3, Lemma 8,

Lemma 6, and nmh ≤ 1
Nm
h

, we continue with

(∗) = Õ

B?
√SALc,M ′CM ′ + SALc,M ′ +

M ′∑
m=1

Hm∑
h=1

√V(Pmh , V
?,m
h+1 )

Nm
h

+

√
SV(Pmh , V

m
h+1 − V

?,m
h+1 )

Nm
h


+ Õ

 M ′∑
m=1

Hm∑
h=1

B2
?S

Nm
h

+

M ′∑
m=1

B?(∆c,m +B?∆P,m)H +B?

M ′∑
m=1

Hm∑
h=1

bmh


= Õ

B?√SALc,M ′CM ′ +B?SALc,M ′ +B?

√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 ) +B2

?S
2ALP,M ′


+ Õ

B?
√√√√S2ALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 − V mh+1) +

M ′∑
m=1

B?(∆c,m +B?∆P,m)H

 ,

where in the last step we apply Cauchy-Schwarz inequality, Lemma 11, Lemma 10, VAR[X + Y ] ≤
2VAR[X] + 2VAR[Y ], and AM-GM inequality. Finally, by Lemma 19, we continue with

(∗) = Õ
(
B?
√
SALc,M ′CM ′ +B?SALc,M ′ +B?

√
B?SALP,M ′CM ′ +B2

?S
2ALP,M ′

)
+ Õ

B?
√√√√S2ALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 − V mh+1) +

M ′∑
m=1

B?(∆c,m +B?∆P,m)H

 .
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Applying Lemma 9 on value functions {V ?,mh + zmh − V mh }m,h (constant offset does not change the
variance) and plugging in the bounds above, we have

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 − V

m
h+1) =

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 + zmh − V mh+1)

= Õ
(
B?
√
SALc,M ′CM ′ +B2

?SALc,M ′ +B?
√
B?SALP,M ′CM ′ +B2

?S
2ALP,M ′

)
+ Õ

B?
√√√√S2ALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V
?,m
h+1 − V mh+1) +

M ′∑
m=1

B?(∆c,m +B?∆P,m)H

 .

Then solving a quadratic inequality w.r.t
∑M ′

m=1

∑Hm
h=1 V(Pmh , V

?,m
h+1 −V mh+1) (Lemma 45) completes

the proof.

D.4 Minimax Optimal Bound in Finite-Horizon MDP

Here we give a high level arguments on why Algorithm 2 implies a minimax optimal dynamic regret
bound in the finite-horizon setting. To adapt Algorithm 2 to the non-homogeneous finite-horizon
setting, we maintain empirical cost and transition functions for each layer h ∈ [H] and let cf (s) = 0.
Following similar arguments and substituting B?, Tmax by horizon H , Theorem 2 implies (ignoring
lower order terms)

R̊M ′ = Õ
(√

SAH2/WcM
′ +
√
SAH3/WPM

′ + (∆cWc +H∆PWP )H
)

= Õ
(
H(SA∆c)

1/3M ′
2/3

+ (SAH5∆P )1/3M ′
2/3
)
,

where the extra
√
H dependency in the first two terms comes from estimating the cost and tran-

sition functions of each layer independently, and we set Wc = (SA)1/3(M ′/∆c)
2/3, WP =

(SA/H)1/3(M ′/∆P )2/3. Note that the lower bound construction in [Mao et al., 2021] only make use
of non-stationary transition. The lower bound they prove is Ω((SA∆)1/3(HT )2/3) (their Theorem
5), which actually matches our upper bound Õ((SAH5∆P )1/3M ′

2/3
) for non-stationary transition

since T = M ′H and ∆ = H∆P by their definition of non-stationarity. It is also straightforward
to show that the lower bound for non-stationary cost matches our upper bound following similar
arguments in proving Theorem 1.

E Omitted Details in Section 6

Notations Denote by ρcm and ρPm the values of ρc and ρP at the beginning of interval m re-
spectively, that is, ρcm = gc(νcm) and ρPm = gP (νPm), where gc(m) = min{ c1√

m
, 1

28H } and
gP (m) = min{ c2√

m
, 1

28H }. Denote by čm the value of č at the beginning of interval m and de-

fine čmh = č(smh , a
m
h ). Define Q̌π

?,m
h and V̌ π

?,m
h as the action-value function and value function w.r.t

cost cm + 8ηm, transition Pm, and policy π?k(m); and C[i,j] =
∑j
m=i

∑Hm
h=1 C

m. Let Q̌?,mh and
V̌ ?,mh be the optimal value functions w.r.t cost function cm + 8ηm and transition function Pm. It is
not hard to see that they can be defined recursively as follows: V̌ ?,mH+1 = cf and for h ≤ H ,

Q̌?,mh (s, a) = cm(s, a) + 8ηm + Pms,aV̌
?,m
h+1 , V̌ ?,mh (s) = min

a
Q?,mh (s, a).

For notational convenience, define Q̌mH+1(s, a) = V̌ mH+1(s), Q̌π
?,m
H+1 (s, a) = V̌ π

?,m
H+1 (s), and

Q̌?,mH+1(s, a) = V̌ ?,mH+1(s) for any (s, a) ∈ S ×A; let Lc = Lc,[1,K] and LP = LP,[1,K].
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Proof Sketch of Theorem 4 We give a high level idea on the analysis of the main theorem and
also point out the key technical challenges. We decompose the regret as follows:

R̊K =

K∑
m=1

(Cm − V̌ m1 (sm1 )) +

K∑
m=1

(V̌ m1 (sm1 )− V̌ π
?,m

1 (sm1 )) + 8T?

K∑
m=1

ηm

.
K∑
m=1

H∑
h=1

(
cmh − ĉmh + V̌ mh+1(smh+1)− P̄mh V̌ mh+1 + bmh − 8ηm

)
(definition of V̌ mh (smh ))

+

K∑
m=1

(V̌ m1 (sm1 )− V̌ π
?,m

1 (sm1 )) + 8T?

K∑
m=1

ηm.

We bound the three terms above separately. For the second term, we first show that V̌ m1 (sm1 ) −
V̌ π

?,m
1 (sm1 ) ≤ (∆c,m +B∆P,m)T?, where ∆c,m = ∆c,[icm,m], ∆P,m = ∆P,[iPm,m] are the accumu-

lated cost and transition non-stationarity since the last reset respectively. Although proving such a
bound is straightforward when V̌ mh is indeed a value function (similar to Lemma 14), it is non-trivial
under the UCBVI update rule as the bonus term b depends on the next-step value function and can
not be simply treated as part of the cost function. A key step here is to make use of the monotonic
property (Lemma 48) of the bonus function; see Lemma 22 for more details. Now by the periodic
resets of cost and transition counters (Line 4 and Line 5), the number of intervals between consecutive
resets of cost and transition estimation is upper bounded by Wc and WP respectively. Thus,

K∑
m=1

(∆c,m +B∆P,m)T? ≤
K∑
m=1

(∆c,fc(m) +B∆P,fP (m))T? ≤ (Wc∆c +BWP∆P )T?

= Õ
(

(B?SAT?∆c)
1/3K2/3 +B?(SAT?∆P )1/3K2/3 + (∆c +B?∆P )T?

)
.

where the last step is simply by the chosen values of Wc and WP .

For the third term, we have:

T?

K∑
m=1

ηm ≤ T?
K∑
m=1

(
c1√
νcm

+
Bc2√
νPm

)
= Õ

(
T?

(
c1

Lc∑
i=1

√
M c
i +B?c2

LP∑
i=1

√
MP
i

))
= Õ

(
T?(c1

√
LcK +B?c2

√
LPK)

)
= Õ

(√
B?SALcK +B?

√
SALPK

)
,

where M c
i (or MP

i ) is the number of intervals between the i-th and (i + 1)-th reset of cost (or
transition) estimation, and the second last step is by Cauchy-Schwarz inequality. Finally we bound
the first term, simply by Test 1 and Test 2, we have (only keeping the dominating terms)

K∑
m=1

H∑
h=1

(
cmh − ĉmh + V̌ mh+1(smh+1)− P̄mh V̌ mh+1 + bmh − 8ηm

)
=

Lc∑
i=1

∑
m∈Ici

Hm∑
h=1

(cmh − ĉmh ) +

LP∑
i=1

∑
m∈IPi

Hm∑
h=1

(V̌ mh+1(smh+1)− P̄mh V̌ mh+1) +

M ′∑
m=1

Hm∑
h=1

(bmh − 8ηm)

.
M ′∑
m=1

Hm∑
h=1

√ c̄mh
Mm

h

+

√
V(P̄mh , V̌

m
h+1)

Nm
h

 = Õ
(√

B?SALcK +B?
√
SALPK

)
.

where {Ici }
Lc
i=1 (or {IPi }

LP
i=1) is a partition of K episodes such that M (or N) is reseted in the last

interval of each Ici (or IPi ) for i < Lc (or i < LP ) and the last interval of IcLc (or IPLP ) is K, and in
the second last step we apply the definition of χcm (Lemma 24) and χPm (Lemma 25). Note that the
regret of non-stationarity along the learner’s trajectory is cancelled out by the negative correction term
−8ηm. Now it suffices to bound Lc and LP . It can be shown that the reset rules of the non-stationarity
tests guarantee that

Lc = Õ (K/Wc +B?K/WP ) , LP = Õ (K/WP +K/(B?Wc)) .
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Details are deferred to Lemma 26. Putting everything together completes the proof.

Next, we present three lemmas related to the optimism and magnitude (Test 3) of estimated value
function.

Lemma 21. With probability at least 1 − 2δ, for all m ≤ K, Q̌mh (s, a) ≤ Q̌?,mh (s, a) + (∆c,m +
B∆P,m)(H − h+ 1).

Proof. We prove this by induction on h. The base case of h = H + 1 is clearly true. For h ≤ H , by
Test 3 and the induction step, we have V̌ mh+1(s) ≤ min{B/2, V̌ ?,mh+1 (s)+(∆c,m+B∆P,m)(H−h)} ≤
V̌ ?,mh+1 (s) + xmh+1 ≤ B where xmh = min{B/2, (∆c,m + B∆P,m)(H − h + 1)} and V̌ ?,mh (s) ≤
V̌ π

?,m
h (s) ≤ B

4 + 8Hηm ≤ B
3 . Thus, with probability at least 1− 2δ,

čm(s, a) + P̄ms,aV̌
m
h+1 − bm(s, a, V̌ mh+1)

≤ čm(s, a) + P̄ms,a(V̌ ?,mh+1 + xmh+1)− bm(s, a, V̌ ?,mh+1 + xmh+1) (Lemma 48)
(i)
≤ čm(s, a) + P̃ms,a(V̌ ?,mh+1 + xmh+1) (Lemma 8)

≤ cm(s, a) + 8ηm + ∆c,m + Pms,a(V̌ ?,mh+1 + xmh+1) +B∆P,m (Lemma 5)

≤ Q̌?,mh (s, a) + (∆c,m +B∆P,m)(H − h+ 1).

Note that in (i) we use the fact that |{V̌ ?,mh + xmh }m,h| ≤ (HK + 1)6 since |{(cm, Pm)}m| ≤ K,
|{ρcm}m| ≤ K, |{ρPm}m| ≤ K, |{∆c,m}m| ≤ K+1, and |{∆P,m}m| ≤ K+1 (∆c,m = ∆P,m = 0
when m is not the first interval of some episode).

Lemma 22. With probability at least 1− 2δ, for all m ≤ K, Q̌mh (s, a) ≤ Q̌π
?,m
h (s, a) + (∆c,m +

B∆P,m)Tπ
?,m

h (s, a).

Proof. We prove this by induction on h. The base case of h = H + 1 is clearly true.
For h ≤ H , by Test 3 and the induction step, we have V̌ mh+1(s) ≤ min{B/2, V̌ π

?,m
h+1 (s) +

(∆c,m + B∆P,m)Tπ
?,m

h+1 (s)} ≤ V̌ π
?,m

h+1 (s) + xmh+1(s) ≤ B where xmh (s) = min{B/2, (∆c,m +

B∆P,m)Tπ
?,m

h (s)} and V̌ π
?,m

h (s) ≤ B
4 + 8ηmT

π?,m
h (s) ≤ B

4 + 8Hηm ≤ B
3 . Thus, with probabil-

ity at least 1− 2δ,

čm(s, a) + P̄ms,aV̌
m
h+1 − bm(s, a, V̌ mh+1)

≤ čm(s, a) + P̄ms,a(V̌ π
?,m

h+1 + xmh+1)− bm(s, a, V̌ π
?,m

h+1 + xmh+1) (Lemma 48)
(i)
≤ čm(s, a) + P̃ms,a(V̌ π

?,m
h+1 + xmh+1) (Lemma 8)

≤ cm(s, a) + 8ηm + ∆c,m + Pms,a(V̌ π
?,m

h+1 + xmh+1) +B∆P,m (Lemma 5)

≤ Q̌π
?,m
h (s, a) + (∆c,m +B∆P,m)Tπ

?,m
h (s, a).

Note that in (i) we use the fact that |{V̌ π
?,m

h +xmh }m,h| ≤ (HK+1)6 since |{V π
?,m

h }m,h| ≤ HK+1,
|{ρcm}m| ≤ K, |{ρPm}m| ≤ K, |{∆c,m}m| ≤ K + 1, |{∆P,m}m| ≤ K + 1 (∆c,m = ∆P,m = 0

when m is not the first interval of some episode), and |{Tπ
?,m

h }m,h| ≤ HK + 1.

Lemma 23. With probability at least 1− 2δ, for all m ≤ K, if ∆c,m ≤ ρcm and ∆P,m ≤ ρPm, then
Q̌mh (s, a) ≤ Q̌π

?,m
h (s, a) + ηmT

π?,m
h (s, a) ≤ B/2. Moreover, if Test 3 fails in interval m, then

∆c,[icm,m+1] > gc(νcm + 1) or ∆P,[iPm,m+1] > gP (νPm + 1).
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Proof. First note that Q̌π
?,m
h (s, a) ≤ B

4 + 8ηmT
π?,m
h (s, a) ≤ B

4 + 8Hηm ≤ B
3 . We prove the first

statement by induction on h. The base case of h = H + 1 is clearly true. For h ≤ H , note that:

čm(s, a) + P̄ms,aV̌
m
h+1 − bm(s, a, V̌ mh+1)

≤ čm(s, a) + P̄ms,a(V̌ π
?,m

h+1 + ηmT
π?,m
h+1 )− bm(s, a, V̌ π

?,m
h+1 + ηmT

π?,m
h+1 )

(induction step and Lemma 48)
(i)
≤ čm(s, a) + P̃ms,a(V̌ π

?,m
h+1 + ηmT

π?,m
h+1 ) (Lemma 8)

≤ cm(s, a) + 8ηm + ρcm + Pms,a(V̌ π
?,m

h+1 + ηmT
π?,m
h+1 ) + ρPm(B/3 +Hηm)

(Lemma 5, ∆c,m ≤ ρcm, and ∆P,m ≤ ρPm)

≤ Q̌π
?,m
h (s, a) + ηmT

π?,m
h (s, a). (Hηm ≤ B/12)

Note that in (i) we use the fact that |{V̌ π
?,m

h + ηmT
π?,m
h }m,h| ≤ (HK + 1)6 since |{V π

?,m
h }m,h| ≤

HK + 1, |{ρcm}m| ≤ K, {ρPm}m ≤ K, and |{Tπ
?,m

h }m,h| ≤ HK + 1. The second statement is
simply by the contraposition of the first statement.

The next two lemmas are about Test 1 and Test 2.

Lemma 24. With probability at least 1− 4δ, for any M ′ ≤ K, if ∆c,M ′ ≤ ρcM ′ , then

M ′∑
m=ic

M′

Hm∑
h=1

(cmh − ĉmh ) ≤ Õ

√C[ic
M′ ,M

′] +

M ′∑
m=ic

M′

Hm∑
h=1

(√
c̄mh
Mm

h

+
1

Mm
h

)+

M ′∑
m=ic

M′

Hm∑
h=1

ρcm , χcM ′ .

Moreover, if Test 1 fails in interval M ′, then ∆c,M ′ > ρcM ′ .

Proof. Note that for any given M ′ ≤M , without loss of generality, we can offset the intervals and
assume icM ′ = 1. Then with probability at least 1− 4δ, for any M ′ ≤ K, assuming icM ′ = 1 we have

M ′∑
m=1

Hm∑
h=1

(cmh − ĉmh ) =

M ′∑
m=1

Hm∑
h=1

(cmh − cm(smh , a
m
h )) +

M ′∑
m=1

Hm∑
h=1

(cm(smh , a
m
h )− ĉmh )

≤ Õ
(√

CM ′

)
+

M ′∑
m=1

Hm∑
h=1

(cm(smh , a
m
h )− ĉmh ) (Lemma 49 and Lemma 50)

≤ Õ

√CM ′ +

M ′∑
m=1

Hm∑
h=1

(√
c̄mh
Mm

h

+
1

Mm
h

)+

M ′∑
m=1

Hm∑
h=1

ρcm.

(Lemma 3, and ∆c,m ≤ ∆c,M ′ ≤ ρcM ′ ≤ ρcm)

The first statement is then proved by noting icM ′ = 1. The second statement is simply by the
contraposition of the first statement.

Lemma 25. With probability at least 1 − 16δ, for any M ′ ≤ K, if ∆c,[iP
M′ ,M

′] ≤ ρ̄cM ′ ,

min{B
1.5
? c1√
νP
M′
, 1

28H } and ∆P,M ′ ≤ ρPM ′ , then

M ′∑
m=iP

M′

Hm∑
h=1

(
V̌ mh+1(smh+1)− P̄mh V̌ mh+1

)
≤ Õ


√√√√√ M ′∑
m=iP

M′

Hm∑
h=1

V(P̄mh , V̌
m
h+1) +

M ′∑
m=iP

M′

Hm∑
h=1

√
V(P̄mh , V̌

m
h+1)

Nm
h


+ Õ

(√
SA(B? + Lc,[iP

M′ ,M
′])C[iP

M′ ,M
′] +

√
B?SAνPM ′ +B2.5

? S2AHLc,[iP
M′ ,M

′]

)
+ 4

M ′∑
m=iP

M′

Hm∑
h=1

ηm , χPM ′ .

Moreover, if Test 2 fails in interval M ′, then ∆c,[iP
M′ ,M

′] > ρ̄cM ′ or ∆P,M ′ > ρPM ′ .
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Proof. For any M ′ ≤ K, without loss of generality, we can offset the intervals and assume iPM ′ = 1.
Moreover, for any m ≤M ′, we have ∆P,m ≤ ∆P,M ′ ≤ ρPM ′ ≤ ρPm. Thus, with probability at least
1− 2δ,

M ′∑
m=1

Hm∑
h=1

(
V̌ mh+1(smh+1)− P̄mh V̌ mh+1

)
≤

M ′∑
m=1

Hm∑
h=1

(V̌ mh+1(smh+1)− Pmh V̌ mh+1) +

M ′∑
m=1

Hm∑
h=1

(P̃mh − P̄mh )V̌ mh+1 +

M ′∑
m=1

Hm∑
h=1

B(ρPm + nmh )

(Pmh V̌
m
h+1 ≤ P̃mh V̌ mh+1 +B(∆P,m + nmh ) and ∆P,m ≤ ρPm)

≤ Õ


√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1) +B?SA

+

M ′∑
m=1

Hm∑
h=1

(P̃mh − P̄mh )V̌ mh+1 +

M ′∑
m=1

Hm∑
h=1

BρPm

(Lemma 49 and
∑M ′

m=1

∑Hm
h=1 n

m
h ≤

∑M ′

m=1

∑Hm
h=1

1
Nm
h
≤ SA by LP,M ′ = 1)

≤ Õ


√√√√ M ′∑
m=1

Hm∑
h=1

V(P̄mh , V̌
m
h+1) +B?SA

+

M ′∑
m=1

Hm∑
h=1

(P̃mh − P̄mh )V̌ mh+1 +

M ′∑
m=1

Hm∑
h=1

2BρPm,

where the last inequality is by

V(Pmh , V̌
m
h+1) ≤ Pmh (V̌ mh+1 − P̄mh V̌ mh+1)2 ≤ P̃mh (V̌ mh+1 − P̄mh V̌ mh+1)2 +B2(∆P,m + nmh )

(
∑
i pixi∑
i pi

= argminz
∑
i pi(xi − z)2)

≤ 2V(P̄mh , V̌
m
h+1) + Õ

(
SB2

Nm
h

)
+B2ρPm,

(P̃mh (s′) ≤ 2P̄mh (s′) + 1
Nm
h

by Lemma 50, nmh ≤ 1
Nm
h

, and ∆P,m ≤ ρPm)

Lemma 11, LP,M ′ = 1, and AM-GM inequality. Now note that with probability at least 1− 3δ,

M ′∑
m=1

Hm∑
h=1

(P̃mh − P̄mh )V̌ mh+1 =

M ′∑
m=1

Hm∑
h=1

(
(P̃mh − P̄mh )V̌ ?,mh+1 + (P̃mh − P̄mh )(V̌ mh+1 − V̌

?,m
h+1 )

)

≤ Õ

 M ′∑
m=1

Hm∑
h=1

√V(P̄mh , V̌
?,m
h+1 )

Nm
h

+
SB?
Nm
h

+

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1 − V̌

?,m
h+1 )

+

M ′∑
m=1

Hm∑
h=1

BρPm
32

(Lemma 8, Lemma 6, Cauchy-Schwarz inequality, Lemma 11, and ∆P,m ≤ ρPm)

≤ Õ

 M ′∑
m=1

Hm∑
h=1

√V(P̄mh , V̌
m
h+1)

Nm
h

+
SB?
Nm
h

+

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1 − V̌

?,m
h+1 )

+

M ′∑
m=1

Hm∑
h=1

BρPm
16

,

where in the last step we apply

M ′∑
m=1

Hm∑
h=1

√
V(P̄mh , V̌

?,m
h+1 )

Nm
h

≤
M ′∑
m=1

Hm∑
h=1

√V(P̄mh , V̌
m
h+1)

Nm
h

+

√
V(P̄mh , V̌

m
h+1 − V̌

?,m
h+1 )

Nm
h


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by
√

VAR[X + Y ] ≤
√

VAR[X] +
√

VAR[Y ] [Cohen et al., 2021, Lemma E.3] and

M ′∑
m=1

Hm∑
h=1

√
V(P̄mh , V̌

m
h+1 − V̌

?,m
h+1 )

Nm
h

≤
M ′∑
m=1

Hm∑
h=1

√
P̄mh ((V̌ mh+1 − V̌

?,m
h+1 )− Pmh (V̌ mh+1 − V̌

?,m
h+1 ))2

Nm
h

(
∑
i pixi∑
i pi

= argminz
∑
i pi(xi − z)2)

≤
M ′∑
m=1

Hm∑
h=1

√
2P̃mh ((V̌ mh+1 − V̌

?,m
h+1 )− Pmh (V̌ mh+1 − V̌

?,m
h+1 ))2

Nm
h

+ Õ

 M ′∑
m=1

Hm∑
h=1

B
√
S

Nm
h


(P̄mh (s′) ≤ 2P̃mh (s′) + Õ

(
1

Nm
h

)
by Lemma 50)

≤
M ′∑
m=1

Hm∑
h=1

√
2V(Pmh , V̌

m
h+1 − V̌

?,m
h+1 )

Nm
h

+ Õ

 M ′∑
m=1

Hm∑
h=1

B
√
S

Nm
h

+

M ′∑
m=1

Hm∑
h=1

B

√
∆P,m

Nm
h


≤ Õ


√√√√SA

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1 − V̌

?,m
h+1 ) +

M ′∑
m=1

Hm∑
h=1

B
√
S

Nm
h

+
M ′∑
m=1

Hm∑
h=1

BρPm
32

.

(Cauchy-Schwarz inequality, Lemma 11, LP,M ′ = 1, AM-GM inequality, and ∆P,m ≤ ρPm)

Now by Lemma 28, LP,M ′ = 1, and AM-GM inequality, we have with probability 1− 10δ,

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1 − V̌

?,m
h+1 ) ≤ Õ

(√
SALc,M ′CM ′ +

√
B?SA(CM ′ +M ′)

)

+ Õ

B?S2A+B?S
1.5ALc,M ′ +

√√√√B?S2A

M ′∑
m=1

(∆c,m +B?∆P,m)H

 .

Moreover, by icm ≥ iPm and νcm ≤ νPm due to the reset rules, we have ∆c,m ≤ ∆c,[iP
M′ ,m] ≤

∆c,[iP
M′ ,M

′] ≤ ρ̄cM ′ ≤ ρ̄cm ≤ B1.5
? min{ c1√

νPm
, 1

28H } ≤ B
1.5
? min{ c1√

νcm
, 1

28H } ≤ B
1.5
? ρcm. Therefore,

by ∆P,m ≤ ρPm and AM-GM inequality,

√√√√B?S2A

M ′∑
m=1

Hm∑
h=1

(∆c,m +B?∆P,m) ≤

√√√√B2.5
? S2AH

M ′∑
m=1

(ρcm +B?ρPm) ≤ B2.5
? S2AH +

M ′∑
m=1

ηm.

Plugging these back, and by Lemma 11, LP,M ′ = 1, we obtain

M ′∑
m=1

Hm∑
h=1

(P̃mh − P̄mh )V̌ mh+1 ≤ Õ

 M ′∑
m=1

Hm∑
h=1

√V(P̄mh , V̌
m
h+1)

Nm
h

+
√
B?SA(CM ′ +M ′)


+ Õ

(√
SALc,M ′CM ′ +B?S

1.5ALc,M ′ +B2.5
? S2AH

)
+ 2

M ′∑
m=1

Hm∑
h=1

ηm.

Plugging this back and noting iPM ′ = 1 completes the proof of the first statement. The second
statement is simply by the contraposition of the first statement.
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E.1 Proof of Theorem 4

Proof. By sm1 = sinit, we decompose the regret as follows, with probability at least 1− 2δ,

R̊K =

K∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V
π?,m
1 (sm1 )

)

=

K∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V̌ m1 (sm1 )

)
+

K∑
m=1

(
V̌ m1 (sm1 )− V̌ π

?,m
1 (sm1 )

)
+ 8T?

K∑
m=1

ηm

≤
K∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V̌ m1 (sm1 )

)
+

K∑
m=1

(∆c,m +B∆P,m)T? + 8T?

K∑
m=1

ηm

(Lemma 22)

We first bound the first and the third term above separately. For the third term, we have:

T?

K∑
m=1

ηm ≤ T?
K∑
m=1

(
c1√
νcm

+
Bc2√
νPm

)
= Õ

(
T?

(
c1

Lc∑
i=1

√
M c
i +B?c2

LP∑
i=1

√
MP
i

))
(
∑j
i=1

1√
i

= O(
√
j))

= Õ
(
T?(c1

√
LcK +B?c2

√
LPK)

)
= Õ

(√
B?SALcK +B?

√
SALPK

)
,

where M c
i (or MP

i ) is the number of intervals between the i-th and (i + 1)-th reset of cost (or
transition) estimation, and the second last step is by Cauchy-Schwarz inequality. For the first term,
define {Ici }

Lc
i=1 (or {IPi }

LP
i=1) as a partition of K episodes such that M (or N) is reset in the last

interval of each Ici (or IPi ) for i < Lc (or i < LP ) and the last interval of IcLc (or IPLP ) is K. Also
let L = Lc + LP . Then with probability at least 1− 20δ,

K∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V̌ m1 (sm1 )

)
≤

K∑
m=1

Hm∑
h=1

(
cmh + V̌ mh+1(smh+1)− V̌ mh (smh )

)
+ Õ (B?SAL)

(Lemma 12)

≤
K∑
m=1

Hm∑
h=1

(
cmh − ĉmh + V̌ mh+1(smh+1)− P̄mh V̌ mh+1 + bmh − 8ηm

)
+ Õ (B?SAL)

(definition of V̌ mh (smh ))

=

Lc∑
i=1

∑
m∈Ici

Hm∑
h=1

(cmh − ĉmh ) +

LP∑
i=1

∑
m∈IPi

Hm∑
h=1

(V̌ mh+1(smh+1)− P̄mh V̌ mh+1) +

K∑
m=1

Hm∑
h=1

(bmh − 8ηm) + Õ (B?SAL)

= Õ

√LcCK +

K∑
m=1

Hm∑
h=1

(√
c̄mh
Mm

h

+
1

Mm
h

)
+

√√√√LP

K∑
m=1

Hm∑
h=1

V(P̄mh , V̌
m
h+1) +

K∑
m=1

Hm∑
h=1

bmh


+ Õ

(
B2.5
? S2AHLc +

√
B?SALP (CK +K) +

√
SALcCK +HLc +B?HLP

)
,

(Test 1 (Lemma 24), Test 2 (Lemma 25), and Cauchy-Schwarz inequality)

where Õ(HLc +B?HLP ) is upper bound of the costs in intervals where Test 1 fails or Test 2 fails.
By Lemma 3 and AM-GM inequality, with probability at least 1− 3δ,

K∑
m=1

Hm∑
h=1

(√
c̄mh
Mm

h

+
1

Mm
h

)
= Õ

(
SAHLc +

√
SALcCK

)
+

K∑
m=1

∆c,m.
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Following the proof of Lemma 10, we have
√
LP
∑K
m=1

∑Hm
h=1 V(P̄mh , V̌

m
h+1) is dominated by the

upper bound of
∑M ′

m=1

∑Hm
h=1 b

m
h . Thus with probability at least 1− δ,√√√√LP

K∑
m=1

Hm∑
h=1

V(P̄mh , V̌
m
h+1) +

K∑
m=1

Hm∑
h=1

bmh

= Õ


√√√√SALP

K∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1) +B?S

1.5ALP +B?

√√√√SALP

K∑
m=1

Hm∑
h=1

∆P,m


= Õ

(√
B?SALP (CK +K) +

√
SALcCK +B?S

1.5AHL
)

+

K∑
m=1

(∆c,m +B?∆P,m),

where in the last inequality we apply AM-GM inequality on B?
√
SALP

∑K
m=1

∑Hm
h=1 ∆P,m, and

note that with probability at least 1− 11δ,√√√√SALP

K∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1)

= Õ


√√√√SALP

K∑
m=1

Hm∑
h=1

V(Pmh , V̌
?,m
h+1 ) +

√√√√SALP

K∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1 − V̌

?,m
h+1 )


(VAR[X + Y ] ≤ 2VAR[X] + 2VAR[Y ] and

√
a+ b ≤

√
a+
√
b)

= Õ
(√

B?SALP (CK +K) +
√
SALcCK +B?S

1.5AHL
)

+

M ′∑
m=1

(∆c,m +B?∆P,m).

(Lemma 27, Lemma 28, and AM-GM inequality)

Putting everything together, we have

R̊K = Õ

(√
SA(Lc +B?LP )(CK +B?K) +B2.5

? S2AHL+

K∑
m=1

(∆c,m +B?∆P,m)T?

)
.

Now by R̊K ≥ CK − 4B?K, solving a quadratic inequality (Lemma 45) w.r.t CK and plugging the
bound on CK back, we obtain

R̊K = Õ

(√
B?SALcK +B?

√
SALPK +B2.5

? S2AHL+

K∑
m=1

(∆c,m +B?∆P,m)T?

)
.

It suffices to bound the last term above. By the periodic resets of M and N (Line 4 and Line 5 of
Algorithm 4), the number of intervals between consecutive resets of M and N are upper bounded by
Wc and WP respectively. Thus,

K∑
m=1

(∆c,m +B?∆P,m)T? ≤
K∑
m=1

(∆c,fc(m) +B?∆P,fP (m))T? ≤ (Wc∆c +B?WP∆P )T?

= Õ
(

(B?SAT?∆c)
1/3K2/3 +B?(SAT?∆P )1/3K2/3 + (∆c +B?∆P )T?

)
,

where the last step is simply by the chosen values of Wc and WP . Plugging this back and applying
Lemma 26 completes the proof.

Lemma 26. With probability at least 1− 2δ, Algorithm 4 with p = 1/B? ensures

Lc = Õ
(

(B?SA)−1/3(T?∆c)
2/3K1/3 +B?(SA)−1/3(T?∆P )2/3K1/3 +H(∆c +B?∆P )

)
,

LP = Õ
(

(B?SA)−1/3(T?∆c)
2/3K1/3/B? + (SA)−1/3(T?∆P )2/3K1/3 +H(∆c + ∆P )

)
.
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Proof. We consider the number of resets of M and N from each test separately. By Lemma 24
and Lemma 13, there are at most Õ((c−1

1 ∆c)
2/3K1/3 +H∆c) resets of M triggered by Test 1. By

Lemma 25 and Lemma 13, there are at most Õ(((B−1.5
? c−1

1 ∆c)
2/3 + (c−1

2 ∆P )2/3)K1/3 +H(∆c +
∆P )) resets of M and N triggered by Test 2.

Next, we consider Test 3. Define Icm = I{∆c,[icm,m+1] > gc(νcm + 1)} and IPm = I{∆P,[iPm,m+1] >

gP (νPm + 1)}. Note that whenever Test 3 fails in interval m, we have Icm = 1 or IPm = 1 by
Lemma 23. We partition K intervals into segments I1, . . . , INc , such that in the last interval of
each Ii with i < Nc denoted by m, Test 3 fails and Icm = 1. Since νc is reset whenever Test 3
fails, we have ∆Ii∪{m+1} ≥ ∆[icm,m+1] > gc(νcm + 1) ≥ gc(|Ii| + 1). By Lemma 13, we obtain
Nc = Õ((c−1

1 ∆c)
2/3K1/3 +H∆c).

Now define Am as the indicator that Test 3 fails in interval m and IPm = 1. Also define A′m as the
indicator that Test 3 fails and N is reset in interval m, and IPm = 1. We then partition K intervals into
segments I ′1, . . . , I ′NP , such that in the last interval of each I ′i with i < NP denoted by m, A′m = 1.
Since νP is reset in interval m when A′m = 1, we have ∆I′i∪{m+1} ≥ ∆[iPm,m+1] > gP (νPm + 1) ≥
gP (|I ′i|+1). By Lemma 13, we haveNP = Õ((c−1

2 ∆P )2/3K1/3+H∆P ). Moreover, by Lemma 50
and the reset rule of Test 3, we have p

∑
m Am = Õ(

∑
m A′m) with probability at least 1− δ, which

gives
∑
m Am = Õ(NP /p).

Since Icm = 1 or IPm = 1 when Test 3 fails in interval m, the total number of times that Test 3 fails
N3 ≤ Nc +

∑
m Am = Õ((c−1

1 ∆c)
2/3K1/3 +B?(c

−1
2 ∆P )2/3K1/3 +H(∆c +B?∆P )). Now by

the reset rule of Test 3, the number of times M is reset due to Test 3 is upper bounded by N3, and
the number of times N is reset due to Test 3 is upper bounded by Õ(pN3) with probability at least
1− δ by Lemma 50. Finally, by Line 4 and Line 5 of Algorithm 4, there are at most K

Wc
resets of M

and K
WP

resets of N respectively due to periodic restarts. Putting all cases together, we have

Lc = Õ
(

(c−1
1 ∆c)

2/3K1/3 +B?(c
−1
2 ∆P )2/3)K1/3 +H(∆c +B?∆P ) +K/Wc

)
= Õ

(
(B?SA)−1/3(T?∆c)

2/3K1/3 +B?(SA)−1/3(T?∆P )2/3K1/3 +H(∆c +B?∆P )
)
,

and

LP = Õ
(

1

B?
(c−1

1 ∆c)
2/3K1/3 + (c−1

2 ∆P )2/3K1/3 +H(∆c + ∆P ) +K/WP

)
= Õ

(
(B?SA)−1/3(T?∆c)

2/3K1/3

B?
+ (SA)−1/3(T?∆P )2/3K1/3 +H(∆c + ∆P )

)
.

This completes the proof.

E.2 Auxiliary Lemmas

Lemma 27. With probability at least 1 − δ, for any M ′ ≤ K,
∑M ′

m=1

∑Hm
h=1 V(Pmh , V̌

?,m
h+1 ) =

Õ
(
B?CM ′ +B?M

′ +B2
?

)
.

Proof. Applying Lemma 9 with
∥∥V̌ ?,mh

∥∥
∞ ≤ B, with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
?,m
h+1 )

= Õ

 M ′∑
m=1

V̌ ?,mHm+1(smHm+1)2 +

M ′∑
m=1

Hm∑
h=1

B?(V̌
?,m
h (smh )− Pmh V̌

?,m
h+1 )+ +B2

?


= Õ

(
B?CM ′ +B?M

′ +B2
?

)
,

where in the last step we apply
(V̌ ?,mh (smh )− Pmh V̌

?,m
h+1 )+ ≤ (Q̌?,mh (smh , a

m
h )− Pmh V̌

?,m
h+1 )+ ≤ cm(smh , a

m
h ) + 8ηm

≤ cm(smh , a
m
h ) + 1/H,
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and also Lemma 50.

Lemma 28. With probability at least 1 − 10δ, for any M ′ ≤ K,
∑M ′

m=1

∑Hm
h=1 V(Pmh , V̌

?,m
h+1 −

V̌ mh+1) = Õ(B?
√
SALc,M ′CM ′ +B?

√
B?SALP,M ′(CM ′ +M ′)+B2

?S
2ALP,M ′ +B2

?SALc,M ′ +∑M ′

m=1B?(∆c,m +B?∆P,m)H).

Proof. Let zmh = min{B/2, (∆c,m + B∆P,m)H}I{h ≤ H}. By Lemma 21, we have V̌ ?,mh (s) +

zmh ≥ V̌ mh (s). Moreover, by Lemma 12, we have
M ′∑
m=1

(V̌ ?,mHm+1(smHm+1) + zmHm+1 − V̌ mHm+1(smHm+1))2

≤
M ′∑
m=1

(zmHm+1)2I{smHm+1 = g}+ 64B2
?

M ′∑
m=1

I{Hm < H, smHm+1 6= g}

= Õ

B? M ′∑
m=1

(∆c,m +B?∆P,m)H +B2
?SALM ′

 .

and

(∗) =

M ′∑
m=1

B?

Hm∑
h=1

(V̌ ?,mh (smh )− V̌ mh (smh )− Pmh V̌
?,m
h+1 + Pmh V̌

m
h+1 + zmh − zmh+1)+

≤
M ′∑
m=1

B?

Hm∑
h=1

(
cm(smh , a

m
h ) + 8ηm + P̃mh V̌

m
h+1 − V̌ mh (smh ) +B(∆P,m + nmh )

)
+

+B?

M ′∑
m=1

(zm1 − zmHm+1)

(V̌ ?,mh (smh ) ≤ Q̌?,mh (smh , a
m
h ), zmh ≥ zmh+1, and Pmh+1V̌

m
h+1 ≤ P̃mh+1V̌

m
h+1 +B(∆P,m + nmh ))

≤
M ′∑
m=1

B?

Hm∑
h=1

(cm(smh , a
m
h )− ĉmh + (P̃mh − P̄mh )V̌ ?,mh+1 + (P̃mh − P̄mh )(V̌ mh+1 − V̌

?,m
h+1 ) + bmh )+

+ Õ

 M ′∑
m=1

B?(∆c,m +B?∆P,m)H +B2
?

M ′∑
m=1

Hm∑
h=1

nmh

 . (definition of V̌ mh (smh ))

Now by Lemma 3, Lemma 8, Lemma 6, and nmh ≤ 1
Nm
h

, we continue with

(∗) = Õ

B?
√SALc,M ′CM ′ + SALc,M ′ +

M ′∑
m=1

Hm∑
h=1

√V(Pmh , V̌
?,m
h+1 )

Nm
h

+

√
SV(Pmh , V̌

m
h+1 − V̌

?,m
h+1 )

Nm
h


+ Õ

 M ′∑
m=1

Hm∑
h=1

B2
?S

Nm
h

+

M ′∑
m=1

B?(∆c,m +B?∆P,m)H +B?

M ′∑
m=1

Hm∑
h=1

bmh


= Õ

B?√SALc,M ′CM ′ +B?SALc,M ′ +B?

√√√√SALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
?,m
h+1 ) +B2

?S
2ALP,M ′


+ Õ

B?
√√√√S2ALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
?,m
h+1 − V̌ mh+1) +

M ′∑
m=1

B?(∆c,m +B?∆P,m)H

 ,

where in the last step we apply Cauchy-Schwarz inequality, Lemma 11, Lemma 10, VAR[X + Y ] ≤
2VAR[X] + 2VAR[Y ], and AM-GM inequality. Finally, by Lemma 27, we continue with

(∗) = Õ
(
B?
√
SALc,M ′CM ′ +B?SALc,M ′ +B?

√
B?SALP,M ′(CM ′ +M ′) +B2

?S
2ALP,M ′

)

+ Õ

B?
√√√√S2ALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
?,m
h+1 − V̌ mh+1) +

M ′∑
m=1

B?(∆c,m +B?∆P,m)H

 .
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Applying Lemma 9 on value functions {V̌ ?,mh + zmh − V̌ mh }m,h (constant offset does not change the
variance) and plugging in the bounds above, we have

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
?,m
h+1 − V̌

m
h+1) =

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
?,m
h+1 + zmh − V̌ mh+1)

= Õ
(
B?
√
SALc,M ′CM ′ +B2

?SALc,M ′ +B?

√
B?SALP,M ′(CM ′ +M ′) +B2

?S
2ALP,M ′

)

+ Õ

B?
√√√√S2ALP,M ′

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
?,m
h+1 − V̌ mh+1) +

M ′∑
m=1

B?(∆c,m +B?∆P,m)H

 .

Then solving a quadratic inequality w.r.t
∑M ′

m=1

∑Hm
h=1 V(Pmh , V̌

?,m
h+1 − V̌ mh+1) (Lemma 45) completes

the proof.

E.3 Proof of Theorem 5

We first prove a general regret guarantee of Algorithm 5, from which Theorem 5 is a direct corollary.

Theorem 11. Suppose A1 ensures R̊K ≤ R1 when sm1 = sinit for m ≤ K, and A2 ensures
RK′ ≤ R2(K ′) for any K ′ ≤ K such that R2(k) is sub-linear w.r.t k. Then Algorithm 5 ensures
RK = Õ(R1) (ignoring lower order terms).

Proof. Let Ik be the set of intervals in episode k, and mk
i be the i-th interval of episode k (if exists).

The regret is decomposed as:

RK =

K∑
k=1

Hmk1∑
h=1

c
mk1
h + c

mk1
H
mk1

+1 − V
?
k (sk1)

+

K∑
k=1

 ∑
m∈Ik\{mk1}

Hm∑
h=1

cmh − c
mk1
H
mk1

+1

 .
Note that V π

?,mk1
1 (s

mk1
1 ) ≤ V ?k (sk1) +B?/K by Lemma 46. Therefore,

K∑
k=1

Hmk1∑
h=1

c
mk1
h + c

mk1
H
mk1

+1 − V
?
k (sk1)

 ≤ K∑
k=1

Hmk1∑
h=1

c
mk1
h + c

mk1
H
mk1

+1 − V
π?,mk1
1 (s

mk1
1 )

+B?

≤ R1 +B?.

For the second term, note that cm
k
1

H
mk1

+1 = 2B? if sm
k
2

1 exists. Define Kf =
∑K
k=1 I{|Ik| > 1}, we

have (define sm
k
2

1 = g if mk
2 does not exist)

K∑
k=1

 ∑
m∈Ik\{mk1}

Hm∑
h=1

cmh − c
mk1
H
mk1

+1

 ≤ K∑
k=1

 ∑
m∈Ik\{mk1}

Hm∑
h=1

cmh − V ?k (s
mk2
1 )

−B?Kf

≤ R2(Kf )−B?Kf ,

which is a lower order term since R2(Kf ) is sub-linear w.r.t Kf . Putting everything together
completes the proof.

We are now ready to prove Theorem 5.

Proof. We simply apply Theorem 11 with R1 determined by Theorem 4 and R2 determined by
Theorem 3.
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Algorithm 6 MVP-Base
Parameters: failure probability δ.
Initialize: χ̂← 0, and for all (s, a, s′), C(s, a)← 0, M(s, a)← 0, N(s, a)← 0, N(s, a, s′)← 0.
Initialize: Update(1).
for m = 1, . . . ,M do

for h = 1, . . . ,H do
Play action amh = argmina Q̌h(smh , a), receive cost cmh and next state smh+1.

C(smh , a
m
h )← cmh , M(smh , a

m
h )

+← 1, N(smh , a
m
h )

+← 1, N(smh , a
m
h , s

m
h+1)

+← 1.
if smh+1 = g or M(smh , a

m
h ) = 2l or N(smh , a

m
h ) = 2l for some integer l ≥ 0 then

break (which starts a new interval).

χ̂
+← Cm − V̌1(sm1 ).

1 if χ̂ > χm (defined in Lemma 31) then terminate. (Test 1)
Update(m+ 1).

2 if
∥∥V̌h∥∥ > B/2 for some h (Test 2) then terminate.

Procedure Update(m)
V̌H+1(s)← 2B?I{s 6= g}, V̌h(g)← 0 for all h ≤ H , and ι← 211 · ln

(
2SAHKm

δ

)
.

3 η ← min{B?S
√
A

T?
√
m
, 1

28H }.
for all (s, a) do

N+(s, a)← max{1,N(s, a)}, M+(s, a)← max{1,M(s, a)}, c̄(s, a)← C(s,a)
M+(s,a) ,

P̄s,a(·)← N(s,a,·)
N+(s,a) , ĉ(s, a)← max

{
0, c̄(s, a)−

√
c̄(s,a)ι

M+(s,a) −
ι

M+(s,a)

}
,

4 č(s, a)← ĉ(s, a) + 8η.
for h = H, . . . , 1 do

bh(s, a)← max

{
7
√

V(P̄s,a,V̌h+1)ι
N+(s,a) , 49B

√
Sι

N+(s,a)

}
for all (s, a).

Q̌h(s, a) = max{0, č(s, a) + P̄s,aV̌h+1 − bh(s, a)} all (s, a).
V̌h(s) = argmina Q̌h(s, a) for all s.

F Omitted Details in Section 7

In this section, we present all proofs and details of learning without the knowledge of non-stationarity.
We first provide a base algorithm in Appendix F.1. The rest of this section then discusses the meta
algorithm MASTER adopted from [Wei and Luo, 2021], and its regret guarantee combining with the
base algorithm.

F.1 Base Algorithm

We first present the base algorithm used in MASTER (Algorithm 6). The main idea is again
incorporating a correction term to penalize long horizon policy and has the effect of cancelling
the non-stationarity along the learner’s trajectory when it is not too large (Line 3). When the non-
stationarity is large, on the other hand, we detect it through two non-stationary tests (Line 1 and
Line 2), and reset the knowledge of the environment (more details to follow).

Test 1 is a combination of the first two tests of Algorithm 4, which directly checks whether the
estimated regret is too large. This is also similar to the second test of the MASTER algorithm [Wei
and Luo, 2021]. Test 2 is the same as the third test of Algorithm 4, which guards the magnitude of
the estimated value function. When tests fail, the algorithm directly terminate instead of resetting
some accumulators. Note that the status of M and N are completely identical in this algorithm, but
we still maintain them separately so that the auxiliary lemmas in Appendix A are still applicable. The
rest of the algorithm largely follows the design of Algorithm 2.

Notations Note that here M and N are only reset at the initialization step. Thus, icm = iPm = 1,
Lc,m = LP,m = 1, ∆c,m = ∆c,[1,m] and ∆P,m = ∆P,[1,m]. Let ∆′m = (∆c,m + B∆P,m) and
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denote by ηm, Q̌mh , V̌ mh the value of η, Q̌h, and V̌h at the beginning of interval m. Denote by čm the
value of č at the beginning of interval m and define čmh = č(smh , a

m
h ). Also define Q̌π

?,m
h and V̌ π

?,m
h

as the action-value function and value function w.r.t cost cm(s, a) + 8ηm, transition Pm, and policy
π?k(m).

Lemma 29. With probability at least 1−2δ, if Algorithm 6 does not terminate up to interval m ≤ K,
then Q̌mh (s, a) ≤ Q̌π

?,m
h (s, a) + ∆′mT

π?,m
h (s, a).

Proof. We prove this by induction on h. The base case of h = H + 1 is clearly true. For h ≤ H ,
by Test 2 and the induction step, we have V̌ mh+1(s) ≤ min{B/2, V̌ π

?,m
h+1 (s) + ∆′mT

π?,m
h+1 (s)} ≤

V̌ π
?,m

h+1 (s) + xmh+1(s) ≤ B where xmh (s) = min{B/2,∆′mT
π?,m
h (s)}. Thus,

čm(s, a) + P̄ms,aV̌
m
h+1 − bm(s, a, V̌ mh+1)

≤ čm(s, a) + P̄ms,a(V̌ π
?,m

h+1 + xmh+1)− bm(s, a, V̌ π
?,m

h+1 + xmh+1) (Lemma 48)
(i)
≤ čm(s, a) + P̃ms,a(V̌ π

?,m
h+1 + xmh+1) (Lemma 8)

≤ cm(s, a) + 8ηm + ∆c,m + Pms,a(V̌ π
?,m

h+1 + xmh+1) + ∆P,mB (Lemma 5)

≤ Q̌π
?,m
h (s, a) + ∆′mT

π?,m
h (s, a).

Note that in (i) we use the fact that |{V̌ π
?,m

h +xmh }m,h| ≤ (HK+1)6 since |{V π
?,m

h }m,h| ≤ HK+1,
|{ηm}m| ≤ K + 1, |{∆′m}m| ≤ K + 1, and |{Tπ

?,m
h }m,h| ≤ HK + 1.

Lemma 30. With probability at least 1 − 2δ, for all m ≤ K, if ∆′m ≤ ηm, then Q̌mh (s, a) ≤
Q̌π

?,m
h (s, a) + ηmT

π?,m
h (s, a) ≤ B/2. Moreover, if Test 2 fails in interval m, then ∆′m+1 > ηm+1.

Proof. First note that Q̌π
?,m
h (s, a) ≤ B

4 + 8ηmT
π?,m
h (s, a) ≤ B

4 + 8Hηm ≤ B
3 . We prove the first

statement by induction on h. The base case of h = H + 1 is clearly true. For h ≤ H , note that:

čm(s, a) + P̄ms,aV̌
m
h+1 − bm(s, a, V̌ mh+1)

≤ čm(s, a) + P̄ms,a(V̌ π
?,m

h+1 + ηmT
π?,m
h+1 )− bm(s, a, V̌ π

?,m
h+1 + ηmT

π?,m
h+1 )

(induction step and Lemma 48)
(i)
≤ čm(s, a) + P̃ms,a(V̌ π

?,m
h+1 + ηmT

π?,m
h+1 ) (Lemma 8)

≤ cm(s, a) + 8ηm + ∆c,m + Pms,a(V̌ π
?,m

h+1 + ηmT
π?,m
h+1 ) + ∆P,m(B/3 +Hηm) (Lemma 5)

≤ Q̌π
?,m
h (s, a) + ηmT

π?,m
h (s, a). (Hηm ≤ B/12 and ∆′m ≤ ηm)

Note that in (i) we use the fact that |{V̌ π
?,m

h + ηmT
π?,m
h }m,h| ≤ (HK + 1)6 since |{V π

?,m
h }m,h| ≤

HK + 1, |{ηm}m| ≤ K + 1, and |{Tπ
?,m

h }m,h| ≤ HK + 1. The second statement is simply by the
contraposition of the first statement.

Lemma 31. With probability at least 1− 12δ, for any M ′ ≤ K, if ∆′M ′ ≤ ηM ′ , then

M ′∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V̌ m1 (sm1 )

)
= Õ

(
B?S
√
AM ′ +B?S

2A
)
, χM ′ .

Moreover, if Test 1 fails in interval m, then ∆′m > ηm.
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Proof. By ∆′M ′ ≤ ηM ′ and Lemma 30, the algorithm will not terminate by Test 2 before interval
M ′ with probability at least 1− 2δ. Then with probability at least 1− 4δ,

M ′∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V̌ m1 (sm1 )

)

≤
M ′∑
m=1

Hm∑
h=1

(
cmh + V̌ mh+1(smh+1)− V̌ mh (smh )

)
+ Õ (B?SA) (Lemma 12 and LM ′ = O(1))

≤
M ′∑
m=1

Hm∑
h=1

(
cmh − ĉmh + V̌ mh+1(smh+1)− Pmh V̌ mh+1 + (Pmh − P̄mh )V̌ mh+1 + bmh − 8ηm

)
+ Õ (B?SA)

(definition of V̌ mh (smh ))

≤ Õ

√SACM ′ +

√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1) +B?SA


+

M ′∑
m=1

Hm∑
h=1

(
(P̃mh − P̄mh )V̌ mh+1 +Bnmh + bmh − 5ηm

)
,

where in the last inequality we apply Lemma 3, icM ′ = iPM ′ = 1, ∆′M ′ ≤ ηM ′ , Pmh V̌
m
h+1 ≤

P̃mh V̌
m
h+1 +B(nmh + ∆P,m), Lemma 49 and Lemma 50 on both

∑M ′

m=1

∑Hm
h=1(cmh − cm(smh , a

m
h )),

and Lemma 49 on
∑M ′

m=1

∑Hm
h=1(V̌ mh+1(smh+1)− Pmh V̌ mh+1). Now note that with probability at least

1− 6δ,

M ′∑
m=1

Hm∑
h=1

((P̃mh − P̄mh )V̌ mh+1 + bmh +Bnmh ) + Õ


√√√√ M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1)


= Õ


√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1) +B?S

2A

+

M ′∑
m=1

Hm∑
h=1

bmh +

M ′∑
m=1

Hm∑
h=1

B∆P,m

64

(nmh ≤ 1
Nm
h

, Lemma 6, Cauchy-Schwarz inequality, Lemma 11, and LP,M ′ = 1)

= Õ


√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1) +B?S

2A

+

M ′∑
m=1

Hm∑
h=1

B∆P,m

32
.

(Lemma 10, LP,M ′ = 1, and AM-GM inequality)

= Õ
(√

B?S2A(CM ′ +M ′) +B?S
2A
)

+

M ′∑
m=1

Hm∑
h=1

∆′m
16

. (Lemma 32 and AM-GM inequality)

Plugging this back and by ∆′M ′ ≤ ηM ′ , we have

CM ′ −
M ′∑
m=1

V̌ m1 (sm1 ) = Õ
(√

B?S2A(CM ′ +M ′) +B?S
2A
)
.

Solving a quadratic inequality w.r.t CM ′ (Lemma 45), we have CM ′ = Õ(B?M
′ +
√
B?S2AM ′ +

B?S
2A). Plugging this back completes the proof of the first statement. The second statement is

simply by the contraposition of the first statement.

Theorem 12. Suppose Algorithm 4 does not terminate up to interval M ′ ≤ K (including M ′) and
sm1 = sinit for m ≤M ′. Then with probability at least 1− 2δ, R̊M ′ = Õ(B?S

√
AM ′ +B?S

2A+∑M ′

m=1 ∆′mT?).
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Proof. We decompose the regret as follows:

R̊M ′ =

M ′∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V
π?,m
1 (sm1 )

)

=

M ′∑
m=1

(
Hm∑
h=1

cmh + cmHm+1 − V̌ m1 (sm1 )

)
+

M ′∑
m=1

(
V̌ m1 (sm1 )− V̌ π

?,m
1 (sm1 )

)
+ 8T?

M ′∑
m=1

ηm

≤ χM ′ +

M ′∑
m=1

∆′mT? + 8T?

M ′∑
m=1

ηm. (Test 2 and Lemma 29)

Plugging in the definition of χM ′ and ηm completes the proof.

Lemma 32. With probability at least 1− 4δ,
∑M ′

m=1

∑Hm
h=1 V(Pmh , V̌

m
h+1) = Õ(B?(CM ′ +M ′) +

B2
?S

2A+B?
∑M ′

m=1

∑Hm
h=1 ∆′m) for any M ′ ≤ K.

Proof. Applying Lemma 9 with
∥∥V̌ mh ∥∥∞ ≤ B (Test 2), with probability at least 1− δ,

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1)

= Õ

 M ′∑
m=1

V̌ mHm+1(smHm+1)2 +

M ′∑
m=1

Hm∑
h=1

B?(V̌
m
h (smh )− Pmh V̌ mh+1)+ +B2

?


= Õ

B?(CM ′ +M ′) +B?

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1) +B2

?S
2A+B?

M ′∑
m=1

Hm∑
h=1

∆′m

 ,

where in the last step we apply

M ′∑
m=1

Hm∑
h=1

(V̌ mh (smh )− Pmh V̌ mh+1)+ =

M ′∑
m=1

Hm∑
h=1

(Q̌mh (smh , a
m
h )− Pmh V̌ mh+1)+

≤
M ′∑
m=1

Hm∑
h=1

(čmh + (P̄mh − P̃mh )V̌ mh+1 +B∆P,m)+

((a)+ − (b)+ ≤ (a− b)+, definition of Q̌mh , and bmh ≥ 0)

≤
M ′∑
m=1

Hm∑
h=1

cm(smh , a
m
h ) +M ′ + Õ


√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1) +B?S

2A

+ 2

M ′∑
m=1

Hm∑
h=1

∆′m

(Lemma 5, 8ηm ≤ 1
H , Lemma 6, Cauchy-Schwarz inequality, and Lemma 11)

≤ Õ

 M ′∑
m=1

Hm∑
h=1

cmh +M ′ +

√√√√S2A

M ′∑
m=1

Hm∑
h=1

V(Pmh , V̌
m
h+1) +B?S

2A

+ 2

M ′∑
m=1

Hm∑
h=1

∆′m.

(Lemma 50)

Solving a quadratic inequality w.r.t
∑M ′

m=1

∑Hm
h=1 V(Pmh , V̌

m
h+1) (Lemma 45) completes the proof.

F.2 Preliminaries

Here we adopt the MASTER algorithm in [Wei and Luo, 2021] to our finite-horizon approximation
scheme. There are several issues we need to address: 1) under the protocol of Algorithm 1, the
total number of intervals and the non-stationarity in each interval are not fixed before learning start;
besides, we need to prove an anytime regret guarantee, so that it can translate back to a regret
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guarantee on the original SSP (see Lemma 16); 2) when the base algorithm has a regret guarantee
R̊m ≤ min{c1

√
m+ c2, c3m} without non-stationarity, the original MASTER algorithm ensures a

dynamic regret whose dominating term scale with c1 + c2c3/c1; this is undesirable as c3 = Õ(Tmax)

in our case, and ideally we want c3 = Õ(B?); 3) when base algorithms incorporate correction term,
the original analysis of the non-stationarity tests breaks as discussed in Section 7; 4) The analysis
in [Wei and Luo, 2021, Lemma 17] that bounds the cost of non-stationary detection only works for
oblivious adversary. Our modified MASTER algorithm (Algorithm 8) manages to address all these
issues.

Setup To give a general result, we define the dynamic regret for the first M ′ intervals as R̃M ′ =∑M ′

m=1(Cm − f?m), where the choice of benchmark {f?m}M
′

m=1 is flexible depending on the problem
and the algorithm.

Notations For any interval I = [s, e], define ∆I =
∑e−1
m=s ∆(m) and LI = 1+

∑e−1
m=s I{∆(m) 6=

0}, where ∆(m) ∈ RN+

+ is some non-stationarity measure satisfying |f?m+1 − f?m| ≤ ∆(m).

We make the following assumption on the base algorithm used in the MASTER algorithm, and then
show two algorithms satisfying the assumption.
Assumption 1. Base algorithm A with failure probability δ on intervals [1,M ′] outputs an estimate
f̃m at the beginning of interval m ≤M ′ if it does not terminate before interval m. Moreover, there
exists a non-decreasing function R(m) = min{c1

√
m+ c2, c3m} with c3 ≥ 1 and non-stationarity

measure ∆ such that r(m) = R(m)/m is non-increasing, r(m) ≥ 1√
m

, f̃m ≤ c4 ≤ c3 for all m,
and with probability at least 1 − δ, for any m ≤ M ′, as long as ∆[1,m] ≤ r(m) and A does not
terminate up to interval m (including m), without knowing ∆[1,m] we have:

f̃m ≤ f?m + r(m),

m∑
τ=1

(
Cτ − f̃τ

)
≤ R(m), and

m∑
τ=1

(f?τ − Cτ ) ≤ R(m).

Lemma 33. Algorithm 2 with arbitrary initial state for each interval satisfies Assumption 1 with
f?m = V ?,m1 (sm1 ), f̃m = V m1 (sm1 ), ∆(m) = Õ((∆c,[m,m+1] + B∆P,[m,m+1])H), R(m) =

Õ(min{B?S
√
Am+B?S

2A,Hm}), and c4 = Õ(B?).

Proof. The first two properties are simply by Lemma 18 and Theorem 9 with Lc,m = LP,m = 1 and
∆[1,m] ≤ r(m) with a large enough constant hidden in Õ(·) in the definition of ∆(m). For the third
property, with high probability,

m∑
τ=1

(f?τ − Cτ ) =

m∑
τ=1

(V ?,τ1 (sm1 )− Cτ ) = Õ

√√√√B?

m∑
τ=1

Cτ +B?

 . (Lemma 35)

= Õ


√√√√B?

(
m∑
τ=1

f̃τ +R(m)

)
+B?

 ≤ Õ (B?√m+B?
)

+
1

2
R(m).

(the second property, V m1 (sm1 ) = Õ(B?), and AM-GM inequality)

Plugging in the definition of R(m) completes the proof (again with a large enough constant hidden
in Õ(·) in the definition of R(m)).

Lemma 34. Algorithm 6 with m ≤ K and sm1 = sinit satisfies Assumption 1 with f?m = V π
?,m

1 (sinit),
f̃m = V̌ m1 (sm1 ), ∆(m) = Õ((∆c,[m,m+1] + B∆P,[m,m+1])T?), R(m) = Õ(min{B?S

√
Am +

B?S
2A,Hm}), and c4 = Õ(B?).

Proof. For the first property, by Lemma 29, ∆[1,m] ≤ r(m) and a large enough constant hidden in
Õ(·) in the definition of ∆(m), we have

f̃m = V̌ m1 (sm1 ) ≤ V̌ π
?,m

1 (sm1 ) + ∆′mT? ≤ f?m + 8T?ηm + Õ
(
∆[1,m]

)
≤ f?m + r(m).
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Algorithm 7 MALG
Input: order n, regret density function r.
for l = 0, . . . , n do

for m ∈ {0, 2l, 2 · 2l, . . . , 2n − 2l} do
With probability r(2n)

r(2m) , assigns a new base algorithm on intervals [m+ 1,m+ 2l].

for each interval m do
Let A be the algorithm that covers interval m with shortest scheduled length, output g̃m = f̃Am
(which is the f̃m output by A), follow A’s decision, and update A with environment’s feedback.
if A terminates then terminate.

The second property is simply by Test 2 (Lemma 31) of Algorithm 6 (again with a large enough
constant hidden in Õ(·) in the definition of R(m)). For the third property,

m∑
τ=1

(f?τ − Cτ ) =

m∑
τ=1

(V π
?,τ

1 (sinit)− Cτ ) ≤ B?m

K
+

m∑
τ=1

(V ?,τ1 (sinit)− Cτ ) ≤ R(m),

where the first inequality is by Lemma 46 and the last step follows similar arguments as in Lemma 33.

Lemma 35. With probability at least 1 − 3δ, for any m ≤ M ,
∑m
τ=1(V ?,τ1 (sτ1) − Cτ ) =

Õ(
√
B?
∑m
τ=1 C

τ +B?).

Proof. With probability at least 1− 3δ,

m∑
τ=1

(V ?,τ1 (sm1 )− Cτ ) ≤
m∑
τ=1

Hτ∑
h=1

(V ?,τh (sτh)− V ?,τh+1(sτh+1)− cτh) (V ?,τHτ+1(sτHτ+1) ≤ cτHτ+1)

≤
m∑
τ=1

Hτ∑
h=1

(P τhV
?,τ
h+1 − V

?,τ
h+1(sτh+1)) = Õ


√√√√ m∑
τ=1

Hτ∑
h=1

V(P τh , V
?,τ
h+1) +B?


(V ?,τh (sτh) ≤ Q?,τh (sτh, a

τ
h) and Lemma 49)

= Õ

√√√√B?

m∑
τ=1

Cτ +B?

 . (Lemma 19)

F.3 MALG: Multi-Scale Learning with Base Algorithm

Following [Wei and Luo, 2021, Section 3], we first introduce MALG (Algorithm 7), which runs
multiple instances of base algorithms in a multi-scale manner. We then combine MALG with non-
stationarity detection to obtain the MASTER algorithm in Appendix F.4. We always run MALG
on a segment (an interval of intervals) of length 2n for some integer n, which we call a block.
Since we want to obtain an anytime regret guarantee, the failure probability of base algorithms and
MALG need to be adjusted adaptively. Specifically, if an MALG instance is scheduled on intervals
[M† − 2n + 1,M†], then the regret guarantee of this MALG instance and the failure probability
of base algorithms it maintains depends on M†. However, we ignore the dependency on M† in
algorithms and analysis since the regret bound only has logarithmic dependency on M†.

We show that MALG ensures a multi-scale regret guarantee in the following lemma. Below we say
an algorithm is of order l if it is scheduled on a segment of length 2l. Also denote by f̃Am the f̃m
output by A.

Lemma 36. For a given M† ≥ 1, let n̂ = log2M† + 1 and R̂(m) = 210n̂ ln(2M†/δ)R(m).
Algorithm 7 scheduled on [M† − 2n + 1,M†] with input n ≤ log2M† guarantees for any A it
maintains and any m ∈ [A.s,A.e], as long as ∆[A.s,m] ≤ r(m′) where m′ = m− A.s+ 1 and all
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base algorithms it maintains do not terminate up to interval m (including m), we have with high
probability:

g̃m ≤ f?m + r(m′′),

m∑
τ=A.s

(Cτ − g̃τ ) ≤ R̂(m′), and
m∑

τ=A.s

(f?τ − Cτ ) ≤ R̂(m′),

where m′′ is the number of intervals that A′ is active up to interval m, and A′ is the active algorithm
in interval m.

Proof. Fix a base algorithm A and m ∈ [A.s,A.e]. Suppose A′ is active in interval m, which implies
[A′.s,A′.e] ⊆ [A.s,A.e]. For the first statement, note that ∆[A′.s,m] ≤ ∆[A.s,m] ≤ r(m′) ≤ r(m′′)
since r is non-increasing. Thus, by the guarantee of A′ (Assumption 1), we have

g̃m ≤ f?m + r(m′′).

For the second statement, first note that:
m∑

τ=A.s

(Cτ − g̃τ ) =

n∑
l=0

∑
A′∈Sl

m∑
τ=A.s

(Cτ − f̃A
′

τ )I{A′ is active at τ},

where Sl is the set of base algorithms of order l which starts within [A.s,m]. For a fix l, suppose
Sl = {A′1, . . . ,A′N}, and define Ii = [A.s,m] ∩ [A′i.s,A

′
i.e]. Note that {Ii}Ni=1 are disjoint, and

∆Ii ≤ ∆[A.s,m] ≤ r(m′) ≤ r(|Ii|). Moreover, [A′i.s,A
′
i.e] ⊆ [A.s,A.e] if A′i is active at some

interval within [A.s,m]. Therefore, by the the guarantee of A′i (Assumption 1) we have:
N∑
i=1

m∑
τ=A.s

(Cτ − f̃A
′
i

τ )I{A′i is active at τ} ≤
N∑
i=1

R(|Ii|) ≤ N ·R(min{2l,m′}).

Now we need to bound N . Note that E[N ] ≤ r(2n)
r(2l)

(m
′

2l
+ 1) by the scheduling rule. By

Lemma 50, with probability at least 1 − δ
(2M†)6 (simply choose a small enough failure prob-

ability such that the failure probability over all M† ≥ 1 and all base algorithms is bounded),
N ≤ 2E[N ] + 28 ln(2M†/δ) ≤ 2r(2n)

r(2l)
m′

2l
+ 258 ln(2M†/δ) and

N ·R(min{2l,m′}) ≤
(

2r(2n)

r(2l)

m′

2l
+ 258 ln(2M†/δ)

)
R(min{2l,m′})

≤
(

2R(m′)

R(2l)
+ 258 ln(2M†/δ)

)
R(min{2l,m′}) ≤ 29 ln(2M†/δ)R(m′).

(r(2n) ≤ r(m′))

Summing over l and by n+1 ≤ n̂ proves the second statement. For the third statement, by Lemma 35,

m∑
τ=A.s

(f?τ − Cτ ) = Õ

√√√√B?

m∑
τ=A.s

Cτ +B?

 = Õ


√√√√B?

(
m∑

τ=A.s

g̃τ + R̂(m′)

)
+B?


(the second statement)

≤ Õ
(
B?
√
m′
)

+
1

2
R̂(m′) ≤ R̂(m′).

(g̃τ ≤ c4 = Õ(B?) and AM-GM inequality)
This completes the proof.

F.4 Non-stationarity Detection: Single Block Regret Analysis

Now we introduce the MASTER algorithm (Algorithm 8) that performs non-stationarity tests and
restarts. We first show the regret bound on a single block of order n (of length 2n) that starts from
mn and ends on En. Clearly En ≤ mn + 2n − 1 since it may terminate earlier than planned.
Also let M† = mn + 2n − 1 be the planned last interval. Define r̂(m) = R̂(m)/m, αl = r(2l),
α̂l = r̂(2l), and l0 = maxl{12α̂l−1 > c4}. We divide the whole block [mn, En] into near-stationary
segments I1, . . . , I` with Ii = [si, ei], such that ∆Ii ≤ r(|Ii|) and ∆[si,ei+1] > r(|Ii| + 1) for
i < `. Note that the partition depends on the learner’s behavior, but whether m ∈ Ii is determined at
the beginning of interval m before interaction starts. In the following lemma we give a bound on `.
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Algorithm 8 MASTER
Input: r̂(·) (defined in Appendix F.4).
Initialize: m← 1.

1 for n = 0, 1, . . . do
Set mn ← m, and initialize a MALG (Algorithm 7) instance on [mn,mn + 2n − 1].
while m < mn + 2n do

Receive g̃m from MALG, follow MALG’s decision, and suffer Cm.
2 Update MALG and set U lm = maxτ∈[mn+2l−1,m] g̃

l
τ for all 0 ≤ l ≤ n, where g̃lτ =

1
2l

∑τ
τ ′=τ−2l+1 g̃τ ′ and U lm = 0 if m < mn + 2l − 1.

Perform Test 1 and Test 2, and increment m← m+ 1.
if either test fails or MALG terminates then restart from Line 1

3 Test 1: If m = A.e for some order-l A and 1
2l

∑A.e
τ=A.s C

τ ≤ U lm − 9r̂(2l), return fail.
Test 2: If 1

m−mn+1

∑m
τ=mn

(Cτ − g̃τ ) ≥ 3r̂(m−mn + 1). return fail.

Lemma 37. Let J = [mn, En]. We have ` ≤ LJ and ` ≤ 1 + (2c−1
1 ∆J )2/3|J |1/3 + c−1

3 ∆J .

Proof. The first statement is clearly true. For the second statement follows from Lemma 13.

We also define g̃lτ = 1
2l

∑τ
τ ′=τ−2l+1 g̃τ ′ and f?,lτ = 1

2l

∑τ
τ ′=τ−2l+1 f

?
τ ′ for τ ≥ mn + 2l − 1. We

first show a running average version of the first statement in Lemma 36.

Lemma 38. For any τ ≥ mn+2l−1, if for anym ∈ [τ−2l+1, τ ], ∆[A.s,m] ≤ r(m−A.s+1) where
A is the base algorithm of MALG active in interval m, then g̃lτ ≤ f?,lτ + α̂l with high probability.

Proof. The case of l = 0 is clearly true by Lemma 36. For l > 0, we have

g̃lτ =
1

2l

τ∑
τ ′=τ−2l+1

g̃τ ′ =
1

2l

τ∑
τ ′=τ−2l+1

n∑
l′=0

∑
A′∈Sl′

f̃A
′

τ ′ I{A′ is active at τ ′}

≤ 1

2l

τ∑
τ ′=τ−2l+1

n∑
l′=0

∑
A′∈Sl′

(f?τ ′ + r(mA′

τ ′ ))I{A′ is active at τ ′}

(∆[A′.s,m] ≤ r(m− A′.s+ 1) ≤ r(mA′

τ ′ ) and Assumption 1)

≤ f?,lτ +
1

2l

n∑
l′=0

∑
A′∈Sl′

τ∑
τ ′=τ−2l+1

r(mA′

τ ′ )I{A′ is active at τ ′}

≤ f?,lτ +
2

2l

n∑
l′=0

|Sl′ |R(min{2l, 2l
′
}),

wheremA′

τ ′ is the number of intervals that A′ is active up to τ ′, Sl′ is the set of order l′ base algorithms
that intersect with [τ − 2l + 1, τ ], and in the last inequality we use the fact that for any m ≥ 1,

m∑
τ=1

r(τ) =

m∑
τ=1

min

{
c1√
τ

+
c2
τ
, c3

}
≤ min

{
m∑
τ=1

(
c1√
τ

+
c2
τ

)
, c3m

}
≤ 2R(m).

For l′ ≥ l, we have |Sl′ | ≤ 2. For l′ < l, note that E[|Sl′ |] ≤ r(2n)

r(2l′ )
(2l−l

′
+ 1). By Lemma 50, with

high probability, |Sl′ | ≤ 2E[|Sl′ |] + 28 ln(2M†/δ) ≤ 2R(2l)

R(2l′ )
+ 258 ln(2M†/δ). Plugging these back,

we obtain

2

2l

n∑
l′=0

|Sl′ |R(min{2l, 2l
′
}) ≤ 2

2l

l−1∑
l′=0

(
2R(2l)

R(2l′)
+ 258 ln(2M†/δ)

)
R(2l

′
) + 4

n∑
l′=l

αl ≤ α̂l.

This completes the proof.
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Now we show the guarantee of non-stationarity detection on a single block [mn, En]. Define τi(l)
as the smallest interval τ ∈ Ili , [si + 2l − 1, ei] (τi(l) = ei + 1 if such an interval does not exist)
such that g̃lτ − f?,lτ > 12α̂l, and ξi(l) = ei − τi(l) + 1.

Lemma 39. Let the event in Lemma 36 hold. Then with high probability,

En∑
τ=mn

(Cτ − g̃τ ) ≤ 3R̂(En −mn + 1) + c3,

En∑
τ=mn

(g̃τ − f?τ ) ≤ Õ

(∑̀
i=1

R̂(|Ii|)

)
+ 210

n∑
l=l0

αl
αn

R̂(2l) ln(2M†/δ).

Proof. The first statement trivially holds by Test 2 and the estimated regret in a single interval is
at most c3 (Assumption 1). For the second statement, define dlτ = g̃lτ − f?,lτ . For a particular
Ii and any l ≥ 0, let I ′i = Ii ∩ [τi(l) − 1]. If |I ′i| ≤ 2 · 2l+1, then clearly

∑
τ∈Ili,τ<τi(l)

dlτ ≤
|I ′i|·12α̂l ≤ min{|Ii|, 2·2l+1}·12α̂l. If |I ′i| > 2·2l+1, then I ′i can be partitioned into three segments
H0
i = [si, si + 2l+1 − 1], H1

i = [τi(l) − 2l+1, τi(l) − 1], and H2
i = [si + 2l+1, τi(l) − 2l+1 − 1].

Note that for τ ∈ H2
i , the weight of d0

τ within the sum
∑
τ∈Il+1

i ,τ<τi(l)
dl+1
τ is 1. Therefore,∑

τ∈H2
i
d0
τ ≤

∑
τ∈Il+1

i ,τ<τi(l)
dl+1
τ . Moreover,

∑
τ∈H0

i∪H1
i
d0
τ = 2l(dlsi+2l−1 + dlsi+2l+1−1 +

dlτi(l)−1 + dlτi(l)−2l−1) ≤ 2 · 2l+1 · 12α̂l = min{|Ii|, 2 · 2l+1} · 12α̂l. This gives

∑
τ∈Ili,τ<τi(l)

dlτ ≤
∑
τ∈I′i

d0
τ =

∑
τ∈H2

i

+
∑

τ∈H0
i∪H1

i

 d0
τ

≤
∑

τ∈Il+1
i ,τ<τi(l)

dl+1
τ + min{|Ii|, 2 · 2l+1} · 12α̂l

≤
∑

τ∈Il+1
i ,τ<τi(l+1)

dl+1
τ + 12α̂lξi(l + 1) + min{|Ii|, 2l} · 48α̂l.

(dl+1
τ = 1

2 (dlτ + dlτ−2l))

≤
∑

τ∈Il+1
i ,τ<τi(l+1)

dl+1
τ + 24α̂l+1ξi(l + 1) + min{|Ii|, 2l} · 48α̂l.

(α̂l = R̂(2l)
2l
≤ 2R̂(2l+1)

2l+1 ≤ 2α̂l+1)

Combining the two cases above, we have∑
τ∈Ili,τ<τi(l)

dlτ ≤
∑

τ∈Il+1
i ,τ<τi(l+1)

dl+1
τ + 24α̂l+1ξi(l + 1) + min{|Ii|, 2l} · 48α̂l.

Applying this recursively, we have for a given Ii,∑
τ∈Ii

(g̃τ − f?τ ) =
∑

τ∈I0i ,τ<τi(0)

d0
τ ≤

∑
τ∈Ini ,τ<τi(n)

dnτ + 24

n−1∑
l=0

α̂l+1ξi(l + 1) + 48

n−1∑
l=0

R̂(min{|Ii|, 2l})

(min{|Ii|, 2l}α̂l ≤ r̂(min{|Ii|, 2l}) min{|Ii|, 2l} = R̂(min{|Ii|, 2l}))

≤ 12|Ii|α̂n + 24

n∑
l=1

α̂lξi(l) + Õ
(
R̂(|Ii|)

)
≤ 24

n∑
l=1

α̂lξi(l) + Õ
(
R̂(|Ii|)

)
.

Summing over all i and by l < l0 =⇒ 12α̂l > c4 =⇒ ξi(l) = 0, we have:

En∑
τ=mn

(g̃τ − f?τ ) ≤ Õ

(∑̀
i=1

R(|Ii|)

)
+ 24

n∑
l=l0

∑̀
i=1

α̂lξi(l).
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Now note that for any fixed l, we have:∑̀
i=1

α̂lξi(l) = α̂l
∑̀
i=1

min{ξi(l), 4 · 2l}+ α̂l
∑̀
i=1

(ξi(l)− 4 · 2l)+

≤ 4
∑̀
i=1

(
R̂(|Ii|) +

4αl
αn

R̂(2l) ln(2M†/δ)

)
.

(Lemma 40 and α̂l min{ξi(l), 4 · 2l} ≤ 4r̂(min{ξi(l), 2l}) min{ξi(l), 2l} = 4R̂(min{ξi(l), 2l}))
Putting everything together completes the proof.

Lemma 40. For any l ≤ n,
∑`
i=1 α̂l(ξi(l)− 4 · 2l)+ ≤ 4αl

αn
R̂(2l) ln(2M†/δ) with high probability.

Proof. Denote byAl the number of candidate starting points of an order-l algorithm in [τi(l), ei−2·2l]
for some i. Note that this quantity is lower bounded by

∑`
i=1(ξi(l) − 4 · 2l)+/2

l. Moreover, if
in interval m ∈ [τi(l), ei − 2 · 2l], an order-l algorithm A starts, then Test 1 is performed at
m+ 2l − 1 ≤ ei, and Test 1 returns fail with high probability because

1

2l

A.e∑
τ=A.s

Cτ ≤ 1

2l

A.e∑
τ=A.s

g̃τ + α̂l (∆[A.s,A.e] ≤ ∆Ii ≤ r(|Ii|) ≤ r(2l) and Lemma 36)

≤ 1

2l

A.e∑
τ=A.s

f?τ + 2α̂l

(Lemma 38, ∆Ii ≤ r(|Ii|), and [A′.s,A′.e] ⊆ [A.s,A.e] if A′ is active within [A.s,A.e])

≤ f?,lτi(l) + 2α̂l + ∆Ii

≤ g̃lτi(l) − 12α̂l + 3α̂l ≤ g̃lτi(l) − 9α̂l. (∆Ii ≤ r(|Ii|) ≤ r(2l) ≤ α̂l)
This is a contradiction by the definition of En. Therefore, all candidate starting points of order-
l algorithm in [τi(l), ei − 2 · 2l] does not instantiate an order-l algorithm. Let Xm = {m ∈
[τi(l), ei−2 ·2l] for some i}, X ′m = {m ∈ [τi(l), ei] for some i}, Ym = {(m−mn) mod 2l = 0}
and Zm = {@ order-l A′ such that A′.s = m}, we have

Al =

mn+2m−1∑
m=mn

I{Xm, Ym} =

mn+2m−1∑
m=mn

I{Xm, Ym, Zm} ≤
mn+2m−1∑
m=mn

I{X ′m, Ym, Zm}.

Note that conditioned on X ′m ∩ Ym, the event Zm happens with a constant probability 1 − αn
αl

.

Moreover, Zm = 0 implies X ′m′ = 0 for m′ > m. Therefore,
∑mn+2m−1
m=mn

I{X ′m, Ym, Zm} counts
the number of trials up to the first success with success probability αn

αl
of each trial. Then with

probability at least 1− δ/(2M2
† ), we have Al ≤ 4αl

αn
ln(2M†/δ). Thus,∑̀

i=1

α̂l(ξi(l)− 4 · 2l)+ ≤ α̂l2l ·
4αl
αn

ln(2M†/δ) ≤
4αl
αn

R̂(2l) ln(2M†/δ).

This completes the proof.

Now we present the regret guarantee in a single block.
Lemma 41. Within a single block J = [mn, En], we have∑

m∈J
(Cm − f?m) = Õ

(
c1
√
`|J |+ c2`+

(
c1 +

c2c4
c1

)
2n/2 +

c22
c3

+ c3

)
.

Proof. By Lemma 39, we have∑
m∈J

(Cm − f?m) =
∑
m∈J

(Cm − g̃m) +
∑
m∈J

(g̃m − f?m)

= Õ

(
R̂(|J |) +

∑̀
i=1

R̂(|Ii|) +

n∑
l=l0

αl
αn

R̂(2l) + c3

)
.
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Note that by Cauchy-Schwarz inequality:

R̂(|J |) +
∑̀
i=1

R̂(|Ii|) = Õ

((
c1
√
|J |+ c2

)
+
∑̀
i=1

(
c1
√
|Ii|+ c2

))
= Õ

(
c1
√
`|J |+ c2`

)
.

Moreover, by the definition of l0, we have 12α̂l0 = 210n̂ ln(2M†/δ) min{ c1√
2l0

+ c2
2l0
, c3} ≤ c4,

which implies c2 ≤ c42l0 by c4 ≤ c3. Now for any l ≥ l0,

αl
αn

R̂(2l) = Õ
(
R(2l)2

R(2n)
2n−l

)
= Õ

(
c212l + c22
c12n/2 + c2

2n−l +
c212l + c22
c32n

2n−l
)

= Õ
(
c12n/2 +

c2c42l0

c1
2n/2−l +

c21
c3

+
c22
c3

2−l
)

= Õ
((

c1 +
c2c4
c1

)
2n/2 +

c21
c3

+
c22
c3

2−l
)

= Õ
((

c1 +
c2c4
c1

)
2n/2 +

c22
c3

2−l
)
,

where in the last inequality we assume c1 ≤ c32n/2 without loss of generality and have c21
c3
≤ c12n/2

(note that if c1 > c32n/2, then c12n/2 > c32n and the regret bound is vacuous). Summing over l and
putting everything together, we obtain:∑

m∈J
(Cm − f?m) = Õ

(
c1
√
`|J |+ c2`+

(
c1 +

c2c4
c1

)
2n/2 +

c22
c3

+ c3

)
.

F.5 Single Epoch Regret Analysis

We call [m0, E] an epoch if m0 is the first interval after restart from Line 1 or m0 = 1, and E is the
first interval where a restart after interval m is triggered. The regret guarantee in a single epoch is
shown in the following lemma.

Lemma 42. Let E be an epoch, then
∑
m∈E(C

m−f?m) = Õ(c1
√
`E |E|+c2`E+(c1 + c2c4

c1
)
√
|E|+

c22
c3

+ c3), where `E = Õ(1 + (c−1
1 ∆E)

2/3|E|1/3 + c−1
3 ∆E) and `E = Õ(LE).

Proof. Suppose E consists of blocks J1, . . . ,Jn and the number of near stationary segments (as
discussed in Appendix F.4) in Ji is `i. Then, |E| = Θ(2n), and by Lemma 41 and Cauchy-Schwarz
inequality,

∑
m∈E

(Cm − f?m) = Õ

(
c1

n∑
i=1

√
`i|Ji|+ c2

n∑
i=1

`i +

(
c1 +

c2c4
c1

)
2n/2 +

c22
c3

+ c3

)

= Õ

c1
√√√√ n∑

i=1

`i|E|+ c2

n∑
i=1

`i +

(
c1 +

c2c4
c1

)√
|E|+ c22

c3
+ c3

 .

Finally by Lemma 37 and Hölder’s inequality,
∑n
i=1 `i = Õ(1 + (c−1

1 ∆E)
2/3|E|1/3 + c−1

3 ∆E) and∑n
i=1 `i = Õ(LE).

F.6 Full Regret Guarantee

To derive the full regret guarantee of the MASTER algorithm (Algorithm 8), we first bound the
number of epochs by the following two lemmas. Define N[1,M ′] as the number of times MALG
terminates within [1,M ′]

Lemma 43. Let m be in an epoch starting from interval m0. If ∆[m0,m] ≤ r(m−m0 + 1), then no
restart would be triggered by Test 1 or Test 2 in interval m with high probability.
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Proof. We first show that Test 1 would not fail. Let m = A.e where A is any order-l base algorithm
in a block of order n starting from mn. Then with high probability,

U lm = max
τ∈[mn+2l−1,m]

g̃lτ ≤ max
τ∈[mn+2l−1,m]

f?,lτ + r̂(2l) (Lemma 38)

≤ 1

2l

m∑
τ=A.s

f?τ + r̂(2l) + ∆[mn,m]

≤ 1

2l

m∑
τ=A.s

Cτ + 2r̂(2l) + ∆[mn,m] ≤
1

2l

m∑
τ=A.s

Cτ + 3r̂(2l).

(Lemma 36 and ∆[mn,m] ≤ ∆[m0,m] ≤ r(m−m0 + 1) ≤ r(2l))

Thus, Test 1 would not fail. For Test 2, by Lemma 36 and ∆[mn,m] ≤ ∆[m0,m] ≤ r(m−m0 + 1) ≤
r(m−mn + 1):

m∑
τ=mn

(Cτ − g̃τ ) ≤ R̂(m−mn + 1),

Thus, Test 2 also would not fail.

Lemma 44. Assuming that MALG does not terminate without non-stationarity, with high probability,
the number of epochs within [1,M ′] is upper bounded by L[1,M ′] and 1 + (2c−1

1 ∆[1,M ′])
2/3M ′

1/3
+

c−1
3 ∆[1,M ′] + N[1,M ′].

Proof. The first upper bound is clearly true by partitioning [1,M ′] into segments without non-
stationarity. For the second upper bound, by Lemma 43, if an epoch [m0, E] is not the last epoch,
then ∆[m0,E] > r(E −m0 + 1) or MALG terminates with high probability. Applying Lemma 13
completes the proof.

Theorem 13. If Assumption 1 holds, then MASTER (Algorithm 8) ensures with high probability
(ignoring lower order terms), for any M ′ ≥ 1:

R̃M ′ = Õ
((

c1 +
c2c4
c1

)√
L[1,M ′]M ′

)
and

R̃M ′ = Õ

((
c1 +

c2c4
c1

)√
(N[1,M ′] + 1)M ′ +

(
c
2/3
1 +

c2c4

c
4/3
1

)
∆

1/3
[1,M ′]M

′2/3
)
.

Proof. Let E1, . . . , EN be epochs in [1,M ′] and E =
⋃N
i=1 Ei. Then by Lemma 42 and Cauchy-

Schwarz inequality, we have:

R̃M ′ = Õ

(
N∑
i=1

(
c1
√
`Ei |Ei|+ c2`Ei +

(
c1 +

c2c4
c1

)√
|Ei|+

c22
c3

+ c3

))

= Õ
(
c1
√
`EM ′ + c2`E +

(
c1 +

c2c4
c1

)√
NM ′ +

(
c22
c3

+ c3

)
N

)
,

where `E =
∑N
i=1 `Ei . Below we assume sub-linear L[1,M ′],∆[1,M ′] and only write down dominating

terms. For L-dependent bound, note that N ≤ L[1,M ′] by Lemma 44 and `E ≤ N + L[1,M ′] =

Õ(L[1,M ′]) by Lemma 42. Thus, c2`E + (
c22
c3

+ c3)N is a lower order term, and

R̃M ′ = Õ
((

c1 +
c2c4
c1

)√
L[1,M ′]M ′

)
.

For ∆-dependent bound, note that by Lemma 42, Hölder’s inequality, and Lemma 44,

`E = Õ
(
N + (c−1

1 ∆[1,M ′])
2/3M ′

1/3
+ c−1

3 ∆[1,M ′]

)
= Õ

(
N[1,M ′] + 1 + (c−1

1 ∆[1,M ′])
2/3M ′

1/3
+ c−1

3 ∆[1,M ′]

)
.
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Ignoring lower order term of the form
√

∆[1,M ′]M ′, we have

c1
√
`EM ′ +

(
c1 +

c2c4
c1

)√
NM ′

= Õ

((
c1 +

c2c4
c1

)√(
N[1,M ′] + 1 + (c−1

1 ∆[1,M ′])2/3M ′1/3 + c−1
3 ∆[1,M ′]

)
M ′

)

= Õ

((
c1 +

c2c4
c1

)√
(N[1,M ′] + 1)M ′ +

(
c
2/3
1 +

c2c4

c
4/3
1

)
∆

1/3
[1,M ′]M

′2/3
)
.

The remaining c2`E + (
c22
c3

+ c3)N is again a lower order term.

F.7 Proof of Theorem 6

We are ready to present the regret guarantee of the MASTER algorithm combining with different
base algorithms. Recall L = 1 +

∑K−1
k=1 I{Pk+1 6= Pk or ck+1 6= ck}.

Theorem 14. Let A be Algorithm 8 with Algorithm 2 as base algorithm. Then Algorithm 1 with A
ensures with high probability, for any K ′ ∈ [K],

RK′ = Õ
(

min
{
B?S
√
ALK ′, B?S

√
AK ′ + (B2

?S
2A(∆c +B?∆P )Tmax)1/3K ′

2/3
})

.

Proof. By Lemma 33 and Theorem 13 with N[1,M ] = 0, we have for any M ′ ≤M ,

R̊M ′ ≤ R̃M ′ = Õ
(

min
{
B?S

√
AL[1,M ]M ′, B?S

√
AM ′ + (B2

?S
2A∆[1,M ])

1/3M ′
2/3
})

,

where L[1,M ] = L and ∆[1,M ] = Õ((∆c + B?∆P )Tmax). Applying Lemma 16, we have for any
K ′ ∈ [K] (ignoring lower order terms),

R̊MK′ = Õ
(

min
{
B?S
√
ALK ′, B?S

√
AK ′ + (B2

?S
2A(∆c +B?∆P )Tmax)1/3K ′

2/3
})

.

Applying Lemma 15 completes the proof.

We are now ready to prove Theorem 6.

Proof of Theorem 6. By Lemma 30 and Lemma 31, when Algorithm 6 terminates in interval E
where [m0, E] is an epoch, we have ∆′[m0,E+1] > ηE−m0+2. Therefore, N[1,K] = Õ(1 +

(B2
?S

2A)−1/3(T?∆
′
[1,K])

2/3K1/3 + H∆′[1,K]) by Lemma 13 and the definition of ηm. Then by
Lemma 34 and Theorem 13, we have A1 ensures when sm1 = sinit for m ≤ K,

R̊K = R̃K = Õ
(

min
{
B?S
√
ALK,B?S

√
AK + (B2

?S
2A(∆c +B?∆P )T?)

1/3K2/3
})

,

where we apply ∆′[1,K] = Õ(∆c + B?∆P ), L[1,K] = L, and ∆[1,K] = Õ((∆c + B?∆P )T?).
Moreover, by Theorem 14, A2 ensures RK′ being sub-linear w.r.t K ′ for any K ′ ∈ [K]. Applying
Theorem 11 completes the proof.

G Auxiliary Lemmas

Lemma 45. [Chen et al., 2022b, Lemma 48] x ≤ a
√
x+ b implies x ≤ (a+

√
b)2 ≤ 2a2 + 2b.

Lemma 46. [Rosenberg and Mansour, 2021, Lemma 6] Let π be a policy whose expected hitting
time starting from any state is at most τ . Then for any δ ∈ (0, 1), with probability at least 1− δ, it
takes no more than 4τ ln 2

δ steps to reach the goal state following π.

Lemma 47. [Chen et al., 2021a, Lemma 30] For any random variable X with ‖X‖∞ ≤ C, we have
VAR[X2] ≤ 4C2VAR[X].
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Lemma 48. ([Chen et al., 2021a, Lemma 31]) Define Υ = {v ∈ [0, B]S+ : v(g) = 0}. Let

f : ∆S+ ×Υ×R+×R+×R+ → R+ with f(p, v, n,B, ι) = pv−max
{
c1

√
V(p,v)ι
n , c2

Bι
n

}
with

c21 ≤ c2. Then f satisfies for all p ∈ ∆S+ , v ∈ Υ and n, ι > 0,

1. f(p, v, n,B, ι) is non-decreasing in v(s), that is,

∀v, v′ ∈ Υ, v(s) ≤ v′(s),∀s ∈ S+ =⇒ f(p, v, n,B, ι) ≤ f(p, v′, n,B, ι);

2. f(p, v, n,B, ι) ≤ pv − c1
2

√
V(p,v)ι
n − c2

2
Bι
n .

Lemma 49 (Any interval Freedman’s inequality). Let {Xi}∞i=1 be a martingale difference sequence
w.r.t the filtration {Fi}∞i=0 and |Xi| ≤ B for some B > 0. Then with probability at least 1− δ, for
all 1 ≤ l ≤ n simultaneously,∣∣∣∣∣

n∑
i=l

Xi

∣∣∣∣∣ ≤ 3

√√√√ n∑
i=l

E[X2
i |Fi−1] ln

16B2n5

δ
+ 2B ln

16B2n5

δ
(5)

≤ 3

√√√√2

n∑
i=l

X2
i ln

16B2n5

δ
+ 18B ln

16B2n5

δ
. (6)

Proof. For each l ≥ 1, by [Chen et al., 2022a, Lemma 38], with probability at least 1− δ
4l2 , Eq. (5)

holds for all n ≥ l. Then by Lemma 50, with probability at least 1− δ
4l2 , Eq. (6) holds for all n ≥ l.

Applying a union bound over l completes the proof.

Lemma 50. Suppose {Xi}∞i=1 is a sequence of random variables w.r.t the filtration {Fi}∞i=0 and
satisfies Xi ∈ [0, B] for some B > 0. Then with probability at least 1 − δ, for all 1 ≤ l ≤ n
simultaneously,

n∑
i=l

E[Xi|Fi−1] ≤ 2

n∑
i=l

Xi + 12B ln
2n

δ
,

n∑
i=l

Xi ≤ 2

n∑
i=l

E[Xi|Fi−1] + 24B ln
2n

δ
.

Proof. For each l ≥ 1, by [Chen et al., 2022a, Lemma 39], with probability at least 1− δ
2l2 , the two

inequalities above hold for all n ≥ l. Taking a union bound over l completes the proof.
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