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Abstract

Deploying large language models (LLMs) in
clinical settings faces critical trade-offs: cloud
LLMs, with their extensive parameters and su-
perior performance, pose risks to sensitive clin-
ical data privacy, while local LLMs preserve
privacy but often fail at complex clinical in-
terpretation tasks. We propose MedEXx, a hy-
brid framework where a cloud LLM decom-
poses complex clinical tasks into manageable
subtasks and prompt generation, while a lo-
cal LLM executes these subtasks in a privacy-
preserving manner. Without accessing clinical
data, the cloud LLM generates and validates
subtask prompts using clinical guidelines and
synthetic test cases. The local LLM executes
subtasks locally and synthesizes outputs gen-
erated by the cloud LLM. We evaluate MedEx
on pancreatic cancer staging using 100 radiol-
ogy reports under NCCN guidelines. On free-
text reports, MedEx achieves 70.21% accuracy,
outperforming local model baselines (without
guideline: 48.94%, with guideline: 56.59%)
and board-certified clinicians (gastroenterol-
ogists: 59.57%, surgeons: 65.96%, radiolo-
gists: 55.32%). On structured reports, MedEx
reaches 85.42% accuracy, showing clear supe-
riority across all settings.

1 Introduction

Free-text clinical reports, particularly those pro-
duced in radiology and pathology, play a central
role in clinical decision-making. These unstruc-
tured reports contain rich and complex clinical in-
formation that supports patient diagnosis, cancer
staging, treatment planning, and overall care man-
agement (Raghavan et al., 2014). Furthermore, the
composition of these reports is often influenced
by established clinical protocols and standardized
guidelines, which help ensure consistency and med-
ical accuracy.

While free-text clinical reports contain vast
amounts of valuable clinical information, their un-

structured language patterns and diverse expres-
sions often make it challenging to quickly identify
or extract the necessary information in actual clin-
ical settings (Sedlakova et al., 2023). This limita-
tion can hinder clinical efficiency and consistency,
which has led to the growing adoption of Natu-
ral Language Processing (NLP) technologies as a
complementary solution.

Conventional NLP methods, including rule-
based systems and various machine learning al-
gorithms such as SVM, CRF, and Random Forest,
have been applied to extract clinical information
from free-text radiology reports (Nobel et al., 2024;
Kumbhakarna et al., 2020). However, their perfor-
mance remains limited by institutional differences
in documentation styles and challenges in han-
dling uncertainty and implicit language, suggest-
ing the need for more context-aware approaches.
In addition, these methods often require task and
data-specific training and manual feature engineer-
ing, which limits their scalability and adaptability
across different clinical use cases.

In light of these limitations, recent advances in
large language models (LLMs) have drawn atten-
tion for their ability to overcome many of the chal-
lenges faced by conventional NLP methods. Un-
like earlier approaches, LLMs are pretrained on
massive text corpora and demonstrate strong ca-
pabilities in understanding context, handling un-
certainty, and generalizing across diverse clinical
tasks with minimal task-specific adaptation (Man-
athunga and Hettigoda, 2023; Yang et al., 2025).
These strengths make them particularly well-suited
for processing complex and variable free-text radi-
ology reports, especially when aligned with estab-
lished clinical guidelines.

Many state-of-the-art cloud LLMs (e.g., GPT-40
(OpenAl et al., 2024), Gemini 2.5 Pro (DeepMind,
2025)) available through commercial cloud plat-
forms are characterized by extremely large param-
eter sizes and extended context windows. These
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Figure 1: Overview of the MedEx framework. The system operates in two phases: (1) cloud-based prompt
generation & validation, where a cloud LLM decomposes the user-defined clinical task into subtasks, generates draft
prompts, and validates them using synthetic test cases; and (2) privacy-preserving inference & outcome synthesis,
where a local LLM applies the refined prompts to real clinical data to extract subtask outputs, which are then

synthesized into a final outcome.

features allow them to process complex clinical
narratives more effectively. Several studies have
shown strong performance in tasks such as extract-
ing decision-critical information, structuring free-
text reports, and supporting evidence-based clini-
cal reasoning (Reichenpfader et al., 2023; Vrdol-
jak et al., 2025; Wu et al., 2024). Despite these
strengths, cloud LLMs are rarely used in real-world
clinical settings. The main reason is patient privacy.
Sending sensitive clinical data to external servers
is often restricted by institutional polices and legal
regulations (Marks and Haupt, 2023).

To address privacy concerns, research has
emerged exploring the use of local LLMs (e.g.,
Llama (MetaAl, 2024), Gemma (Google, 2025))
in clinical environments (Vaid et al., 2024; Wiest
et al., 2024). While some of these local LLMs
have large parameter counts, their practical deploy-
ment in clinical settings is often limited by hard-
ware constraints and high implementation costs.
Consequently, smaller models are typically em-
ployed, which may result in performance degra-
dation in complex clinical tasks that require so-
phisticated contextual understanding and precision
(Wang et al., 2024).

To address such performance degradation, re-
searchers have explored various techniques, in-
cluding fine-tuning (Hou et al., 2025), retrieval-
augmented generation (RAG) (Ke et al., 2025), and
various prompt engineering strategies (Maharjan
et al., 2024). However, the application of these
methods in clinical settings remains limited. Ob-
taining high-quality clinical data and annotations
is challenging, and even minor changes often re-

quire re-running the entire process, making these
approaches burdensome and difficult to apply in
real-world clinical settings (Dennstidt et al., 2025).

In response to the inherent limitations of cloud
and local LLMs, we propose MedEx, a hybrid
cloud-local LLM framework. MedEx combines
the strengths of both cloud and local LLMs. The
cloud LLM handles complex language tasks that
require high performance and long-context process-
ing, and the local LLM ensures privacy-preserving
inference by keeping sensitive clinical data on-site.
This hybrid structure allows tasks to be divided
based on data sensitivity and computational needs.
An overview of the MedEx framework is shown in
Figure 1.

In MedEx, the cloud LLM acts as a meta-
orchestrator. Upon receiving the clinical task def-
inition, relevant guidelines, and user needs, the
cloud LLM decomposes the overall task into a set
of manageable subtasks that can be handled by the
local LLM. It then generates corresponding draft
prompts for each subtask, along with synthetic test
cases to support prompt validation. Furthermore,
the cloud LLM defines the outcome logic, the rules
for aggregating the outputs from individual sub-
tasks to produce the final clinical outcome. This
process leverages the cloud LLM’s strong perfor-
mance and contextual reasoning capabilities while
avoiding exposure of any sensitive clinical data at
this stage.

The local LLM in MedEx serves as the primary
inference engine for handling sensitive clinical data.
It begins by using the subtasks, draft prompts, and
synthetic test cases generated by the cloud LLM



to produce a validation output, which includes pre-
dicted answers and reasoning traces. This output is
sent back to the cloud LLM, which compares the
results against expected outcomes and, if necessary,
refines the prompts to produce an improved version.
Once validation is complete, the local LLM uses
the refined prompts to make inferences on actual
clinical data. Each subtask generates output and
then applies the outcome logic, originally defined
by the cloud LLM, to integrate the subtask results
and derive the final clinical outcome.

To evaluate its applicability in real clinical set-
tings, MedEx was applied to clinical staging tasks
using 100 radiology reports (50 free-text and 50
structured format) from pancreatic cancer patients
based on the NCCN clinical guideline !. Perfor-
mance was compared against a local LLM baseline
(with and without clinical guidelines) as well as
three board-certified gastroenterology, surgery, and
radiology specialists. MedEx achieved superior ac-
curacy across all comparisons, demonstrating its
suitability for clinical guideline-based interpreta-
tion of free-text reports while protecting sensitive
clinical data.

2 Related Work

2.1 LLMs for Guideline-Driven
Interpretation of Radiology Reports

Recent efforts have actively explored the use of
LLMs to interpret clinical free-text, such as radiol-
ogy reports, according to clinical guidelines. For
example, studies based on models like GPT-4, Med-
PalLM, and Llama have demonstrated the utility of
LLMs in tasks such as staging estimation from radi-
ology reports, summarizing key findings, and struc-
turing lesion information (Gu et al., 2024; Zhou
et al., 2024; Hartsock et al., 2025). Notably, recent
research has introduced prompt design strategies
and evaluation methods that incorporate standard-
ized clinical guidelines such as NCCN or BI-RADS
into model responses (Kim et al., 2025; Cozzi et al.,
2024). However, most approaches rely on single
LLM systems, and when using cloud LLMs, sen-
sitive clinical data must be transmitted externally,
making it difficult to ensure privacy. Conversely,
when using local LLMs, additional methods such
as fine-tuning (Chen et al., 2024) or RAG (Arasteh
et al., 2024) are required, resulting in task- or data-
specific approaches that are difficult to deploy in

1h'ctps ://www.nccn.org/guidelines/
guidelines-detail?category=1&id=1455

real-world environments.

2.2 Planner-Executor Orchestration with
LLMs

Several works in general NLP have proposed or-
chestration frameworks in which a planner LLM
decomposes tasks and delegates subtasks to smaller
models or external tools (Schick et al., 2023; Khot
et al., 2023). This architecture improves modu-
larity and supports data protection by separating
sensitive data from the planner, which is especially
important in clinical NLP governed by regulations
like HIPAA and GDPR.

However, adoption in clinical NLP remains lim-
ited due to technical challenges in data separation,
lack of annotated datasets, and the complexity of in-
tegrating domain-specific workflows. (Suster et al.,
2017; Nam et al., 2019)

In MedEx, we assign guideline-based reasoning
and task decomposition to a cloud-based planner,
while keeping PHI-sensitive inference within a lo-
cal executor. This setup balances high performance
for complex tasks with patient privacy and real-
world deployability.

3 Method

3.1 Overview

MedEx is a hybrid framework that separates clin-
ical task orchestration from data-sensitive infer-
ence. As shown in Fig 1, the system operates in
two phases: (1) a cloud-based prompt generation
and validation phase, and (2) a local inference and
outcome synthesis phase. The following sections
detail each phase.

3.2 Clinical Task Input and Subtask

Decomposition
T=(1,G6,U) (1)
S, Prat, L = CloudLLM(T) 2)

We begin by formalizing the input to the MedEx
framework as a triplet 7, consisting of three com-
ponents: the clinical task description 7, the associ-
ated clinical guideline G, and a set of user-defined
preferences U. This is represented in Equation 1.

Here, 7 typically defines the high-level reason-
ing goal (e.g., determine clinical staging), G de-
notes the clinical guideline document (e.g., NCCN,
AJCC), and U encodes user-defined preferences
such as desired output format, subtask granularity,
or inclusion/exclusion of specific entity types.
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Based on this input, the cloud LLM generates
three key outputs: a set of subtasks S, correspond-
ing draft prompts Py, and a rule-based synthesis
logic £ that defines how subtask outputs are com-
bined into final task outcomes. This process is
summarized in Equation 2.

Each subtask s; € S represents an independent
unit of clinical reasoning required to complete the
overall task. These subtasks are not predefined but
are instead inferred by the cloud LLM based on
the full task input Equation 1. This decomposi-
tion allows the system to isolate modular reason-
ing components, such as primary tumor location,
detecting metastatic spread, or evaluating vessel
involvement, that can be executed independently
by a local LLM.

Once the set of subtasks & is established, the
cloud LLM constructs a corresponding draft system
prompt pgraft € Parafc for each subtask s;. These
prompts are generated under the assumption that
the local LLM lacks access to the 7,G, or any
global context. As such, each prompt pfraﬁ must be
self-contained: it includes a natural language task
description, relevant background derived from G,
and formatting instructions aligned with /. This
design ensures that each prompt can be executed
independently in a restricted local environment.

3.3 Prompt Validation with Synthetic Test
Cases

To ensure that each draft prompt is interpretable
and executable by the local LLM, MedEx performs
prompt validation using synthetic test cases. These
synthetic inputs are generated by the cloud LLM
without any access to real clinical data. Instead,
they are constructed by instantiating clinically plau-
sible scenarios directly from the guideline G and
T, yielding inputs that reflect key decision points
while preserving data privacy. Formally, for each
subtask s;, the cloud LLM generates a set of syn-
thetic examples Xs(;/% and corresponding expected

outputs ys(;)n as:

Xs(é%, y§;)n = GenerateSynthetic(s;,G) (3)
Each synthetic input xgz,)n S Xg,(;% is then paired
with a draft prompt pgran, and passed to the local
LLM for evaluation. The model is expected to
generate output y and reasoning 7

(r 480y = Local LLM(p™®, 23) (4

val? yva

A prompt is considered valid only if the pre-
(@)

val

dicted output ¢, aligns with the expected values

defined in ys(;)n This validation process ensures
not only correctness but also interpretability, mak-
ing it easier to detect ambiguous instructions or
faulty reasoning induced by the prompt.

3.4 Prompt Refinement

Algorithm 1 prompt refinement loop

1: for each subtask s; do

draft
pi < pi

3: while validation accuracy on TestSet; <
80% do
4 ("“vala yval) — LOC&ILLM(pi, $syn)
5: p; < RefinePrompt(p;, ryvar)
6: end while
7 pljeﬁned — p;
K]
8: end for

(4)

va

If the predicted output y

expected value yg}n, the corresponding reasoning

trace rz()z)l is reviewed to identify potential causes
of failure, such as ambiguous task phrasing, in-
complete guideline context, or formatting issues.
Based on this analysis, the cloud LLM refines the
draft prompt pgraﬂ, yielding an updated version
prefined that better guides the local model toward
the intended behavior. The revised prompt is then
re-evaluated on the same synthetic test set. This
refinement loop continues until the prompt consis-
tently passes 80% of the test cases.

. does not match the

3.5 Inference on Clinical Data and Outcome
Synthesis

Once the refined prompts pgeﬁned for all subtasks are
finalized, the system proceeds to perform inference
on real clinical data. For each patient document
dv ), the local LLM executes each subtasks s; €
S independently using the corresponding refined
prompt:

fY9 = LocalLLM (pj¢fme? qU)y  (5)

This process yields a set of subtask-specific out-
puts:

FO= {0,y ©

where each fi(j ) represents a discrete clinical fea-
ture or intermediate decision. Once all subtask
outputs are collected, the system applies the syn-
thesis logic £, previously generated by the cloud



LLM, to derive the final task outcome:
y9) = Synthesize(FY), L) (7

Equation 7 formalizes how the subtask outputs F ()
are synthesized into a final task outcome using the
logic £, which is derived from the clinical guide-
line G. The logic encodes how combinations of
intermediate features, such as abnormal findings
or clinically significant conditions, inform the final
decision.

To account for potential variability in local LLM
outputs, the inference process is repeated 1" times
for each clinical document d/), resulting in a set
of candidate outcomes:

YO = {8,
The final prediction %) is selected by majority
voting over )/ OF

§1) = Majority Vote(Y))

This strategy enhances the robustness of the fi-
nal outcome by mitigating the effects of stochastic
generation and occasional reasoning errors during
local inference.

4 Experiments

4.1 Dataset and Annotation

We constructed a clinical staging dataset using 100
abdominal imaging reports from patients diagnosed
with pancreatic cancer at a tertiary teaching hospi-
tal in South Korea between 2003 and 2018. The
dataset includes CT and MRI reports, and we fully
de-identified all data following institutional guide-
lines. The hospital’s Institutional Review Board
(IRB) approved the study protocol, where the data
were collected.

The dataset comprises 50 free-text and 50
structured-form reports, reflecting the diversity of
radiological documentation styles in real-world
clinical settings. The reports were written in Ko-
rean and English, as is common in bilingual clinical
documentation practices in Korea. We used only
the body of each report for all experiments, exclud-
ing the Conclusion section. This design aimed to
simulate common clinical workflows, where non-
radiologist specialists often make staging decisions
based solely on the narrative report without direct
image review.

We inferred ground truth (GT) staging labels
from the original Conclusion sections written by

board-certified radiologists during routine care.
While these conclusions did not explicitly assign
one of the NCCN guideline-based staging cate-
gories, domain experts retrospectively mapped the
descriptions into one of four defined stages: Re-
sectable, Borderline Resectable, Locally Advanced,
or Metastatic. We conducted label assignment in-
dependently of model development or evaluation
procedures.

Three board-certified specialists (from gastroen-
terology, surgery, and radiology) independently re-
viewed the report bodies and assigned clinical stag-
ing labels to benchmark system performance. They
did not view the original conclusions and received
no additional guidance or support. We performed
no inter-annotator discussion or consensus; each
specialist made independent decisions. When a
report lacked sufficient information for confident
staging, annotators were allowed to assign an “in-
determinate” label.

We excluded cases labeled as indeterminate in
the ground truth from the accuracy calculation for
evaluation. Specifically, we removed three free-text
reports and two structured reports. We included all
remaining cases in the final evaluation.

Due to institutional policies and patient privacy
regulations, we are unable to publicly release the
dataset used in this study.

4.2 Experimental Conditions

We conducted experiments using a hy-
brid system composed of a cloud LLM
(gemini-2.5-pro-preview-03-25) and a
local LLM (gemma3:27b-it-gat?). The cloud
model was run with an inference temperature
of 0.8 to encourage diverse and creative prompt
generation. The local model was executed on an
internal GPU server within the hospital network
using the Ollama ° inference framework on
an RTX 6000 Ada GPU (48GB VRAM), with
num_ctx set to 32k, an inference temperature
of 0.2, and structured output mode enabled to
produce consistent, machine-readable JSON
results. Processing the full set of 100 radiology
reports with MedEx took approximately one hour
in total. This was conducted on a single GPU
without parallelization.

We designed three experimental settings to eval-
uate the system:

2https: //0llama.com/library/gemma3:27b-it-qgat
3https://github.com/ollama/ollama
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* Local LLM (Base): The local language
model performed staging based solely on the
report text, without access to external refer-
ences such as the NCCN guideline or specific
prior training on this task.

¢ Local LLM (with Guideline): The same lo-
cal model received the full NCCN guideline
document as additional context during stag-
ing.

e MedEx: The hybrid system decomposed the
staging task into clinical subtasks using the
cloud LLM, which analyzed the guideline and
user input to generate detailed system prompts
for feature extraction (e.g., vascular involve-
ment, distant metastasis). The local LLM then
executed these prompts to extract relevant clin-
ical features from each report. The system
synthesized the extracted features into a final
staging prediction using rule-based logic de-
fined by the cloud LLM based on the NCCN
guideline.

We ran MedEx five times per case and selected
the final prediction via majority voting over the five
outputs. All clinical inference was performed in a
fully isolated, network-disconnected environment.
To ensure data privacy and separation, we manu-
ally transferred the cloud-generated prompts to this
environment in structured JSON format.

4.3 Evaluation Protocol

We evaluated performance as a 4-way classification
task using the NCCN-defined staging categories.
The model was required to assign exactly one of
these labels for each case.

We used accuracy as the primary evaluation met-
ric, measuring the proportion of exact matches be-
tween model predictions and ground truth labels.
For MedEx, we obtained five predictions per case
and selected the final output via majority voting.
Following a conservative assumption, we chose the
label with the higher clinical stage in cases where
a tie occurred.

To validate system performance, we conducted
two types of comparisons. First, we compared
MedEx against a local LLM with no access to exter-
nal domain knowledge to assess baseline capability.
Second, to evaluate clinical plausibility, we com-
pared MedEx’s predictions against those of three
individual board-certified specialists.

5 Results

Condition

Local LLM (Base)

Local LLM (with Guideline)
MedEx (Ours)
Gastroenterologist
Radiologist

Surgeon

Accuracy (Free-text) Accuracy (Structured-text)
48.94% 60.40%
56.59% 77.10%
70.21% 85.42%
59.57% 81.25%
55.32% 79.17%
65.96% 81.25%

Table 1: Accuracy of each system and expert group on
the clinical staging task for both free-text and structured-
text radiology reports.

Condition Kappa (Free-text) Kappa (Structured-text)

MedEx (Ours) 0.596 0.792
Gastroenterologist 0.444 0.735
Radiologist 0.469 0.709
Surgeon 0.571 0.733

Table 2: Cohen’s Kappa scores indicating agreement
with GT clinical staging. Local LLM results are omitted
as inter-rater reliability is not applicable.

This section compares the proposed hybrid sys-
tem, MedEx, against baseline Local LLM settings
and human expert annotations. We assess perfor-
mance using accuracy (Table 1), agreement with
GT labels (Cohen’s Kappa; Table 2), stage-level
prediction consistency (Figure 2), and disagree-
ment analysis between MedEx and expert majority
judgments (Figure 3). We report all results sepa-
rately for free-text and structured-text inputs.

5.1 Performance of Local LLMs and the
Effect of Clinical Context

Table 1 shows the accuracy of two Local LLM
baselines: Local LLM (Base), which uses only
the input report, and Local LLM (with guideline),
which incorporates the complete NCCN guide-
line as additional context. The Base configura-
tion achieved 48.94% in the free-text setting, and
the guideline-augmented model achieved 56.59%.
In contrast, MedEx achieved 70.21%, outperform-
ing the two baselines by 21.3 and 13.6 percentage
points, respectively. We observed a similar pat-
tern for structured-text inputs. MedEx achieved
85.42%, outperforming the baselines by 25.0 and
8.3 percentage points.

The Local LLM failed to perform the necessary
multi-step reasoning, even with access to the com-
plete guideline. Clinical staging requires coordi-
nated inference over interdependent features such
as vascular invasion, organ involvement, and dis-
tant metastasis. End-to-end prompting with un-
structured context did not support such inference
effectively.
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Figure 3: Comparison of MedEx and expert majority
decisions on clinical staging using free-text (left) and
structured (right) radiology reports.

MedEx overcomes this limitation by decompos-
ing the task into subtasks. The cloud LLM iden-
tifies relevant features and generates structured
prompts. The Local LLM extracts the correspond-
ing information, and the system determines the
final stage using rule-based logic derived from the
NCCN guideline. This pipeline enables more accu-
rate and stable predictions than either baseline.

5.2 Comparison with Expert Annotations

Table 1 shows that MedEx consistently out-
performed all expert groups on free-text and
structured-text inputs. In the free-text setting,
expert accuracies ranged from 55.32% (Radiolo-
gist) to 65.96% (Surgeon), while MedEx achieved

70.21%. In the structured-text setting, MedEx
again achieved the highest accuracy at 85.42%.

Table 2 presents the corresponding Cohen’s
Kappa scores with GT labels. MedEx achieved
the highest agreement in both settings (0.596 for
free-text, 0.792 for structured-text), surpassing the
best expert performance (0.571 and 0.733). These
results show that MedEx achieves higher accuracy
and provides more consistent stage assignments
relative to the GT.

5.3 Stage-Level Prediction Consistency

Figure 2 presents confusion matrices for MedEx
and the expert groups. In the free-text setting, ex-
perts frequently confused Stage 2 and Stage 3. The
Radiologist group often misclassified Stage 2 as
Stage 1.

MedEx aligned more closely with GT labels
overall, but showed slightly lower accuracy on re-
sectable cases than the experts. Manual review
revealed that MedEx tended to interpret specula-
tive expressions (e.g., “likely,” “suspicious for”)
as definitive indicators of advanced disease, which
led to overstaging. In contrast, experts treated such
language as inconclusive and assigned more con-
servative stage labels.

In the structured-text setting, MedEx correctly
predicted all Stage 4 cases (19/19) and showed bal-
anced accuracy across all stages. The confusion



matrix exhibited strong diagonal dominance, indi-
cating robust staging consistency.

5.4 Disagreement Analysis Between MedEx
and Expert Majority

To analyze prediction differences in more detail,
we examined cases where MedEx and the expert
majority disagreed (Figure 3).

In the free-text setting, MedEx correctly classi-
fied 10 cases that the expert majority misclassified.
These cases typically included long, complex re-
ports with staging-relevant details often buried in
unrelated content. Our qualitative review of these
cases suggests that MedEx’s structured feature ex-
traction strategy helped isolate staging-relevant in-
formation more effectively. This advantage likely
stems from the cloud LLM’s task decomposition
and targeted prompts for the Local LLM, which
reduced distraction from unrelated content.

In contrast, the majority of experts correctly clas-
sified nine cases that MedEx misclassified. Most of
these involved ambiguous or speculative language.
MedEx interpreted such phrases as definitive, lead-
ing to overstaging. Conversely, experts responded
more cautiously to ambiguity and often selected
lower stages consistent with the GT.

In the structured-text setting, disagreements de-
creased substantially. Only four cases in each off-
diagonal category showed disagreement, suggest-
ing that structured input helped humans and models
interpret staging cues more consistently.

5.5 Effect of Report Format on Performance

All systems and annotators improved when given
structured-text input, although the size of the im-
provement varied. MedEx achieved the most signif-
icant gain (+15.2 percentage points). Expert gains
ranged between 13.6 and 21.7 points. These results
indicate that MedEx leverages structured inputs
effectively and adapts well to formalized clinical
documentation.

5.6 Summary

MedEx outperformed both Local LLMs and do-
main experts across multiple evaluation metrics.
The baseline Local LLMs struggled to apply clini-
cal guidelines effectively, which reflects the limita-
tions of end-to-end prompting for complex reason-
ing. In contrast, MedEx used task decomposition
and rule-based inference to extract relevant features
and predict cancer stages accurately. While MedEx
performed consistently across formats, handling

ambiguity in free-text reports remains an open chal-
lenge.

6 Conclusion

MedEx is a hybrid clinical NLP framework that
combines the reasoning capabilities of cloud LLMs
with the privacy-preserving execution of local mod-
els. Our framework addresses the critical gap be-
tween the limited reasoning capacity of local LLMs
for complex tasks such as cancer staging and the
data governance challenges associated with cloud
LLMs. MedEx decomposes high-level clinical de-
cisions into structured subtasks, which are executed
locally using prompts generated by the cloud LLM,
enabling accurate and interpretable inference under
secure deployment settings.

We demonstrated superior performance to both
local LLM baselines and clinical expert groups on
pancreatic cancer staging. In particular, it showed
strong results in free-text settings, where reports
tend to be long, unstructured, and contain extra-
neous information. MedEx was able to reliably
extract relevant features and apply guideline-based
logic, even in these challenging contexts. While
structured inputs yielded higher absolute accuracy,
the system’s consistent performance on free-text
data underscores its practical utility in real-world
clinical documentation.

The proposed framework shows potential for
broader application to other guideline-based clini-
cal decision-making tasks. Future work will focus
on refining its handling of ambiguous or specula-
tive language, evaluating its applicability in new
clinical domains, and exploring integration with
multimodal clinical data. MedEx offers a practical
and extensible architecture for deploying LLMs in
clinical environments with accuracy, interpretabil-
ity, and privacy in balance.

Limitations

While this study demonstrates the potential of a
hybrid LLM framework for clinical data process-
ing, several important limitations warrant consider-
ation:

Limited Scope and Generalizability. We evalu-
ated the framework on 100 radiology reports from
pancreatic cancer patients at a single institution, fo-
cusing specifically on staging tasks by well-defined
NCCN guidelines. The study covers a single dis-
ease type and clinical context, which limits its
breadth. The framework works best for clinical



tasks with explicit, structured guidelines and may
struggle in domains where guidelines remain am-
biguous or nonexistent. We have yet to verify its
generalizability across other diseases, institutions,
and data formats.

Local LLMs Performance Constraints. Al-
though we decomposed the overall task into smaller
subtasks, local LLMEs still show performance gaps
compared to cloud LLMs when handling complex
narratives. While feature extraction helps mitigate
the issue, some clinical guidelines require higher-
level reasoning, such as understanding temporal
progression, inferential logic, which simple decom-
position cannot effectively capture.

Ground Truth Ambiguity and Input Quality
Issues. Defining a consistent Ground Truth (GT)
for clinical staging is fundamentally challenging,
as some imaging cases remain ambiguous even
among specialists. Different clinicians may inter-
pret the same image differently, especially when
clear diagnostic evidence is lacking. Furthermore,
approximately 20 to 30 percent of the free-text
radiology reports in our dataset did not contain
sufficient supporting detail outside the conclusion
section. While the conclusion often stated the stage
enough to assign a GT, the earlier sections of the re-
port, such as findings and impressions, often lacked
the necessary details. In cases where the report
lacked sufficient information outside the conclu-
sion, determining the stage became difficult, which
limited the reliability of GT construction and model
evaluation.

Operational Infrastructure Challenges. The
hybrid framework depends on interaction between
cloud and local LLMs, but clinical systems often
restrict external network access due to security poli-
cies. Because of these restrictions, users cannot
run cloud-based tasks directly within the clinical
environment. Instead, they must perform tasks
like decomposition and instruction generation ex-
ternally and manually transfer the system prompts
into the internal system (local LLMs). This seg-
mented workflow increases operational burden and
limits seamless integration.

Insufficient Validation of Multi-Round Infer-
ence. To improve consistency in local LLM out-
puts, we applied repeated inference with majority
voting and low temperature settings. However, we
did not perform a systematic validation to deter-
mine the optimal number of repetitions or to assess
output consistency across runs. Future work should
introduce clear metrics to evaluate the effectiveness

and reliability of multi-round inference strategies.

Ethics Statement

This study prioritizes patient privacy by ensuring
that no sensitive clinical data is transmitted to exter-
nal servers. All real data processing is performed in
a fully isolated local environment, while the cloud-
based LLM is used only for meta-level operations
such as task decomposition and prompt generation,
without access to actual patient records.

Nonetheless, several potential risks remain. First,
the system may overinterpret ambiguous or specu-
lative language in free-text reports, which can lead
to overstaging. Second, the evaluation is limited
to a single institution and disease type (pancreatic
cancer), limiting generalizability and introducing
potential bias. Third, practical deployment in clini-
cal settings requires manual prompt transfer due to
institutional network restrictions, increasing opera-
tional burden.

While the system is designed to support expert
decision-making, there remains a risk that it may
be used to make clinical decisions autonomously in
practice. To mitigate this risk, future work should
investigate mechanisms to explicitly require and
structurally integrate expert oversight throughout
the framework, ensuring safe and responsible de-
ployment in real-world clinical environments.
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A  Cloud LLM System Prompt for Task
Decomposition and Prompt Generation

To perform decomposition of a clinical staging task
and generate executable prompts, we used the fol-
lowing system prompts for the cloud LLM:

## Persona ##
You are a "Clinical Guideline-Based Key
Information Extraction AI". Your primary mission
is to conduct in-depth analysis of detailed
guideline documents provided alongside clinical
research objectives or medical-related tasks
presented by users, and to identify and generate
a list of key features, judgment criteria, or
key observational points that must be considered
or evaluated when performing the corresponding
task. Your output will provide the foundational
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information needed for Local LLMs to
subsequently process specific data points.
## Core Goal / Mission / Objective ##
Based on the clinical task description provided
by the user (e.g., disease staging, treatment
response evaluation, risk group classification,
etc.) and related guideline documents, extract
and present a list of major judgment factors
that are explicitly or implicitly presented in
the guidelines for successfully performing the
corresponding task. This list must be
generalizable and robustly derived. At this
current stage, the most important objective is
to clearly generate the list of these key items
itself.
## Key Context / Background ##
User: Medical professionals or medical
researchers.
User Input:
Clinical Task Description: Specific objectives
that the user wants to perform.
Guideline Files: Related clinical guidelines,
protocols, SOPs, etc. (text-based documents).
Additional Requirements and Preferences (
Optional).
Core Challenge: Due to sensitive data security
concerns, Local LLM utilization is necessary,
but Local LLMs have limitations in understanding
complex guidelines as a whole and extracting
key information.
Your Role: As a Cloud LLM, you do not handle
actual sensitive data. Instead, by analyzing
provided guidelines and task descriptions, you
identify and list key items (features/criteria)
that serve as the basis for judgment needed for
Local LLMs to perform subsequent tasks.

## Task / Instructions / Steps ##

1. In-depth Input Analysis:

Understanding the Nature of Task Objectives:

Accurately understand the ultimate purpose (e.g.,
classification, staging, evaluation, criteria
identification, etc.) and scope of the clinical
task the user intends to perform.

Precise Review of Guideline Structure and
Content:

Thoroughly analyze the entire provided guideline
document. Focus particularly on sections
directly related to the task objectives (e.g.,
sections with common titles like "Staging”, "
Classification”, "Diagnosis"”, "Treatment
Algorithm”, "Assessment Criteria”), tables,
figure descriptions, decision tree logic, and
key definitions.
Carefully observe patterns used within
guidelines to list items, explain specific
criteria, or distinguish between states.

2. Identification and Extraction of Key Items:
Based on the guidelines, identify specific
features, variables, conditions, anatomical/
physiological state descriptions, test result
indicators, patient characteristics, or other
observable elements that must be confirmed,
evaluated, or measured to perform the user’s
clinical task.
Prioritize elements that appear consistently and
repeatedly, items presented as clear criteria,
or factors that serve as decision points in the
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decision-making process.

Express extracted items using terms specified in
the guidelines as much as possible, with clear
names that represent the essence of each item.

3. Output Generation (Output Format / Structure):

Your primary deliverable is a clear list of key
judgment items/features necessary for performing
the clinical task presented by the user.

List Format Presentation: Present identified
items in a concise and clear list format. (e.g.,
using bullet points or numbering)
Item Names: Express each item with a name that
best represents its content. The content and
clarity of the list are important.
Focus: At this current stage, the sole objective
is to generate the list itself of what major
items from the guidelines should be considered
to solve the task. Detailed descriptions of each
item, judgment logic, or specific instructions
for Local LLMs are not required at this stage.

Listing 1: System prompt for Task Decomposition

## Persona ##
You are a "Local LLM-Tailored System Message
Architect”. Your core mission is to design and
generate individual system messages with
systematic structure (role_definition,
context_guidance, instructions, output_format)
for each previously identified clinical key
judgment item (feature/criteria), enabling
performance-limited Local LLMs to accurately
understand and evaluate these items based on
actual complex and ambiguous clinical data to
produce structured results. You serve as a guide
to help Local LLMs perform tasks as if
following a detailed manual.
## Core Goal / Mission / Objective ##
For each "key judgment item” given as input,
generate individual system messages that guide
Local LLMs to independently evaluate the
corresponding item and output results in a
specified JSON format.
Each generated system message must clearly
include the following four main components:

role_definition: Defines the role and persona of
the Local LLM.

context_guidance: Provides background knowledge
necessary for judgment, key guideline content,
term definitions, etc.

instructions: Clearly presents specific task

execution procedures, judgment criteria,

ambiguity handling guidelines, etc., step by
step.

output_format: Defines the exact format (
including JSON schema) of the final output that
the Local LLM should generate and descriptions

of each field.

These system messages must be written in great
detail and clarity to overcome the realistic
limitations of Local LLMs (data ambiguity,
multilingual possibilities, limited reasoning
capabilities, single task focus, detailed
explanation requirements, etc.).

## Key Context / Background ##
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Input:

List of Key Judgment Items (List of Features/
Subtasks): A list of key features or judgment
criteria necessary for clinical task performance,
generated in previous steps.

Original Clinical Guideline: Used to extract
information necessary for constructing
context_guidance and instructions of each system
message.

Original Clinical Task Description: Utilized for
understanding the context of the overall task.

Target: Performance-limited Local LLMs.
Challenge: For each key judgment item, enable
Local LLMs to examine actual clinical data (free-
text), make judgments following the guidance of
structured system messages you generate, and
output results in specified JSON format.
## Task / Instructions / Steps ##
You must generate individual system messages for
Local LLMs for each item in the "List of Key
Judgment Items" given as input, following the
guidelines below. Each system message must
adhere to the role_definition, context_guidance,
instructions, output_format structure specified
below.
1. Generate role_definition (Define Local LLM’s
Role):

Assign a clear role to the Local LLM related to
the specific judgment item currently being
performed.

The role should be concise and easy to
understand, allowing the Local LLM to
immediately recognize what it needs to do.
Example thought process (not included in actual
output): "You are a clinical record analyst for
[key judgment item name]. Your mission is to
find information related to [key judgment item
name] in given clinical records and evaluate it
according to clear criteria.”

2. Generate context_guidance (Background
Information and Guideline Summary):

Provide essential background information needed
for the Local LLM to understand and evaluate the
current judgment item.

This may include the following content:

Clear and concise definition of the key judgment
item (feature) currently being evaluated. (
Extract or summarize from original guideline if
necessary)
Brief explanation of the importance or meaning
of the item within the overall clinical task (
minimal information to help Local LLM
understanding) .
Easy explanations or definitions of key terms
needed for judgment.
Summary of the most essential content (rules,
criteria, etc.) directly related to the item
from the original guideline. (Enable Local LLM
to make judgments based on this section alone
without reading the entire guideline)
General cautionary note that data may be written
in various languages and mention of efforts to
understand meaning regardless of specific
language limitations.




3. Generate instructions (Specific Task
Instructions):

Clearly and thoroughly describe step-by-step
guidelines that the Local LLM should follow to
evaluate the corresponding key judgment item.
Each step should be executable and unambiguous.
Main content that should be included:

Information Search Guidelines: Specific guidance
on what kind of information, keywords, phrases,
or contexts to look for in clinical records.

Clear Judgment Criteria: Clearly present

judgment criteria for the item specified in

guidelines (e.g., specific conditions, numerical
values, state descriptions, etc.) in a way that
Local LLMs can easily understand.

Provide "Possible Output Values List”:

You (Cloud LLM) must define a list of possible
values that Local LLMs can select as final
values for each key judgment item, based on

guidelines. (e.g., [’Present’, ’Not Present’, ’
Insufficient Evidence’], [’Criteria Met’, ’
Criteria Not Met’, ’No Information’], etc.).

This list should be explicitly included in
instructions to guide Local LLMs to select only
from these options.

Ambiguity and Uncertainty Handling Guidelines:

Specific scenario-based guidelines on how Local
LLMs should judge and record when clinical
record content is unclear, ambiguous, or
conflicting.

Guide on how to handle cases with insufficient
information or only inferential/hypothetical
content.

Guidance on what information should be left in
the reasoning field when judgment is difficult.

Induce Reasoning Process Recording: Instruct to
record not only the final judgment (value) but
also the detailed process (reasoning) that led
to that judgment. You can ask in ways like "
Please explain in detail why you thought that
way."

4. Generate output_format (Define Output Format):

Specify the exact JSON format of the final
output that the Local LLM should generate.

The JSON object must include three keys: name,
reasoning, and value.

Provide detailed descriptions of each key so
that Local LLMs clearly know what content to
fill in each field.

name: (string) The exact name of the key
judgment item currently being evaluated. (Should
be identical to the input item name used when
generating this system message)

reasoning: (string) Detailed reasoning process
that led to the judgment, clinical record
content that served as evidence, applied
judgment criteria, ambiguity handling methods,
and logical explanation of why the current value
was chosen over other possible values. This
section is very important for users to

understand and trust the Local LLM’s judgment
process, so it should be written as detailed and
transparent as possible.

value: (string or appropriate data type) Final
judgment result that must be one of the "
Determine the Value” provided in instructions.

Listing 2: System prompt for prompt generation
(subtask - local LLM)

The above system prompts were executed using
the Google GenAl Python API, with the following
settings:

* Model: gemini-2.5-pro-preview-03-25

* Temperature: 0.8

Safety Settings: All safety filters were dis-
abled (e.g., HARM_CATEGORY_HATE _SPEECH =
Of f for all categories)

* Other Parameters: All other options were
set to default values provided by the SDK

* Interface: Google GenAl Python API
(v1.9.0)

The clinical guidelines used for task decompo-
sition and prompt generation (e.g., NCCN) were
provided in their original PDF format. These doc-
uments were uploaded directly to the cloud LLM
interface without manual conversion. The follow-
ing code snippet shows how guideline files were
passed to the model via the API:

from google import genai
from google.genai import types

client = genai.Client(
api_key=os.environ.get("GEMINI_API_KEY"),

)

client.files.upload(file="NCCN_guidelines.pdf")
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Listing 3: Uploading a guideline PDF via Google
GenAl Python SDK

B Cloud-Generated Prompt for Local
LLM Inference

Based on the system prompts and input guidelines
described in Section A, the cloud LLM generated
structured system messages for each key judgment
item identified during task decomposition.

The following example presents an actual
system message generated to guide a Lo-
cal LLM in evaluating one such item from
real clinical data. Each message follows a



standardized format consisting of four compo-
nents: role_definition, context_guidance,
instructions, and output_format.

<ROLE_DEFINITION>
You are an expert radiology report analyst
specializing in pancreatic cancer staging. Your
task is to meticulously examine the provided CT
radiology report (which will be given in the
user’s message) and extract specific information
regarding the relationship between the tumor
and the *xCeliac Axis (CA)x*x, sometimes referred
to as the Celiac Trunk. You must act as if you
are explaining your findings and reasoning to
someone with no medical background but who needs
to understand the clinical significance of this
vascular involvement for staging.
</ROLE_DEFINITION>

<CONTEXT_GUIDANCE>

The CT radiology report you will analyze may be
in English or Korean. It can contain various
levels of detail, sometimes using ambiguous,
inferential, or cautious language (e.g., "
suggestive of”, "concerning for"”, "cannot
exclude”, "appears to abut”, "interface unclear
"). Radiologists may use different synonyms or
descriptive phrases for the same finding. Your
analysis should be robust to these variations.
The report might not always directly state the
degree of contact in numerical terms (e.g., 180
degrees); you may need to infer this from
descriptive terms like "abutment" versus
encasement.”

</CONTEXT_GUIDANCE>

"

<INSTRUCTIONS>

1. *xAnalyze User-Provided Report:*x Carefully
read the CT radiology report provided in the
user’s message to find any description of the
tumor (often referred to as ’mass’, ’lesion’,
neoplasm’, ’cancer’, ’adenocarcinoma’) in
relation to the Celiac Axis (CA).

’

2. x*Assess Degree of Contact and Invasion:xx

* xxPriority for "No Contact”:xx If the
report explicitly states that the CA is "
separate from the mass,” "well clear of,” or
that a "clear fat plane is maintained” between
the tumor and the CA, this should be prioritized
as ‘no_contact‘, EVEN IF later parts of the
report mention "mild displacement due to mass
effect” or "unclear interface” without
definitive signs of direct tumor infiltration or
adhesion. "Mild displacement” alone, without
loss of fat plane or direct abutment, does not
constitute "contact” for this feature.

* xxContact <=180 degrees:**x If there is
direct tumor abutment or contact described
involving *xless than or equal to 180 degreesx*
of the CA’s circumference (e.g., "abutment,” "
contact,” "less than half involvement,"” "focal
contact”). "Unclear interface” or "loss of fat
plane” over a limited area, without encasement,
would fall into this category.

* **xContact >180 degrees:*x If the tumor is
described as "encasing,” "invading," involving "
more than half the circumference,” or showing "
circumferential involvement” of the CA. This is
a critical distinction for staging.
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3. **Interpret Ambiguity:xx*

* If "contact” is mentioned without
specifying the degree, and there are no
descriptors like "encasement,” assess if other
contextual clues (e.g., "focal,” "short segment
") suggest limited contact (<=180 degrees). If
still ambiguous, consider it ¢
not_mentioned_or_unclear® for the degree, but
explain the presence of contact in reasoning.

* If cautious language like "possible
abutment,” or "suspicious for encasement” is
used, reflect this uncertainty in your reasoning.

If "suspicious for encasement” is the strongest
finding, lean towards *
contact_greater_than_180_degrees‘ but clearly
state the suspicion in reasoning.

4. x*Determine the Value:x* Based on your
analysis, select ONE of the following values:

* ‘no_contact*

* ‘contact_less_than_or_equal_to_180_degrees*

* ‘contact_greater_than_180_degrees*

* ‘not_mentioned_or_unclear‘ (Use this if the

relationship is truly impossible to determine,

e.g., due to severe artifact, or if contact is
mentioned but degree cannot be inferred at all).

5. x*Provide Reasoning:** Explain step-by-step
how you arrived at your ‘value‘. Quote relevant
phrases from the user-provided report. Explain
your interpretation of any ambiguous terms, any
prioritization of information (as per
instruction 2.1), and how it relates to the
clinical significance (e.g., "Although the
report mentions ’'mild displacement’ and ’unclear
interface’, it also clearly states ’a clear fat
plane is maintained’ and ’direct invasion is
not seen’. Prioritizing the direct assessment of
fat plane and invasion, this is classified as
no_contact.").

6. xxFormat Output:** Provide your response
strictly in the JSON format specified below.

**Keywords and Concepts to Consider (English

examples; consider Korean equivalents):*xx*

* Anatomical terms: "Celiac axis,” "CA," "celiac
trunk.”

* Contact descriptors: "contact, abutment,
abutting,” "adjacent to,” "touching,” "loss of
fat plane,” "effacement of fat plane.”

* Displacement: "displacement due to mass effect
" (note if fat plane is still present).
* Involvement descriptors: "encasement,

"o

"o "o

n on

nons nons

encasing, invasion,” "invading, involvement
," "involving, circumferential.”

* Degree of contact: "less than 180 degrees,”
"<=180 degrees,"” "less than half circumference,"”
"not circumferential,” "focal”; "more than 180

degrees,” ">180 degrees, greater than half
circumference,"” "circumferential.”

* Absence of contact: "no involvement, clear
of,"” "separate from,” "no definite vascular
involvement,” "fat plane preserved.”

* Clinical significance: Contact >180 degrees

with the CA is a key factor for defining locally
advanced pancreatic cancer. Limited contact
might be borderline.

</INSTRUCTIONS>

n on

non

non




<OUTPUT_FORMAT>
{
"name”: "Celiac Axis (CA) Contact”,
"reasoning”: "Detailed step-by-step reasoning,
including quoted text from the report (and its
interpretation if originally in Korean or
ambiguous). Explain how the degree of contact
was determined and its clinical implication for
staging (e.g., if it suggests resectable,
borderline, or locally advanced disease based on
this specific finding).",
"value": "YOUR_SELECTED_VALUE_HERE"

3
</OUTPUT_FORMAT>

Listing 4: Example system message for Local LLM
(Celiac Axis involvement)

C Synthetic Test Case Generation for
Prompt Validation

To validate the quality and interpretability of each
subtask-specific system message before applying it
to real clinical data, we first generated synthetic test
cases using the cloud LLM. These test cases were
produced without any access to real patient data,
relying solely on the original guideline content and
the definitions of key judgment items. Each case
consisted of a fabricated but clinically plausible
free-text report snippet, paired with an expected
structured output label.

## Persona ##
You are an "Expert in Generating High-Realism
Multilingual Synthetic Clinical Data with Ground
Truth Labels”. Your core mission is to generate
highly realistic synthetic clinical data (free-
text) based on previously created system
messages for specific "key judgment features/
criteria” for Local LLMs, which can be used to
evaluate and validate these features by Local
LLMs. Additionally, you must provide clear "
ground truth values” for each synthetic data you
generate for the corresponding "key judgment
feature”. You must skillfully mimic the

complexity, ambiguity, multilingual usage, and
inferential expressions that could be
encountered in real clinical settings, to
effectively test the performance of Local LLMs

and measure their accuracy.
## Core Goals (Goal / Mission / Objective) ##
Based on the input of a specific "key judgment
feature” and a "system message for Local LLM"
designed to evaluate this feature, generate
synthetic clinical data (free-text) that
contains sufficient and appropriate information
to evaluate this feature, along with the "ground
truth value” for that feature in the data.
The synthetic clinical data must satisfy all of
the following characteristics:

Relevance: Should contain content directly
related to the "key judgment feature” being
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evaluated, and should be structured so that the

guidelines in the system message for Local LLM
can be tested.

Free-text format: Should be unstructured,
natural narrative text.

Multilingual mix: Should naturally mix the user’
s primary language with English.

Realistic ambiguity and vagueness: Should
include incomplete information, ambiguous

expressions, or parts that allow multiple
interpretations, similar to real clinical
records.

Include assumptions and inferential language:

Appropriately use non-definitive expressions.

No conclusion: Should not include explicit final
conclusions in the data.

Mimic real clinical data: Style, vocabulary, and
information organization should closely follow

actual medical records.

Provide simple Plain Text: Generated data should
be provided in pure text form without any

markup or special formatting.

Ground Truth Value:

For each synthetic data generated, you must
specify the correct answer for the "key judgment
feature"” being evaluated.

This ground truth value must be one of the
Possible Output Values” listed in the
instructions part of the system message for
Local LLM.

The information in the synthetic data should
support this ground truth value, or at least be
structured so that this answer can be inferred.

n

## Main Context (Context / Background) ##

Input:

Target Feature/Subtask: The specific clinical
judgment feature that the synthetic data should
focus on.

System Instruction for Local LLM for that
feature: The role definition, context,
guidelines, output format, and especially the
list of "Determine the Value” in this system
message should be fundamentally considered when
generating synthetic data and ground truth
values.

(Optional) Information about the user’s primary
language.

(Optional) Original clinical guidelines and task
description.

Purpose: To quantitatively validate how
accurately Local LLMs evaluate the "key judgment
feature” and derive results through the given
system message, using the generated synthetic

data and ground truth values.

## Tasks and Guidelines (Task / Instructions /
Steps) ##
Based on the "Target Feature” and "System
Message for Local LLM" provided as input, you
must generate synthetic clinical data and ground
truth values according to the following
guidelines. The output should be provided in a
format that clearly distinguishes between these
two pieces of information, for example (this is
an example and you don’t necessarily need to
follow this exact format, but the two pieces of




information should be clearly identifiable):
Synthetic Data: (Here goes the generated
multilingual free-text clinical data. This can
be multiple lines of text.)

Ground Truth Value: (Here goes the ground truth
value for the key judgment feature for this data.
It must be one of the "Possible Output Values"

defined in the system message for Local LLM.)

1. Determine Ground Truth Value and Conceive

Scenario:

First, decide which ground truth value to target
for the "key judgment feature”. This value must
be one of the "Possible Output Values" defined

in the system message for Local LLM.

Conceive a clinical scenario that can support

the determined ground truth value. Include clear
clues that lead to this answer, or deliberately
ambiguous but ultimately interpretable clues

that lead to this answer.

Consider generating data for various ground

truth values (e.g., positive, negative, specific
categories, unclear, etc.) to increase test

coverage.

2. Write Synthetic Clinical Data (Free-text):
Reflect target ground truth value: Naturally
include sufficient evidence or implications in
the text that can be judged as the ground truth
value decided in step 1. Write with the judgment
criteria in the Local LLM system message in
mind.
Follow the same guidelines as in the previous
system message regarding natural narrative,
multilingual mixing, injection of ambiguity and
uncertainty, use of assumptive/inferential
expressions, avoidance of conclusive expressions,
mimicking real clinical data formats, etc.
Test Local LLM System Message: Structure the
content so that the synthetic data can actually
test the information exploration guidelines,
judgment criteria, ambiguity handling guidelines,
etc. described in the system message for Local
LLM.

3. Comply with Output Format:

The generated "synthetic data” must be simple
Plain Text.

The "ground truth value"” must exactly match one
of the "Possible Output Values" specified in the
system message for Local LLM.

Provide both pieces of information ("synthetic
data” and "ground truth value"”) together,
clearly distinguishing between them.

Listing 5: Example system message for synthetic test
case generation

Below are synthetic test cases generated for the
Celiac Axis (CA) involvement subtask. All content
has been translated into English.

*%* Test Case 1 %%

Report: The patient presented with RUQ pain. CT
abdomen with contrast was performed, revealing
an approximately 5.5 x 4.8 cm ill-defined,
heterogeneously enhancing mass extending from
the pancreas head to the body transition area.
This mass is located about @.5cm away from the
celiac axis origin, and a clear fat plane is

maintained, suggesting no direct invasion.
However, mild displacement of the proximal
portion of the celiac trunk due to mass effect
is suspected, and in some short segments, the
interface between the tumor and vessel is
somewhat unclear, making it difficult to
completely rule out the possibility of
microscopic involvement. SMA and SMV are
patients. No definite liver metastasis.
Answer: no_contact

** Test Case 2 %%
Report: Pancreatic body with a large necrotic
mass, measuring up to 7cm in longest diameter.
The tumor completely encases the celiac axis 360
degrees, which appears to cause general
narrowing of the celiac artery caliber.
Additionally, tumor involvement clearly extends
to the common hepatic artery origin. Adjacent
peripancreatic fat stranding and multiple
enlarged lymph nodes are noted. Conclusion:
Locally advanced pancreatic cancer with celiac
axis encasement.
Answer: contact_greater_than_180_degrees

** Test Case 3 *%

Report: [Findings] A 3.5 cm ill-defined low-
attenuation mass is seen in the pancreatic head.
There is associated upstream dilation of the
main pancreatic duct. The Celiac Axis (CA)
origin appears patent. A clear fat plane is
maintained between the mass and the CA. The CA
itself does not show evidence of stenosis or
direct tumor infiltration. There is mild
superior displacement of the CA due to the
pancreatic head mass, but no direct invasion is
observed. The interface with the CA is somewhat
obscured in a small segment on axial images,
possibly due to volume averaging, but coronal
reconstructions confirm the presence of
intervening fat. No definitive abutment or
encasement.

Answer: no_contact

** Test Case 4 *x
Report: Low-attenuation mass in the pancreatic
head, approximately 3cm in size. The celiac
artery appears to be in contact with the mass
for about 120 degrees at its origin, but no
clear thickening of the vessel wall or narrowing
of the lumen is observed. However, the fat
layer between the mass and the artery appears
partially lost, which could be due to
inflammatory changes or may be considered as a
possible early stage of microscopic tumor
invasion. Based on the current imaging alone, it
is difficult to definitively conclude ’definite
invasion’, but describing it as ’abutment
beyond simple contact’ seems appropriate.
Additional EUS evaluation could be helpful.
Answer:
contact_less_than_or_equal_to_180_degrees
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Listing 6: Example synthetic test case for celiac axis
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Figure 4: Distribution of staging labels across evaluators for free-text (left) and structured-text (right) reports. (1:
Resectable, 2: Borderline Resectable, 3: Locally Advanced, 4: Metastasis)

D Description of Real Clinical Data Used
in Experiments

While we are unable to share the original clinical
documents used in the experiments due to privacy
constraints, we provide representative examples of
the input data after applying additional anonymiza-
tion, partial content reordering, and translation
from multilingual originals into English. Specific
clinical details such as exact sizes, anatomical lo-
cations, and dates have been masked using generic
placeholders (e.g., (size), (location)). These
examples are sufficiently obfuscated to prevent re-
construction of the source documents, while still
reflecting the style and complexity of the actual
inputs used in the experiments.

** Report 1 %%

[Finding] (date) CT examination. Current status
shows (type) drainage catheter in place.
Intrahepatic ducts in (location) demonstrate (

degree) dilation, with concurrent (structure)

dilatation.

The dilated (structure) appears to be encased

and obstructed by a hypodense mass of

approximately (size) involving the (location).

This hypodense lesion involves the (specific
location) with (degree) infiltration (direction),
but shows no evidence of (structure) invasion,

and no encasement of the (vessels), suggesting
features of a potentially resectable (type)

malignancy despite its dimensions.

Multiple (size) lymph nodes are visible
surrounding this mass, with a notable lymph node
of approximately (size) adjacent to the (vessel
).

Regional (finding) cannot be excluded.

No definitive evidence of (location) metastases,
unremarkable bilateral (organs), and small (
finding) noted bilaterally.

No significantly enlarged (location) lymph nodes
identified.

Subtle (location) changes observed, though

clinical significance remains (assessment).
Examination captured bilateral (structures) with
(type) formations measuring approximately (size
) on the (side) and (size) on the (side).
(Specialty) consultation recommended for
comprehensive assessment of these (location)
findings.
Normal (organ) dimensions. No significant
abnormalities in the visualized (location).
Mild (organ) wall thickening noted, possibly
representing (type) changes.

*% Report 2 *x%

[Finding] C.I: (type) cancer. A benign-appearing
focal lesion in the (location) lung is presumed
to be nonspecific atelectasis and does not

appear clinically significant.

No definitive evidence of distant metastasis.

A relatively (characteristic) focal lesion is

present in the (organ), with the central area

appearing (finding) or showing reduced (
characteristic).

These findings are compatible with both (type)

and (type) tumors.

Adjacent to the main mass in the (specific

anatomical location), there are at least (number

) suspicious nodules which are presumed to be

metastases to surrounding lymph nodes.

No clear evidence of distant metastasis.

Diffuse (structure) distension is present (due

to obstruction by the tumor) with dilation of

the (structure).

No evidence of distant metastasis.

The medial margin of the lesion is in close

proximity to the (vessel), however the

possibility of direct invasion appears low.
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Listing 7: Example free-text radiology report for
experiments

In addition to free-text narratives, a subset of the
clinical reports used in our experiments followed
a structured template format. The structure shown
below reflects the original reporting form used in
those cases. For clarity, we reproduce the field lay-




out exactly as it was defined in the source template,
without modification, translation, or anonymiza-
tion, as no patient-identifiable information is in-
cluded.

1. Metastasis

1-1. Hepatic metastasis (-/equivocal/+):

1-2. Peritoneal metastasis (-/equivocal/+):

1-3. Distant lymph node metastasis (location, -/

equivocal/+):

1-4. Ascites (-/small/moderate/large):

1-5. Other site:

2. Circumferential margin evaluation

2-1. SMA margin (not involved [distance from the
tumor >1.0 mm /involved):

2-1-1. Distance and degree of the tumor to the

presumptive SMA margin:

2-2. SMV/PV margin margin (not involved [

distance from the tumor >1.0 mm /involved):
2-2-1. Distance and degree of the tumor to the

presumptive SMV/PV margin:

2-3. Posterior margin margin (not involved [

distance from the tumor >1.0 mm /involved):
2-3-1. Distance of the tumor to the presumptive

posterior margin:

2-4. Anterior surface (within normal pancreatic

parenchyma/ beyond):

2-4-1. Depth of invasion beyond the normal

anterior surface of the pancreas:

2-4-2. Invasion to the adjacent organ: (-/

equivocal/+, organ):

3. Other important vascular evaluation

3-1. Common hepatic artery (not involved [

distance from the tumor >0 mm] /involved):
3-1-1. Degree of tumor encasement (-/<=180/>180):

-2. Length of tumor invasion:
-3. Extension to celiac axis
-4. Extension to bifurcation
quivocal/+):

3-1-5. Extension to bifurcation
arteries (-/equivocal/+):

3-2. Celiac axis (not involved [distance from
the tumor >@ mm] /involved):

3-2-1. Degree of tumor encasement (-/<=180/>180):

3-1
3-1 (-/equivocal/+):
3-1 of GDA (-/

e

of hepatic

3-3. Variant arteries (replaced RHA, replaced

CHA, accessory RHA, or others):

3-3-1. Degree tumor encasement (-/<=180/>180):
3-3-2. Length of tumor invasion:

4. Regional LN ( 5, 6, 8a, 8p, 12a, 12b, 12p, 13,
14v, 14a)

4-1. The number of LN which has one of the
following criteria:

4-2. LN location:

5. Morphologic evaluation

5-1. CT attenuation (hypo-, iso-, or hyper):
5-2. Size (maximal axial dimension):

5-3. Location (uncinate/head/body/tail):

5-4. Pancreatic duct (normal, narrowing, or

abrupt cut-off):

5-4-1. Upstream pancreatic ductal dilatation (-/

equivocal/+):

5-5. Biliary tree (normal, narrowing, or abrupt

cut-off):

5-5-1. Upstream biliary tree dilatation (-/

equivocal/+):

5-6. Invasion to adjacent organ (organ, -/

equivocal/+):

6. Other ancillary findings:

Listing 8: Example structured radiology report for
experiments

We visualize the number of cases assigned to
each clinical stage (1-4 and indeterminate) by the
ground truth, three board-certified specialists (gas-
troenterology, surgery, radiology), and the MedEx.
(Figure 4) The left panel shows results on free-
text reports, while the right panel shows results on
structured-text inputs.

E Prompts Used in Local LLM Baselines

We used the following system prompts for both
local LLM baseline settings:

You are a medical assistant specialized in
oncology staging. Your task is to analyze CT
scan reports for patients and determine their
clinical staging according to NCCN guidelines
for pancreatic cancer.

For each CT report provided, you must:

1. Carefully read and understand the entire CT
report

2. Identify key findings related to the tumor,
vessels, lymph nodes, and potential metastases
3. Apply NCCN guidelines to determine the
clinical staging

4. Classify the patient into one of these
categories: Resectable, Borderline Resectable,
Locally Advanced, or Metastatic

5. Provide clear reasoning for your
determination

Your response must be in JSON format:
{
"reason”: "Detailed explanation of your
reasoning process, including specific findings
from the CT report that support your conclusion
and how these align with NCCN guidelines”,
"answer”: "One of: Resectable, Borderline
Resectable, Locally Advanced, Metastatic”

3

Ensure your reasoning is medically sound and
directly references relevant portions of the CT
report. Be thorough but concise in your
explanation.
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Listing 9: System prompts for local LLM baselines

This prompt was used in both local baseline set-
tings, with the following input configurations:

* Local LLM (Base): The model received only
the CT report body as user input. It had no
access to external references or staging crite-
ria beyond what is implicitly encoded in the
model.

* Local LLM (with Guideline): In addition
to the CT report, the full text of the NCCN




guideline for pancreatic cancer was appended
to the input.

In both cases, the model was instructed to output
structured results in JSON format with explicit rea-
soning. The purpose of this setup was to assess the
local model’s baseline capability in the absence and
presence of structured clinical knowledge, prior to
any task decomposition or hybrid orchestration.
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