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Abstract001

Deploying large language models (LLMs) in002
clinical settings faces critical trade-offs: cloud003
LLMs, with their extensive parameters and su-004
perior performance, pose risks to sensitive clin-005
ical data privacy, while local LLMs preserve006
privacy but often fail at complex clinical in-007
terpretation tasks. We propose MedEx, a hy-008
brid framework where a cloud LLM decom-009
poses complex clinical tasks into manageable010
subtasks and prompt generation, while a lo-011
cal LLM executes these subtasks in a privacy-012
preserving manner. Without accessing clinical013
data, the cloud LLM generates and validates014
subtask prompts using clinical guidelines and015
synthetic test cases. The local LLM executes016
subtasks locally and synthesizes outputs gen-017
erated by the cloud LLM. We evaluate MedEx018
on pancreatic cancer staging using 100 radiol-019
ogy reports under NCCN guidelines. On free-020
text reports, MedEx achieves 70.21% accuracy,021
outperforming local model baselines (without022
guideline: 48.94%, with guideline: 56.59%)023
and board-certified clinicians (gastroenterol-024
ogists: 59.57%, surgeons: 65.96%, radiolo-025
gists: 55.32%). On structured reports, MedEx026
reaches 85.42% accuracy, showing clear supe-027
riority across all settings.028

1 Introduction029

Free-text clinical reports, particularly those pro-030

duced in radiology and pathology, play a central031

role in clinical decision-making. These unstruc-032

tured reports contain rich and complex clinical in-033

formation that supports patient diagnosis, cancer034

staging, treatment planning, and overall care man-035

agement (Raghavan et al., 2014). Furthermore, the036

composition of these reports is often influenced037

by established clinical protocols and standardized038

guidelines, which help ensure consistency and med-039

ical accuracy.040

While free-text clinical reports contain vast041

amounts of valuable clinical information, their un-042

structured language patterns and diverse expres- 043

sions often make it challenging to quickly identify 044

or extract the necessary information in actual clin- 045

ical settings (Sedlakova et al., 2023). This limita- 046

tion can hinder clinical efficiency and consistency, 047

which has led to the growing adoption of Natu- 048

ral Language Processing (NLP) technologies as a 049

complementary solution. 050

Conventional NLP methods, including rule- 051

based systems and various machine learning al- 052

gorithms such as SVM, CRF, and Random Forest, 053

have been applied to extract clinical information 054

from free-text radiology reports (Nobel et al., 2024; 055

Kumbhakarna et al., 2020). However, their perfor- 056

mance remains limited by institutional differences 057

in documentation styles and challenges in han- 058

dling uncertainty and implicit language, suggest- 059

ing the need for more context-aware approaches. 060

In addition, these methods often require task and 061

data-specific training and manual feature engineer- 062

ing, which limits their scalability and adaptability 063

across different clinical use cases. 064

In light of these limitations, recent advances in 065

large language models (LLMs) have drawn atten- 066

tion for their ability to overcome many of the chal- 067

lenges faced by conventional NLP methods. Un- 068

like earlier approaches, LLMs are pretrained on 069

massive text corpora and demonstrate strong ca- 070

pabilities in understanding context, handling un- 071

certainty, and generalizing across diverse clinical 072

tasks with minimal task-specific adaptation (Man- 073

athunga and Hettigoda, 2023; Yang et al., 2025). 074

These strengths make them particularly well-suited 075

for processing complex and variable free-text radi- 076

ology reports, especially when aligned with estab- 077

lished clinical guidelines. 078

Many state-of-the-art cloud LLMs (e.g., GPT-4o 079

(OpenAI et al., 2024), Gemini 2.5 Pro (DeepMind, 080

2025)) available through commercial cloud plat- 081

forms are characterized by extremely large param- 082

eter sizes and extended context windows. These 083
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Figure 1: Overview of the MedEx framework. The system operates in two phases: (1) cloud-based prompt
generation & validation, where a cloud LLM decomposes the user-defined clinical task into subtasks, generates draft
prompts, and validates them using synthetic test cases; and (2) privacy-preserving inference & outcome synthesis,
where a local LLM applies the refined prompts to real clinical data to extract subtask outputs, which are then
synthesized into a final outcome.

features allow them to process complex clinical084

narratives more effectively. Several studies have085

shown strong performance in tasks such as extract-086

ing decision-critical information, structuring free-087

text reports, and supporting evidence-based clini-088

cal reasoning (Reichenpfader et al., 2023; Vrdol-089

jak et al., 2025; Wu et al., 2024). Despite these090

strengths, cloud LLMs are rarely used in real-world091

clinical settings. The main reason is patient privacy.092

Sending sensitive clinical data to external servers093

is often restricted by institutional polices and legal094

regulations (Marks and Haupt, 2023).095

To address privacy concerns, research has096

emerged exploring the use of local LLMs (e.g.,097

Llama (MetaAI, 2024), Gemma (Google, 2025))098

in clinical environments (Vaid et al., 2024; Wiest099

et al., 2024). While some of these local LLMs100

have large parameter counts, their practical deploy-101

ment in clinical settings is often limited by hard-102

ware constraints and high implementation costs.103

Consequently, smaller models are typically em-104

ployed, which may result in performance degra-105

dation in complex clinical tasks that require so-106

phisticated contextual understanding and precision107

(Wang et al., 2024).108

To address such performance degradation, re-109

searchers have explored various techniques, in-110

cluding fine-tuning (Hou et al., 2025), retrieval-111

augmented generation (RAG) (Ke et al., 2025), and112

various prompt engineering strategies (Maharjan113

et al., 2024). However, the application of these114

methods in clinical settings remains limited. Ob-115

taining high-quality clinical data and annotations116

is challenging, and even minor changes often re-117

quire re-running the entire process, making these 118

approaches burdensome and difficult to apply in 119

real-world clinical settings (Dennstädt et al., 2025). 120

In response to the inherent limitations of cloud 121

and local LLMs, we propose MedEx, a hybrid 122

cloud-local LLM framework. MedEx combines 123

the strengths of both cloud and local LLMs. The 124

cloud LLM handles complex language tasks that 125

require high performance and long-context process- 126

ing, and the local LLM ensures privacy-preserving 127

inference by keeping sensitive clinical data on-site. 128

This hybrid structure allows tasks to be divided 129

based on data sensitivity and computational needs. 130

An overview of the MedEx framework is shown in 131

Figure 1. 132

In MedEx, the cloud LLM acts as a meta- 133

orchestrator. Upon receiving the clinical task def- 134

inition, relevant guidelines, and user needs, the 135

cloud LLM decomposes the overall task into a set 136

of manageable subtasks that can be handled by the 137

local LLM. It then generates corresponding draft 138

prompts for each subtask, along with synthetic test 139

cases to support prompt validation. Furthermore, 140

the cloud LLM defines the outcome logic, the rules 141

for aggregating the outputs from individual sub- 142

tasks to produce the final clinical outcome. This 143

process leverages the cloud LLM’s strong perfor- 144

mance and contextual reasoning capabilities while 145

avoiding exposure of any sensitive clinical data at 146

this stage. 147

The local LLM in MedEx serves as the primary 148

inference engine for handling sensitive clinical data. 149

It begins by using the subtasks, draft prompts, and 150

synthetic test cases generated by the cloud LLM 151

2



to produce a validation output, which includes pre-152

dicted answers and reasoning traces. This output is153

sent back to the cloud LLM, which compares the154

results against expected outcomes and, if necessary,155

refines the prompts to produce an improved version.156

Once validation is complete, the local LLM uses157

the refined prompts to make inferences on actual158

clinical data. Each subtask generates output and159

then applies the outcome logic, originally defined160

by the cloud LLM, to integrate the subtask results161

and derive the final clinical outcome.162

To evaluate its applicability in real clinical set-163

tings, MedEx was applied to clinical staging tasks164

using 100 radiology reports (50 free-text and 50165

structured format) from pancreatic cancer patients166

based on the NCCN clinical guideline 1. Perfor-167

mance was compared against a local LLM baseline168

(with and without clinical guidelines) as well as169

three board-certified gastroenterology, surgery, and170

radiology specialists. MedEx achieved superior ac-171

curacy across all comparisons, demonstrating its172

suitability for clinical guideline-based interpreta-173

tion of free-text reports while protecting sensitive174

clinical data.175

2 Related Work176

2.1 LLMs for Guideline-Driven177

Interpretation of Radiology Reports178

Recent efforts have actively explored the use of179

LLMs to interpret clinical free-text, such as radiol-180

ogy reports, according to clinical guidelines. For181

example, studies based on models like GPT-4, Med-182

PaLM, and Llama have demonstrated the utility of183

LLMs in tasks such as staging estimation from radi-184

ology reports, summarizing key findings, and struc-185

turing lesion information (Gu et al., 2024; Zhou186

et al., 2024; Hartsock et al., 2025). Notably, recent187

research has introduced prompt design strategies188

and evaluation methods that incorporate standard-189

ized clinical guidelines such as NCCN or BI-RADS190

into model responses (Kim et al., 2025; Cozzi et al.,191

2024). However, most approaches rely on single192

LLM systems, and when using cloud LLMs, sen-193

sitive clinical data must be transmitted externally,194

making it difficult to ensure privacy. Conversely,195

when using local LLMs, additional methods such196

as fine-tuning (Chen et al., 2024) or RAG (Arasteh197

et al., 2024) are required, resulting in task- or data-198

specific approaches that are difficult to deploy in199

1https://www.nccn.org/guidelines/
guidelines-detail?category=1&id=1455

real-world environments. 200

2.2 Planner–Executor Orchestration with 201

LLMs 202

Several works in general NLP have proposed or- 203

chestration frameworks in which a planner LLM 204

decomposes tasks and delegates subtasks to smaller 205

models or external tools (Schick et al., 2023; Khot 206

et al., 2023). This architecture improves modu- 207

larity and supports data protection by separating 208

sensitive data from the planner, which is especially 209

important in clinical NLP governed by regulations 210

like HIPAA and GDPR. 211

However, adoption in clinical NLP remains lim- 212

ited due to technical challenges in data separation, 213

lack of annotated datasets, and the complexity of in- 214

tegrating domain-specific workflows. (Šuster et al., 215

2017; Nam et al., 2019) 216

In MedEx, we assign guideline-based reasoning 217

and task decomposition to a cloud-based planner, 218

while keeping PHI-sensitive inference within a lo- 219

cal executor. This setup balances high performance 220

for complex tasks with patient privacy and real- 221

world deployability. 222

3 Method 223

3.1 Overview 224

MedEx is a hybrid framework that separates clin- 225

ical task orchestration from data-sensitive infer- 226

ence. As shown in Fig 1, the system operates in 227

two phases: (1) a cloud-based prompt generation 228

and validation phase, and (2) a local inference and 229

outcome synthesis phase. The following sections 230

detail each phase. 231

3.2 Clinical Task Input and Subtask 232

Decomposition 233

T = (τ,G,U) (1) 234
235

S,Pdraft,L = CloudLLM(T ) (2) 236

We begin by formalizing the input to the MedEx 237

framework as a triplet T , consisting of three com- 238

ponents: the clinical task description τ , the associ- 239

ated clinical guideline G, and a set of user-defined 240

preferences U . This is represented in Equation 1. 241

Here, τ typically defines the high-level reason- 242

ing goal (e.g., determine clinical staging), G de- 243

notes the clinical guideline document (e.g., NCCN, 244

AJCC), and U encodes user-defined preferences 245

such as desired output format, subtask granularity, 246

or inclusion/exclusion of specific entity types. 247
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Based on this input, the cloud LLM generates248

three key outputs: a set of subtasks S , correspond-249

ing draft prompts Pdraft, and a rule-based synthesis250

logic L that defines how subtask outputs are com-251

bined into final task outcomes. This process is252

summarized in Equation 2.253

Each subtask si ∈ S represents an independent254

unit of clinical reasoning required to complete the255

overall task. These subtasks are not predefined but256

are instead inferred by the cloud LLM based on257

the full task input Equation 1. This decomposi-258

tion allows the system to isolate modular reason-259

ing components, such as primary tumor location,260

detecting metastatic spread, or evaluating vessel261

involvement, that can be executed independently262

by a local LLM.263

Once the set of subtasks S is established, the264

cloud LLM constructs a corresponding draft system265

prompt pdraft
i ∈ Pdraft for each subtask si. These266

prompts are generated under the assumption that267

the local LLM lacks access to the τ,G, or any268

global context. As such, each prompt pdraft
i must be269

self-contained: it includes a natural language task270

description, relevant background derived from G,271

and formatting instructions aligned with U . This272

design ensures that each prompt can be executed273

independently in a restricted local environment.274

3.3 Prompt Validation with Synthetic Test275

Cases276

To ensure that each draft prompt is interpretable277

and executable by the local LLM, MedEx performs278

prompt validation using synthetic test cases. These279

synthetic inputs are generated by the cloud LLM280

without any access to real clinical data. Instead,281

they are constructed by instantiating clinically plau-282

sible scenarios directly from the guideline G and283

τ , yielding inputs that reflect key decision points284

while preserving data privacy. Formally, for each285

subtask si, the cloud LLM generates a set of syn-286

thetic examples X (i)
syn and corresponding expected287

outputs Y(i)
syn as:288

X (i)
syn,Y(i)

syn = GenerateSynthetic(si,G) (3)289

Each synthetic input x(i)syn ∈ X (i)
syn is then paired290

with a draft prompt pdraft
i , and passed to the local291

LLM for evaluation. The model is expected to292

generate output y and reasoning r:293

(r
(i)
val, y

(i)
val) = LocalLLM(pdraft

i , x
(i)
syn) (4)294

A prompt is considered valid only if the pre- 295

dicted output y(i)val aligns with the expected values 296

defined in Y(i)
syn. This validation process ensures 297

not only correctness but also interpretability, mak- 298

ing it easier to detect ambiguous instructions or 299

faulty reasoning induced by the prompt. 300

3.4 Prompt Refinement 301

Algorithm 1 prompt refinement loop

1: for each subtask si do
2: pi ← pdraft

i

3: while validation accuracy on TestSeti <
80% do

4: (rval, yval)← LocalLLM(pi, xsyn)
5: pi ← RefinePrompt(pi, rval)
6: end while
7: prefined

i ← pi
8: end for

If the predicted output y(i)val does not match the 302

expected value y
(i)
syn, the corresponding reasoning 303

trace r
(i)
val is reviewed to identify potential causes 304

of failure, such as ambiguous task phrasing, in- 305

complete guideline context, or formatting issues. 306

Based on this analysis, the cloud LLM refines the 307

draft prompt pdraft
i , yielding an updated version 308

prefined
i that better guides the local model toward 309

the intended behavior. The revised prompt is then 310

re-evaluated on the same synthetic test set. This 311

refinement loop continues until the prompt consis- 312

tently passes 80% of the test cases. 313

3.5 Inference on Clinical Data and Outcome 314

Synthesis 315

Once the refined prompts prefined
i for all subtasks are 316

finalized, the system proceeds to perform inference 317

on real clinical data. For each patient document 318

d(j), the local LLM executes each subtasks si ∈ 319

S independently using the corresponding refined 320

prompt: 321

f
(j)
i = LocalLLM(prefinedi , d(j)) (5) 322

This process yields a set of subtask-specific out- 323

puts: 324

F (j) = {f (j)
1 , f

(j)
2 , ..., f (j)

n } (6) 325

where each f
(j)
i represents a discrete clinical fea- 326

ture or intermediate decision. Once all subtask 327

outputs are collected, the system applies the syn- 328

thesis logic L, previously generated by the cloud 329
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LLM, to derive the final task outcome:330

y(j) = Synthesize(F (j),L) (7)331

Equation 7 formalizes how the subtask outputsF (j)332

are synthesized into a final task outcome using the333

logic L, which is derived from the clinical guide-334

line G. The logic encodes how combinations of335

intermediate features, such as abnormal findings336

or clinically significant conditions, inform the final337

decision.338

To account for potential variability in local LLM339

outputs, the inference process is repeated T times340

for each clinical document d(j), resulting in a set341

of candidate outcomes:342

Y(j) = {y(j)1 , y
(j)
2 , . . . , y

(j)
T }343

The final prediction ŷ(j) is selected by majority344

voting over Y(j):345

ŷ(j) = MajorityVote(Y(j))346

This strategy enhances the robustness of the fi-347

nal outcome by mitigating the effects of stochastic348

generation and occasional reasoning errors during349

local inference.350

4 Experiments351

4.1 Dataset and Annotation352

We constructed a clinical staging dataset using 100353

abdominal imaging reports from patients diagnosed354

with pancreatic cancer at a tertiary teaching hospi-355

tal in South Korea between 2003 and 2018. The356

dataset includes CT and MRI reports, and we fully357

de-identified all data following institutional guide-358

lines. The hospital’s Institutional Review Board359

(IRB) approved the study protocol, where the data360

were collected.361

The dataset comprises 50 free-text and 50362

structured-form reports, reflecting the diversity of363

radiological documentation styles in real-world364

clinical settings. The reports were written in Ko-365

rean and English, as is common in bilingual clinical366

documentation practices in Korea. We used only367

the body of each report for all experiments, exclud-368

ing the Conclusion section. This design aimed to369

simulate common clinical workflows, where non-370

radiologist specialists often make staging decisions371

based solely on the narrative report without direct372

image review.373

We inferred ground truth (GT) staging labels374

from the original Conclusion sections written by375

board-certified radiologists during routine care. 376

While these conclusions did not explicitly assign 377

one of the NCCN guideline-based staging cate- 378

gories, domain experts retrospectively mapped the 379

descriptions into one of four defined stages: Re- 380

sectable, Borderline Resectable, Locally Advanced, 381

or Metastatic. We conducted label assignment in- 382

dependently of model development or evaluation 383

procedures. 384

Three board-certified specialists (from gastroen- 385

terology, surgery, and radiology) independently re- 386

viewed the report bodies and assigned clinical stag- 387

ing labels to benchmark system performance. They 388

did not view the original conclusions and received 389

no additional guidance or support. We performed 390

no inter-annotator discussion or consensus; each 391

specialist made independent decisions. When a 392

report lacked sufficient information for confident 393

staging, annotators were allowed to assign an “in- 394

determinate” label. 395

We excluded cases labeled as indeterminate in 396

the ground truth from the accuracy calculation for 397

evaluation. Specifically, we removed three free-text 398

reports and two structured reports. We included all 399

remaining cases in the final evaluation. 400

Due to institutional policies and patient privacy 401

regulations, we are unable to publicly release the 402

dataset used in this study. 403

4.2 Experimental Conditions 404

We conducted experiments using a hy- 405

brid system composed of a cloud LLM 406

(gemini-2.5-pro-preview-03-25) and a 407

local LLM (gemma3:27b-it-qat2). The cloud 408

model was run with an inference temperature 409

of 0.8 to encourage diverse and creative prompt 410

generation. The local model was executed on an 411

internal GPU server within the hospital network 412

using the Ollama 3 inference framework on 413

an RTX 6000 Ada GPU (48GB VRAM), with 414

num_ctx set to 32k, an inference temperature 415

of 0.2, and structured output mode enabled to 416

produce consistent, machine-readable JSON 417

results. Processing the full set of 100 radiology 418

reports with MedEx took approximately one hour 419

in total. This was conducted on a single GPU 420

without parallelization. 421

We designed three experimental settings to eval- 422

uate the system: 423

2https://ollama.com/library/gemma3:27b-it-qat
3https://github.com/ollama/ollama
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• Local LLM (Base): The local language424

model performed staging based solely on the425

report text, without access to external refer-426

ences such as the NCCN guideline or specific427

prior training on this task.428

• Local LLM (with Guideline): The same lo-429

cal model received the full NCCN guideline430

document as additional context during stag-431

ing.432

• MedEx: The hybrid system decomposed the433

staging task into clinical subtasks using the434

cloud LLM, which analyzed the guideline and435

user input to generate detailed system prompts436

for feature extraction (e.g., vascular involve-437

ment, distant metastasis). The local LLM then438

executed these prompts to extract relevant clin-439

ical features from each report. The system440

synthesized the extracted features into a final441

staging prediction using rule-based logic de-442

fined by the cloud LLM based on the NCCN443

guideline.444

We ran MedEx five times per case and selected445

the final prediction via majority voting over the five446

outputs. All clinical inference was performed in a447

fully isolated, network-disconnected environment.448

To ensure data privacy and separation, we manu-449

ally transferred the cloud-generated prompts to this450

environment in structured JSON format.451

4.3 Evaluation Protocol452

We evaluated performance as a 4-way classification453

task using the NCCN-defined staging categories.454

The model was required to assign exactly one of455

these labels for each case.456

We used accuracy as the primary evaluation met-457

ric, measuring the proportion of exact matches be-458

tween model predictions and ground truth labels.459

For MedEx, we obtained five predictions per case460

and selected the final output via majority voting.461

Following a conservative assumption, we chose the462

label with the higher clinical stage in cases where463

a tie occurred.464

To validate system performance, we conducted465

two types of comparisons. First, we compared466

MedEx against a local LLM with no access to exter-467

nal domain knowledge to assess baseline capability.468

Second, to evaluate clinical plausibility, we com-469

pared MedEx’s predictions against those of three470

individual board-certified specialists.471

5 Results 472

Condition Accuracy (Free-text) Accuracy (Structured-text)
Local LLM (Base) 48.94% 60.40%
Local LLM (with Guideline) 56.59% 77.10%
MedEx (Ours) 70.21% 85.42%
Gastroenterologist 59.57% 81.25%
Radiologist 55.32% 79.17%
Surgeon 65.96% 81.25%

Table 1: Accuracy of each system and expert group on
the clinical staging task for both free-text and structured-
text radiology reports.

Condition Kappa (Free-text) Kappa (Structured-text)
MedEx (Ours) 0.596 0.792
Gastroenterologist 0.444 0.735
Radiologist 0.469 0.709
Surgeon 0.571 0.733

Table 2: Cohen’s Kappa scores indicating agreement
with GT clinical staging. Local LLM results are omitted
as inter-rater reliability is not applicable.

This section compares the proposed hybrid sys- 473

tem, MedEx, against baseline Local LLM settings 474

and human expert annotations. We assess perfor- 475

mance using accuracy (Table 1), agreement with 476

GT labels (Cohen’s Kappa; Table 2), stage-level 477

prediction consistency (Figure 2), and disagree- 478

ment analysis between MedEx and expert majority 479

judgments (Figure 3). We report all results sepa- 480

rately for free-text and structured-text inputs. 481

5.1 Performance of Local LLMs and the 482

Effect of Clinical Context 483

Table 1 shows the accuracy of two Local LLM 484

baselines: Local LLM (Base), which uses only 485

the input report, and Local LLM (with guideline), 486

which incorporates the complete NCCN guide- 487

line as additional context. The Base configura- 488

tion achieved 48.94% in the free-text setting, and 489

the guideline-augmented model achieved 56.59%. 490

In contrast, MedEx achieved 70.21%, outperform- 491

ing the two baselines by 21.3 and 13.6 percentage 492

points, respectively. We observed a similar pat- 493

tern for structured-text inputs. MedEx achieved 494

85.42%, outperforming the baselines by 25.0 and 495

8.3 percentage points. 496

The Local LLM failed to perform the necessary 497

multi-step reasoning, even with access to the com- 498

plete guideline. Clinical staging requires coordi- 499

nated inference over interdependent features such 500

as vascular invasion, organ involvement, and dis- 501

tant metastasis. End-to-end prompting with un- 502

structured context did not support such inference 503

effectively. 504
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Figure 2: Confusion matrices for staging predictions (1: Resectable, 2: Borderline Resectable, 3: Locally Advanced,
4: Metastasis) from both free-text (top row) and structured-text (bottom row) radiology reports by three clinical
specialists and MedEx.
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Figure 3: Comparison of MedEx and expert majority
decisions on clinical staging using free-text (left) and
structured (right) radiology reports.

MedEx overcomes this limitation by decompos-505

ing the task into subtasks. The cloud LLM iden-506

tifies relevant features and generates structured507

prompts. The Local LLM extracts the correspond-508

ing information, and the system determines the509

final stage using rule-based logic derived from the510

NCCN guideline. This pipeline enables more accu-511

rate and stable predictions than either baseline.512

5.2 Comparison with Expert Annotations513

Table 1 shows that MedEx consistently out-514

performed all expert groups on free-text and515

structured-text inputs. In the free-text setting,516

expert accuracies ranged from 55.32% (Radiolo-517

gist) to 65.96% (Surgeon), while MedEx achieved518

70.21%. In the structured-text setting, MedEx 519

again achieved the highest accuracy at 85.42%. 520

Table 2 presents the corresponding Cohen’s 521

Kappa scores with GT labels. MedEx achieved 522

the highest agreement in both settings (0.596 for 523

free-text, 0.792 for structured-text), surpassing the 524

best expert performance (0.571 and 0.733). These 525

results show that MedEx achieves higher accuracy 526

and provides more consistent stage assignments 527

relative to the GT. 528

5.3 Stage-Level Prediction Consistency 529

Figure 2 presents confusion matrices for MedEx 530

and the expert groups. In the free-text setting, ex- 531

perts frequently confused Stage 2 and Stage 3. The 532

Radiologist group often misclassified Stage 2 as 533

Stage 1. 534

MedEx aligned more closely with GT labels 535

overall, but showed slightly lower accuracy on re- 536

sectable cases than the experts. Manual review 537

revealed that MedEx tended to interpret specula- 538

tive expressions (e.g., “likely,” “suspicious for”) 539

as definitive indicators of advanced disease, which 540

led to overstaging. In contrast, experts treated such 541

language as inconclusive and assigned more con- 542

servative stage labels. 543

In the structured-text setting, MedEx correctly 544

predicted all Stage 4 cases (19/19) and showed bal- 545

anced accuracy across all stages. The confusion 546
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matrix exhibited strong diagonal dominance, indi-547

cating robust staging consistency.548

5.4 Disagreement Analysis Between MedEx549

and Expert Majority550

To analyze prediction differences in more detail,551

we examined cases where MedEx and the expert552

majority disagreed (Figure 3).553

In the free-text setting, MedEx correctly classi-554

fied 10 cases that the expert majority misclassified.555

These cases typically included long, complex re-556

ports with staging-relevant details often buried in557

unrelated content. Our qualitative review of these558

cases suggests that MedEx’s structured feature ex-559

traction strategy helped isolate staging-relevant in-560

formation more effectively. This advantage likely561

stems from the cloud LLM’s task decomposition562

and targeted prompts for the Local LLM, which563

reduced distraction from unrelated content.564

In contrast, the majority of experts correctly clas-565

sified nine cases that MedEx misclassified. Most of566

these involved ambiguous or speculative language.567

MedEx interpreted such phrases as definitive, lead-568

ing to overstaging. Conversely, experts responded569

more cautiously to ambiguity and often selected570

lower stages consistent with the GT.571

In the structured-text setting, disagreements de-572

creased substantially. Only four cases in each off-573

diagonal category showed disagreement, suggest-574

ing that structured input helped humans and models575

interpret staging cues more consistently.576

5.5 Effect of Report Format on Performance577

All systems and annotators improved when given578

structured-text input, although the size of the im-579

provement varied. MedEx achieved the most signif-580

icant gain (+15.2 percentage points). Expert gains581

ranged between 13.6 and 21.7 points. These results582

indicate that MedEx leverages structured inputs583

effectively and adapts well to formalized clinical584

documentation.585

5.6 Summary586

MedEx outperformed both Local LLMs and do-587

main experts across multiple evaluation metrics.588

The baseline Local LLMs struggled to apply clini-589

cal guidelines effectively, which reflects the limita-590

tions of end-to-end prompting for complex reason-591

ing. In contrast, MedEx used task decomposition592

and rule-based inference to extract relevant features593

and predict cancer stages accurately. While MedEx594

performed consistently across formats, handling595

ambiguity in free-text reports remains an open chal- 596

lenge. 597

6 Conclusion 598

MedEx is a hybrid clinical NLP framework that 599

combines the reasoning capabilities of cloud LLMs 600

with the privacy-preserving execution of local mod- 601

els. Our framework addresses the critical gap be- 602

tween the limited reasoning capacity of local LLMs 603

for complex tasks such as cancer staging and the 604

data governance challenges associated with cloud 605

LLMs. MedEx decomposes high-level clinical de- 606

cisions into structured subtasks, which are executed 607

locally using prompts generated by the cloud LLM, 608

enabling accurate and interpretable inference under 609

secure deployment settings. 610

We demonstrated superior performance to both 611

local LLM baselines and clinical expert groups on 612

pancreatic cancer staging. In particular, it showed 613

strong results in free-text settings, where reports 614

tend to be long, unstructured, and contain extra- 615

neous information. MedEx was able to reliably 616

extract relevant features and apply guideline-based 617

logic, even in these challenging contexts. While 618

structured inputs yielded higher absolute accuracy, 619

the system’s consistent performance on free-text 620

data underscores its practical utility in real-world 621

clinical documentation. 622

The proposed framework shows potential for 623

broader application to other guideline-based clini- 624

cal decision-making tasks. Future work will focus 625

on refining its handling of ambiguous or specula- 626

tive language, evaluating its applicability in new 627

clinical domains, and exploring integration with 628

multimodal clinical data. MedEx offers a practical 629

and extensible architecture for deploying LLMs in 630

clinical environments with accuracy, interpretabil- 631

ity, and privacy in balance. 632

Limitations 633

While this study demonstrates the potential of a 634

hybrid LLM framework for clinical data process- 635

ing, several important limitations warrant consider- 636

ation: 637

Limited Scope and Generalizability. We evalu- 638

ated the framework on 100 radiology reports from 639

pancreatic cancer patients at a single institution, fo- 640

cusing specifically on staging tasks by well-defined 641

NCCN guidelines. The study covers a single dis- 642

ease type and clinical context, which limits its 643

breadth. The framework works best for clinical 644
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tasks with explicit, structured guidelines and may645

struggle in domains where guidelines remain am-646

biguous or nonexistent. We have yet to verify its647

generalizability across other diseases, institutions,648

and data formats.649

Local LLMs Performance Constraints. Al-650

though we decomposed the overall task into smaller651

subtasks, local LLMs still show performance gaps652

compared to cloud LLMs when handling complex653

narratives. While feature extraction helps mitigate654

the issue, some clinical guidelines require higher-655

level reasoning, such as understanding temporal656

progression, inferential logic, which simple decom-657

position cannot effectively capture.658

Ground Truth Ambiguity and Input Quality659

Issues. Defining a consistent Ground Truth (GT)660

for clinical staging is fundamentally challenging,661

as some imaging cases remain ambiguous even662

among specialists. Different clinicians may inter-663

pret the same image differently, especially when664

clear diagnostic evidence is lacking. Furthermore,665

approximately 20 to 30 percent of the free-text666

radiology reports in our dataset did not contain667

sufficient supporting detail outside the conclusion668

section. While the conclusion often stated the stage669

enough to assign a GT, the earlier sections of the re-670

port, such as findings and impressions, often lacked671

the necessary details. In cases where the report672

lacked sufficient information outside the conclu-673

sion, determining the stage became difficult, which674

limited the reliability of GT construction and model675

evaluation.676

Operational Infrastructure Challenges. The677

hybrid framework depends on interaction between678

cloud and local LLMs, but clinical systems often679

restrict external network access due to security poli-680

cies. Because of these restrictions, users cannot681

run cloud-based tasks directly within the clinical682

environment. Instead, they must perform tasks683

like decomposition and instruction generation ex-684

ternally and manually transfer the system prompts685

into the internal system (local LLMs). This seg-686

mented workflow increases operational burden and687

limits seamless integration.688

Insufficient Validation of Multi-Round Infer-689

ence. To improve consistency in local LLM out-690

puts, we applied repeated inference with majority691

voting and low temperature settings. However, we692

did not perform a systematic validation to deter-693

mine the optimal number of repetitions or to assess694

output consistency across runs. Future work should695

introduce clear metrics to evaluate the effectiveness696

and reliability of multi-round inference strategies. 697

Ethics Statement 698

This study prioritizes patient privacy by ensuring 699

that no sensitive clinical data is transmitted to exter- 700

nal servers. All real data processing is performed in 701

a fully isolated local environment, while the cloud- 702

based LLM is used only for meta-level operations 703

such as task decomposition and prompt generation, 704

without access to actual patient records. 705

Nonetheless, several potential risks remain. First, 706

the system may overinterpret ambiguous or specu- 707

lative language in free-text reports, which can lead 708

to overstaging. Second, the evaluation is limited 709

to a single institution and disease type (pancreatic 710

cancer), limiting generalizability and introducing 711

potential bias. Third, practical deployment in clini- 712

cal settings requires manual prompt transfer due to 713

institutional network restrictions, increasing opera- 714

tional burden. 715

While the system is designed to support expert 716

decision-making, there remains a risk that it may 717

be used to make clinical decisions autonomously in 718

practice. To mitigate this risk, future work should 719

investigate mechanisms to explicitly require and 720

structurally integrate expert oversight throughout 721

the framework, ensuring safe and responsible de- 722

ployment in real-world clinical environments. 723
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A Cloud LLM System Prompt for Task899

Decomposition and Prompt Generation900

To perform decomposition of a clinical staging task901

and generate executable prompts, we used the fol-902

lowing system prompts for the cloud LLM:903
904

## Persona ##905
You are a "Clinical Guideline-Based Key906
Information Extraction AI". Your primary mission907
is to conduct in-depth analysis of detailed908
guideline documents provided alongside clinical909
research objectives or medical-related tasks910
presented by users, and to identify and generate911
a list of key features, judgment criteria, or912
key observational points that must be considered913
or evaluated when performing the corresponding914
task. Your output will provide the foundational915

information needed for Local LLMs to 916
subsequently process specific data points. 917
## Core Goal / Mission / Objective ## 918
Based on the clinical task description provided 919
by the user (e.g., disease staging, treatment 920
response evaluation, risk group classification, 921
etc.) and related guideline documents, extract 922
and present a list of major judgment factors 923
that are explicitly or implicitly presented in 924
the guidelines for successfully performing the 925
corresponding task. This list must be 926
generalizable and robustly derived. At this 927
current stage, the most important objective is 928
to clearly generate the list of these key items 929
itself. 930
## Key Context / Background ## 931
User: Medical professionals or medical 932
researchers. 933
User Input: 934
Clinical Task Description: Specific objectives 935
that the user wants to perform. 936
Guideline Files: Related clinical guidelines, 937
protocols, SOPs, etc. (text-based documents). 938
Additional Requirements and Preferences ( 939
Optional). 940
Core Challenge: Due to sensitive data security 941
concerns, Local LLM utilization is necessary, 942
but Local LLMs have limitations in understanding 943
complex guidelines as a whole and extracting 944
key information. 945
Your Role: As a Cloud LLM, you do not handle 946
actual sensitive data. Instead, by analyzing 947
provided guidelines and task descriptions, you 948
identify and list key items (features/criteria) 949
that serve as the basis for judgment needed for 950
Local LLMs to perform subsequent tasks. 951

952
## Task / Instructions / Steps ## 953
1. In-depth Input Analysis: 954
Understanding the Nature of Task Objectives: 955
Accurately understand the ultimate purpose (e.g., 956
classification, staging, evaluation, criteria 957
identification, etc.) and scope of the clinical 958
task the user intends to perform. 959
Precise Review of Guideline Structure and 960
Content: 961

962
Thoroughly analyze the entire provided guideline 963
document. Focus particularly on sections 964
directly related to the task objectives (e.g., 965
sections with common titles like "Staging", " 966
Classification", "Diagnosis", "Treatment 967
Algorithm", "Assessment Criteria"), tables, 968
figure descriptions, decision tree logic, and 969
key definitions. 970
Carefully observe patterns used within 971
guidelines to list items, explain specific 972
criteria, or distinguish between states. 973

974
2. Identification and Extraction of Key Items: 975
Based on the guidelines, identify specific 976
features, variables, conditions, anatomical/ 977
physiological state descriptions, test result 978
indicators, patient characteristics, or other 979
observable elements that must be confirmed, 980
evaluated, or measured to perform the user’s 981
clinical task. 982
Prioritize elements that appear consistently and 983
repeatedly, items presented as clear criteria, 984
or factors that serve as decision points in the 985
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decision-making process.986
Express extracted items using terms specified in987
the guidelines as much as possible, with clear988
names that represent the essence of each item.989

990
3. Output Generation (Output Format / Structure):991

992
Your primary deliverable is a clear list of key993
judgment items/features necessary for performing994
the clinical task presented by the user.995

996
List Format Presentation: Present identified997
items in a concise and clear list format. (e.g.,998
using bullet points or numbering)999
Item Names: Express each item with a name that1000
best represents its content. The content and1001
clarity of the list are important.1002
Focus: At this current stage, the sole objective1003
is to generate the list itself of what major1004
items from the guidelines should be considered1005
to solve the task. Detailed descriptions of each1006
item, judgment logic, or specific instructions1007
for Local LLMs are not required at this stage.10081009

Listing 1: System prompt for Task Decomposition

1010
## Persona ##1011
You are a "Local LLM-Tailored System Message1012
Architect". Your core mission is to design and1013
generate individual system messages with1014
systematic structure (role_definition,1015
context_guidance, instructions, output_format)1016
for each previously identified clinical key1017
judgment item (feature/criteria), enabling1018
performance-limited Local LLMs to accurately1019
understand and evaluate these items based on1020
actual complex and ambiguous clinical data to1021
produce structured results. You serve as a guide1022
to help Local LLMs perform tasks as if1023
following a detailed manual.1024
## Core Goal / Mission / Objective ##1025
For each "key judgment item" given as input,1026
generate individual system messages that guide1027
Local LLMs to independently evaluate the1028
corresponding item and output results in a1029
specified JSON format.1030
Each generated system message must clearly1031
include the following four main components:1032

1033
role_definition: Defines the role and persona of1034
the Local LLM.1035
context_guidance: Provides background knowledge1036
necessary for judgment, key guideline content,1037
term definitions, etc.1038
instructions: Clearly presents specific task1039
execution procedures, judgment criteria,1040
ambiguity handling guidelines, etc., step by1041
step.1042
output_format: Defines the exact format (1043
including JSON schema) of the final output that1044
the Local LLM should generate and descriptions1045
of each field.1046

1047
These system messages must be written in great1048
detail and clarity to overcome the realistic1049
limitations of Local LLMs (data ambiguity,1050
multilingual possibilities, limited reasoning1051
capabilities, single task focus, detailed1052
explanation requirements, etc.).1053
## Key Context / Background ##1054

Input: 1055
List of Key Judgment Items (List of Features/ 1056
Subtasks): A list of key features or judgment 1057
criteria necessary for clinical task performance, 1058
generated in previous steps. 1059
Original Clinical Guideline: Used to extract 1060
information necessary for constructing 1061
context_guidance and instructions of each system 1062
message. 1063
Original Clinical Task Description: Utilized for 1064
understanding the context of the overall task. 1065

1066
Target: Performance-limited Local LLMs. 1067
Challenge: For each key judgment item, enable 1068
Local LLMs to examine actual clinical data (free- 1069
text), make judgments following the guidance of 1070
structured system messages you generate, and 1071
output results in specified JSON format. 1072
## Task / Instructions / Steps ## 1073
You must generate individual system messages for 1074
Local LLMs for each item in the "List of Key 1075
Judgment Items" given as input, following the 1076
guidelines below. Each system message must 1077
adhere to the role_definition, context_guidance, 1078
instructions, output_format structure specified 1079
below. 1080
1. Generate role_definition (Define Local LLM’s 1081
Role): 1082

1083
Assign a clear role to the Local LLM related to 1084
the specific judgment item currently being 1085
performed. 1086
The role should be concise and easy to 1087
understand, allowing the Local LLM to 1088
immediately recognize what it needs to do. 1089
Example thought process (not included in actual 1090
output): "You are a clinical record analyst for 1091
[key judgment item name]. Your mission is to 1092
find information related to [key judgment item 1093
name] in given clinical records and evaluate it 1094
according to clear criteria." 1095

1096
2. Generate context_guidance (Background 1097
Information and Guideline Summary): 1098

1099
Provide essential background information needed 1100
for the Local LLM to understand and evaluate the 1101
current judgment item. 1102
This may include the following content: 1103

1104
Clear and concise definition of the key judgment 1105
item (feature) currently being evaluated. ( 1106
Extract or summarize from original guideline if 1107
necessary) 1108
Brief explanation of the importance or meaning 1109
of the item within the overall clinical task ( 1110
minimal information to help Local LLM 1111
understanding). 1112
Easy explanations or definitions of key terms 1113
needed for judgment. 1114
Summary of the most essential content (rules, 1115
criteria, etc.) directly related to the item 1116
from the original guideline. (Enable Local LLM 1117
to make judgments based on this section alone 1118
without reading the entire guideline) 1119
General cautionary note that data may be written 1120
in various languages and mention of efforts to 1121
understand meaning regardless of specific 1122
language limitations. 1123

1124
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3. Generate instructions (Specific Task1125
Instructions):1126

1127
Clearly and thoroughly describe step-by-step1128
guidelines that the Local LLM should follow to1129
evaluate the corresponding key judgment item.1130
Each step should be executable and unambiguous.1131
Main content that should be included:1132

1133
Information Search Guidelines: Specific guidance1134
on what kind of information, keywords, phrases,1135
or contexts to look for in clinical records.1136
Clear Judgment Criteria: Clearly present1137
judgment criteria for the item specified in1138
guidelines (e.g., specific conditions, numerical1139
values, state descriptions, etc.) in a way that1140
Local LLMs can easily understand.1141
Provide "Possible Output Values List":1142

1143
You (Cloud LLM) must define a list of possible1144
values that Local LLMs can select as final1145
values for each key judgment item, based on1146
guidelines. (e.g., [’Present’, ’Not Present’, ’1147
Insufficient Evidence’], [’Criteria Met’, ’1148
Criteria Not Met’, ’No Information’], etc.).1149
This list should be explicitly included in1150
instructions to guide Local LLMs to select only1151
from these options.1152

1153
Ambiguity and Uncertainty Handling Guidelines:1154

1155
Specific scenario-based guidelines on how Local1156
LLMs should judge and record when clinical1157
record content is unclear, ambiguous, or1158
conflicting.1159
Guide on how to handle cases with insufficient1160
information or only inferential/hypothetical1161
content.1162
Guidance on what information should be left in1163
the reasoning field when judgment is difficult.1164

1165
Induce Reasoning Process Recording: Instruct to1166
record not only the final judgment (value) but1167
also the detailed process (reasoning) that led1168
to that judgment. You can ask in ways like "1169
Please explain in detail why you thought that1170
way."1171

1172
4. Generate output_format (Define Output Format):1173

1174
1175

Specify the exact JSON format of the final1176
output that the Local LLM should generate.1177
The JSON object must include three keys: name,1178
reasoning, and value.1179
Provide detailed descriptions of each key so1180
that Local LLMs clearly know what content to1181
fill in each field.1182

1183
name: (string) The exact name of the key1184
judgment item currently being evaluated. (Should1185
be identical to the input item name used when1186
generating this system message)1187
reasoning: (string) Detailed reasoning process1188
that led to the judgment, clinical record1189
content that served as evidence, applied1190
judgment criteria, ambiguity handling methods,1191
and logical explanation of why the current value1192
was chosen over other possible values. This1193
section is very important for users to1194

understand and trust the Local LLM’s judgment 1195
process, so it should be written as detailed and 1196
transparent as possible. 1197
value: (string or appropriate data type) Final 1198
judgment result that must be one of the " 1199
Determine the Value" provided in instructions. 12001201

Listing 2: System prompt for prompt generation
(subtask - local LLM)

The above system prompts were executed using 1202

the Google GenAI Python API, with the following 1203

settings: 1204

• Model: gemini-2.5-pro-preview-03-25 1205

• Temperature: 0.8 1206

• Safety Settings: All safety filters were dis- 1207

abled (e.g., HARM_CATEGORY_HATE_SPEECH = 1208

Off for all categories) 1209

• Other Parameters: All other options were 1210

set to default values provided by the SDK 1211

• Interface: Google GenAI Python API 1212

(v1.9.0) 1213

The clinical guidelines used for task decompo- 1214

sition and prompt generation (e.g., NCCN) were 1215

provided in their original PDF format. These doc- 1216

uments were uploaded directly to the cloud LLM 1217

interface without manual conversion. The follow- 1218

ing code snippet shows how guideline files were 1219

passed to the model via the API: 1220
1221

from google import genai 1222
from google.genai import types 1223

1224
client = genai.Client( 1225

api_key=os.environ.get("GEMINI_API_KEY"), 1226
1227

) 1228
1229

client.files.upload(file="NCCN_guidelines.pdf") 12301231

Listing 3: Uploading a guideline PDF via Google
GenAI Python SDK

B Cloud-Generated Prompt for Local 1232

LLM Inference 1233

Based on the system prompts and input guidelines 1234

described in Section A, the cloud LLM generated 1235

structured system messages for each key judgment 1236

item identified during task decomposition. 1237

The following example presents an actual 1238

system message generated to guide a Lo- 1239

cal LLM in evaluating one such item from 1240

real clinical data. Each message follows a 1241

13



standardized format consisting of four compo-1242

nents: role_definition, context_guidance,1243

instructions, and output_format.1244
1245

<ROLE_DEFINITION>1246
You are an expert radiology report analyst1247
specializing in pancreatic cancer staging. Your1248
task is to meticulously examine the provided CT1249
radiology report (which will be given in the1250
user’s message) and extract specific information1251
regarding the relationship between the tumor1252
and the **Celiac Axis (CA)**, sometimes referred1253
to as the Celiac Trunk. You must act as if you1254
are explaining your findings and reasoning to1255
someone with no medical background but who needs1256
to understand the clinical significance of this1257
vascular involvement for staging.1258
</ROLE_DEFINITION>1259

1260
<CONTEXT_GUIDANCE>1261
The CT radiology report you will analyze may be1262
in English or Korean. It can contain various1263
levels of detail, sometimes using ambiguous,1264
inferential, or cautious language (e.g., "1265
suggestive of", "concerning for", "cannot1266
exclude", "appears to abut", "interface unclear1267
"). Radiologists may use different synonyms or1268
descriptive phrases for the same finding. Your1269
analysis should be robust to these variations.1270
The report might not always directly state the1271
degree of contact in numerical terms (e.g., 1801272
degrees); you may need to infer this from1273
descriptive terms like "abutment" versus "1274
encasement."1275
</CONTEXT_GUIDANCE>1276

1277
<INSTRUCTIONS>1278
1. **Analyze User-Provided Report:** Carefully1279
read the CT radiology report provided in the1280
user’s message to find any description of the1281
tumor (often referred to as ’mass’, ’lesion’, ’1282
neoplasm’, ’cancer’, ’adenocarcinoma’) in1283
relation to the Celiac Axis (CA).1284

1285
2. **Assess Degree of Contact and Invasion:**1286

* **Priority for "No Contact":** If the1287
report explicitly states that the CA is "1288
separate from the mass," "well clear of," or1289
that a "clear fat plane is maintained" between1290
the tumor and the CA, this should be prioritized1291
as ‘no_contact‘, EVEN IF later parts of the1292
report mention "mild displacement due to mass1293
effect" or "unclear interface" without1294
definitive signs of direct tumor infiltration or1295
adhesion. "Mild displacement" alone, without1296
loss of fat plane or direct abutment, does not1297
constitute "contact" for this feature.1298

* **Contact <=180 degrees:** If there is1299
direct tumor abutment or contact described1300
involving **less than or equal to 180 degrees**1301
of the CA’s circumference (e.g., "abutment," "1302
contact," "less than half involvement," "focal1303
contact"). "Unclear interface" or "loss of fat1304
plane" over a limited area, without encasement,1305
would fall into this category.1306

* **Contact >180 degrees:** If the tumor is1307
described as "encasing," "invading," involving "1308
more than half the circumference," or showing "1309
circumferential involvement" of the CA. This is1310
a critical distinction for staging.1311

1312
3. **Interpret Ambiguity:** 1313

* If "contact" is mentioned without 1314
specifying the degree, and there are no 1315
descriptors like "encasement," assess if other 1316
contextual clues (e.g., "focal," "short segment 1317
") suggest limited contact (<=180 degrees). If 1318
still ambiguous, consider it ‘ 1319
not_mentioned_or_unclear‘ for the degree, but 1320
explain the presence of contact in reasoning. 1321

* If cautious language like "possible 1322
abutment," or "suspicious for encasement" is 1323
used, reflect this uncertainty in your reasoning. 1324
If "suspicious for encasement" is the strongest 1325
finding, lean towards ‘ 1326
contact_greater_than_180_degrees‘ but clearly 1327
state the suspicion in reasoning. 1328

1329
4. **Determine the Value:** Based on your 1330
analysis, select ONE of the following values: 1331

* ‘no_contact‘ 1332
* ‘contact_less_than_or_equal_to_180_degrees‘ 1333
* ‘contact_greater_than_180_degrees‘ 1334
* ‘not_mentioned_or_unclear‘ (Use this if the 1335

relationship is truly impossible to determine, 1336
e.g., due to severe artifact, or if contact is 1337
mentioned but degree cannot be inferred at all). 1338

1339
5. **Provide Reasoning:** Explain step-by-step 1340
how you arrived at your ‘value‘. Quote relevant 1341
phrases from the user-provided report. Explain 1342
your interpretation of any ambiguous terms, any 1343
prioritization of information (as per 1344
instruction 2.1), and how it relates to the 1345
clinical significance (e.g., "Although the 1346
report mentions ’mild displacement’ and ’unclear 1347
interface’, it also clearly states ’a clear fat 1348
plane is maintained’ and ’direct invasion is 1349
not seen’. Prioritizing the direct assessment of 1350
fat plane and invasion, this is classified as 1351
no_contact."). 1352

1353
6. **Format Output:** Provide your response 1354
strictly in the JSON format specified below. 1355

1356
**Keywords and Concepts to Consider (English 1357
examples; consider Korean equivalents):** 1358
* Anatomical terms: "Celiac axis," "CA," "celiac 1359
trunk." 1360
* Contact descriptors: "contact," "abutment," " 1361
abutting," "adjacent to," "touching," "loss of 1362
fat plane," "effacement of fat plane." 1363
* Displacement: "displacement due to mass effect 1364
" (note if fat plane is still present). 1365
* Involvement descriptors: "encasement," " 1366
encasing," "invasion," "invading," "involvement 1367
," "involving," "circumferential." 1368
* Degree of contact: "less than 180 degrees," 1369
"<=180 degrees," "less than half circumference," 1370
"not circumferential," "focal"; "more than 180 1371
degrees," ">180 degrees," "greater than half 1372
circumference," "circumferential." 1373
* Absence of contact: "no involvement," "clear 1374
of," "separate from," "no definite vascular 1375
involvement," "fat plane preserved." 1376
* Clinical significance: Contact >180 degrees 1377
with the CA is a key factor for defining locally 1378
advanced pancreatic cancer. Limited contact 1379
might be borderline. 1380
</INSTRUCTIONS> 1381
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1382
<OUTPUT_FORMAT>1383
{1384

"name": "Celiac Axis (CA) Contact",1385
"reasoning": "Detailed step-by-step reasoning,1386

including quoted text from the report (and its1387
interpretation if originally in Korean or1388
ambiguous). Explain how the degree of contact1389
was determined and its clinical implication for1390
staging (e.g., if it suggests resectable,1391
borderline, or locally advanced disease based on1392
this specific finding).",1393
"value": "YOUR_SELECTED_VALUE_HERE"1394

}1395
</OUTPUT_FORMAT>13961397

Listing 4: Example system message for Local LLM
(Celiac Axis involvement)

C Synthetic Test Case Generation for1398

Prompt Validation1399

To validate the quality and interpretability of each1400

subtask-specific system message before applying it1401

to real clinical data, we first generated synthetic test1402

cases using the cloud LLM. These test cases were1403

produced without any access to real patient data,1404

relying solely on the original guideline content and1405

the definitions of key judgment items. Each case1406

consisted of a fabricated but clinically plausible1407

free-text report snippet, paired with an expected1408

structured output label.1409
1410

## Persona ##1411
You are an "Expert in Generating High-Realism1412
Multilingual Synthetic Clinical Data with Ground1413
Truth Labels". Your core mission is to generate1414
highly realistic synthetic clinical data (free-1415
text) based on previously created system1416
messages for specific "key judgment features/1417
criteria" for Local LLMs, which can be used to1418
evaluate and validate these features by Local1419
LLMs. Additionally, you must provide clear "1420
ground truth values" for each synthetic data you1421
generate for the corresponding "key judgment1422
feature". You must skillfully mimic the1423
complexity, ambiguity, multilingual usage, and1424
inferential expressions that could be1425
encountered in real clinical settings, to1426
effectively test the performance of Local LLMs1427
and measure their accuracy.1428

1429
## Core Goals (Goal / Mission / Objective) ##1430
Based on the input of a specific "key judgment1431
feature" and a "system message for Local LLM"1432
designed to evaluate this feature, generate1433
synthetic clinical data (free-text) that1434
contains sufficient and appropriate information1435
to evaluate this feature, along with the "ground1436
truth value" for that feature in the data.1437
The synthetic clinical data must satisfy all of1438
the following characteristics:1439

1440
Relevance: Should contain content directly1441
related to the "key judgment feature" being1442

evaluated, and should be structured so that the 1443
guidelines in the system message for Local LLM 1444
can be tested. 1445
Free-text format: Should be unstructured, 1446
natural narrative text. 1447
Multilingual mix: Should naturally mix the user’ 1448
s primary language with English. 1449
Realistic ambiguity and vagueness: Should 1450
include incomplete information, ambiguous 1451
expressions, or parts that allow multiple 1452
interpretations, similar to real clinical 1453
records. 1454
Include assumptions and inferential language: 1455
Appropriately use non-definitive expressions. 1456
No conclusion: Should not include explicit final 1457
conclusions in the data. 1458
Mimic real clinical data: Style, vocabulary, and 1459
information organization should closely follow 1460
actual medical records. 1461
Provide simple Plain Text: Generated data should 1462
be provided in pure text form without any 1463
markup or special formatting. 1464

1465
Ground Truth Value: 1466
For each synthetic data generated, you must 1467
specify the correct answer for the "key judgment 1468
feature" being evaluated. 1469
This ground truth value must be one of the " 1470
Possible Output Values" listed in the 1471
instructions part of the system message for 1472
Local LLM. 1473
The information in the synthetic data should 1474
support this ground truth value, or at least be 1475
structured so that this answer can be inferred. 1476

1477
## Main Context (Context / Background) ## 1478

1479
Input: 1480
Target Feature/Subtask: The specific clinical 1481
judgment feature that the synthetic data should 1482
focus on. 1483
System Instruction for Local LLM for that 1484
feature: The role definition, context, 1485
guidelines, output format, and especially the 1486
list of "Determine the Value" in this system 1487
message should be fundamentally considered when 1488
generating synthetic data and ground truth 1489
values. 1490
(Optional) Information about the user’s primary 1491
language. 1492
(Optional) Original clinical guidelines and task 1493
description. 1494

1495
Purpose: To quantitatively validate how 1496
accurately Local LLMs evaluate the "key judgment 1497
feature" and derive results through the given 1498
system message, using the generated synthetic 1499
data and ground truth values. 1500

1501
## Tasks and Guidelines (Task / Instructions / 1502
Steps) ## 1503
Based on the "Target Feature" and "System 1504
Message for Local LLM" provided as input, you 1505
must generate synthetic clinical data and ground 1506
truth values according to the following 1507
guidelines. The output should be provided in a 1508
format that clearly distinguishes between these 1509
two pieces of information, for example (this is 1510
an example and you don’t necessarily need to 1511
follow this exact format, but the two pieces of 1512
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information should be clearly identifiable):1513
Synthetic Data: (Here goes the generated1514
multilingual free-text clinical data. This can1515
be multiple lines of text.)1516
Ground Truth Value: (Here goes the ground truth1517
value for the key judgment feature for this data.1518
It must be one of the "Possible Output Values"1519
defined in the system message for Local LLM.)1520

1521
1. Determine Ground Truth Value and Conceive1522
Scenario:1523
First, decide which ground truth value to target1524
for the "key judgment feature". This value must1525
be one of the "Possible Output Values" defined1526
in the system message for Local LLM.1527
Conceive a clinical scenario that can support1528
the determined ground truth value. Include clear1529
clues that lead to this answer, or deliberately1530
ambiguous but ultimately interpretable clues1531
that lead to this answer.1532
Consider generating data for various ground1533
truth values (e.g., positive, negative, specific1534
categories, unclear, etc.) to increase test1535
coverage.1536

1537
2. Write Synthetic Clinical Data (Free-text):1538
Reflect target ground truth value: Naturally1539
include sufficient evidence or implications in1540
the text that can be judged as the ground truth1541
value decided in step 1. Write with the judgment1542
criteria in the Local LLM system message in1543
mind.1544
Follow the same guidelines as in the previous1545
system message regarding natural narrative,1546
multilingual mixing, injection of ambiguity and1547
uncertainty, use of assumptive/inferential1548
expressions, avoidance of conclusive expressions,1549
mimicking real clinical data formats, etc.1550
Test Local LLM System Message: Structure the1551
content so that the synthetic data can actually1552
test the information exploration guidelines,1553
judgment criteria, ambiguity handling guidelines,1554
etc. described in the system message for Local1555
LLM.1556

1557
3. Comply with Output Format:1558
The generated "synthetic data" must be simple1559
Plain Text.1560
The "ground truth value" must exactly match one1561
of the "Possible Output Values" specified in the1562
system message for Local LLM.1563
Provide both pieces of information ("synthetic1564
data" and "ground truth value") together,1565
clearly distinguishing between them.15661567

Listing 5: Example system message for synthetic test
case generation

Below are synthetic test cases generated for the1568

Celiac Axis (CA) involvement subtask. All content1569

has been translated into English.1570
1571

** Test Case 1 **1572
Report: The patient presented with RUQ pain. CT1573
abdomen with contrast was performed, revealing1574
an approximately 5.5 x 4.8 cm ill-defined,1575
heterogeneously enhancing mass extending from1576
the pancreas head to the body transition area.1577
This mass is located about 0.5cm away from the1578
celiac axis origin, and a clear fat plane is1579

maintained, suggesting no direct invasion. 1580
However, mild displacement of the proximal 1581
portion of the celiac trunk due to mass effect 1582
is suspected, and in some short segments, the 1583
interface between the tumor and vessel is 1584
somewhat unclear, making it difficult to 1585
completely rule out the possibility of 1586
microscopic involvement. SMA and SMV are 1587
patients. No definite liver metastasis. 1588
Answer: no_contact 1589

1590
** Test Case 2 ** 1591
Report: Pancreatic body with a large necrotic 1592
mass, measuring up to 7cm in longest diameter. 1593
The tumor completely encases the celiac axis 360 1594
degrees, which appears to cause general 1595
narrowing of the celiac artery caliber. 1596
Additionally, tumor involvement clearly extends 1597
to the common hepatic artery origin. Adjacent 1598
peripancreatic fat stranding and multiple 1599
enlarged lymph nodes are noted. Conclusion: 1600
Locally advanced pancreatic cancer with celiac 1601
axis encasement. 1602
Answer: contact_greater_than_180_degrees 1603

1604
** Test Case 3 ** 1605
Report: [Findings] A 3.5 cm ill-defined low- 1606
attenuation mass is seen in the pancreatic head. 1607
There is associated upstream dilation of the 1608
main pancreatic duct. The Celiac Axis (CA) 1609
origin appears patent. A clear fat plane is 1610
maintained between the mass and the CA. The CA 1611
itself does not show evidence of stenosis or 1612
direct tumor infiltration. There is mild 1613
superior displacement of the CA due to the 1614
pancreatic head mass, but no direct invasion is 1615
observed. The interface with the CA is somewhat 1616
obscured in a small segment on axial images, 1617
possibly due to volume averaging, but coronal 1618
reconstructions confirm the presence of 1619
intervening fat. No definitive abutment or 1620
encasement. 1621
Answer: no_contact 1622

1623
** Test Case 4 ** 1624
Report: Low-attenuation mass in the pancreatic 1625
head, approximately 3cm in size. The celiac 1626
artery appears to be in contact with the mass 1627
for about 120 degrees at its origin, but no 1628
clear thickening of the vessel wall or narrowing 1629
of the lumen is observed. However, the fat 1630
layer between the mass and the artery appears 1631
partially lost, which could be due to 1632
inflammatory changes or may be considered as a 1633
possible early stage of microscopic tumor 1634
invasion. Based on the current imaging alone, it 1635
is difficult to definitively conclude ’definite 1636
invasion’, but describing it as ’abutment 1637
beyond simple contact’ seems appropriate. 1638
Additional EUS evaluation could be helpful. 1639
Answer: 1640
contact_less_than_or_equal_to_180_degrees 16411642

Listing 6: Example synthetic test case for celiac axis
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Figure 4: Distribution of staging labels across evaluators for free-text (left) and structured-text (right) reports. (1:
Resectable, 2: Borderline Resectable, 3: Locally Advanced, 4: Metastasis)

D Description of Real Clinical Data Used1643

in Experiments1644

While we are unable to share the original clinical1645

documents used in the experiments due to privacy1646

constraints, we provide representative examples of1647

the input data after applying additional anonymiza-1648

tion, partial content reordering, and translation1649

from multilingual originals into English. Specific1650

clinical details such as exact sizes, anatomical lo-1651

cations, and dates have been masked using generic1652

placeholders (e.g., (size), (location)). These1653

examples are sufficiently obfuscated to prevent re-1654

construction of the source documents, while still1655

reflecting the style and complexity of the actual1656

inputs used in the experiments.1657
1658

** Report 1 **1659
[Finding] (date) CT examination. Current status1660
shows (type) drainage catheter in place.1661
Intrahepatic ducts in (location) demonstrate (1662
degree) dilation, with concurrent (structure)1663
dilatation.1664
The dilated (structure) appears to be encased1665
and obstructed by a hypodense mass of1666
approximately (size) involving the (location).1667
This hypodense lesion involves the (specific1668
location) with (degree) infiltration (direction),1669
but shows no evidence of (structure) invasion,1670
and no encasement of the (vessels), suggesting1671
features of a potentially resectable (type)1672
malignancy despite its dimensions.1673
Multiple (size) lymph nodes are visible1674
surrounding this mass, with a notable lymph node1675
of approximately (size) adjacent to the (vessel1676
).1677
Regional (finding) cannot be excluded.1678
No definitive evidence of (location) metastases,1679
unremarkable bilateral (organs), and small (1680
finding) noted bilaterally.1681
No significantly enlarged (location) lymph nodes1682
identified.1683
Subtle (location) changes observed, though1684

clinical significance remains (assessment). 1685
Examination captured bilateral (structures) with 1686
(type) formations measuring approximately (size 1687
) on the (side) and (size) on the (side). 1688
(Specialty) consultation recommended for 1689
comprehensive assessment of these (location) 1690
findings. 1691
Normal (organ) dimensions. No significant 1692
abnormalities in the visualized (location). 1693
Mild (organ) wall thickening noted, possibly 1694
representing (type) changes. 1695

1696
** Report 2 ** 1697
[Finding] C.I: (type) cancer. A benign-appearing 1698
focal lesion in the (location) lung is presumed 1699
to be nonspecific atelectasis and does not 1700
appear clinically significant. 1701
No definitive evidence of distant metastasis. 1702
A relatively (characteristic) focal lesion is 1703
present in the (organ), with the central area 1704
appearing (finding) or showing reduced ( 1705
characteristic). 1706
These findings are compatible with both (type) 1707
and (type) tumors. 1708
Adjacent to the main mass in the (specific 1709
anatomical location), there are at least (number 1710
) suspicious nodules which are presumed to be 1711
metastases to surrounding lymph nodes. 1712
No clear evidence of distant metastasis. 1713
Diffuse (structure) distension is present (due 1714
to obstruction by the tumor) with dilation of 1715
the (structure). 1716
No evidence of distant metastasis. 1717
The medial margin of the lesion is in close 1718
proximity to the (vessel), however the 1719
possibility of direct invasion appears low. 17201721

Listing 7: Example free-text radiology report for
experiments

In addition to free-text narratives, a subset of the 1722

clinical reports used in our experiments followed 1723

a structured template format. The structure shown 1724

below reflects the original reporting form used in 1725

those cases. For clarity, we reproduce the field lay- 1726

17



out exactly as it was defined in the source template,1727

without modification, translation, or anonymiza-1728

tion, as no patient-identifiable information is in-1729

cluded.1730

1731
1. Metastasis1732
1-1. Hepatic metastasis (-/equivocal/+):1733
1-2. Peritoneal metastasis (-/equivocal/+):1734
1-3. Distant lymph node metastasis (location, -/1735
equivocal/+):1736
1-4. Ascites (-/small/moderate/large):1737
1-5. Other site:1738
2. Circumferential margin evaluation1739
2-1. SMA margin (not involved [distance from the1740
tumor >1.0 mm /involved):1741
2-1-1. Distance and degree of the tumor to the1742
presumptive SMA margin:1743
2-2. SMV/PV margin margin (not involved [1744
distance from the tumor >1.0 mm /involved):1745
2-2-1. Distance and degree of the tumor to the1746
presumptive SMV/PV margin:1747
2-3. Posterior margin margin (not involved [1748
distance from the tumor >1.0 mm /involved):1749
2-3-1. Distance of the tumor to the presumptive1750
posterior margin:1751
2-4. Anterior surface (within normal pancreatic1752
parenchyma/ beyond):1753
2-4-1. Depth of invasion beyond the normal1754
anterior surface of the pancreas:1755
2-4-2. Invasion to the adjacent organ: (-/1756
equivocal/+, organ):1757
3. Other important vascular evaluation1758
3-1. Common hepatic artery (not involved [1759
distance from the tumor >0 mm] /involved):1760
3-1-1. Degree of tumor encasement (-/<=180/>180):1761

1762
3-1-2. Length of tumor invasion:1763
3-1-3. Extension to celiac axis (-/equivocal/+):1764
3-1-4. Extension to bifurcation of GDA (-/1765
equivocal/+):1766
3-1-5. Extension to bifurcation of hepatic1767
arteries (-/equivocal/+):1768
3-2. Celiac axis (not involved [distance from1769
the tumor >0 mm] /involved):1770
3-2-1. Degree of tumor encasement (-/<=180/>180):1771

1772
3-3. Variant arteries (replaced RHA, replaced1773
CHA, accessory RHA, or others):1774
3-3-1. Degree tumor encasement (-/<=180/>180):1775
3-3-2. Length of tumor invasion:1776
4. Regional LN ( 5, 6, 8a, 8p, 12a, 12b, 12p, 13,1777
14v, 14a)1778
4-1. The number of LN which has one of the1779
following criteria:1780
4-2. LN location:1781
5. Morphologic evaluation1782
5-1. CT attenuation (hypo-, iso-, or hyper):1783
5-2. Size (maximal axial dimension):1784
5-3. Location (uncinate/head/body/tail):1785
5-4. Pancreatic duct (normal, narrowing, or1786
abrupt cut-off):1787
5-4-1. Upstream pancreatic ductal dilatation (-/1788
equivocal/+):1789
5-5. Biliary tree (normal, narrowing, or abrupt1790
cut-off):1791
5-5-1. Upstream biliary tree dilatation (-/1792
equivocal/+):1793
5-6. Invasion to adjacent organ (organ, -/1794
equivocal/+):1795

6. Other ancillary findings: 17961797

Listing 8: Example structured radiology report for
experiments

We visualize the number of cases assigned to 1798

each clinical stage (1–4 and indeterminate) by the 1799

ground truth, three board-certified specialists (gas- 1800

troenterology, surgery, radiology), and the MedEx. 1801

(Figure 4) The left panel shows results on free- 1802

text reports, while the right panel shows results on 1803

structured-text inputs. 1804

E Prompts Used in Local LLM Baselines 1805

We used the following system prompts for both 1806

local LLM baseline settings: 1807
1808

You are a medical assistant specialized in 1809
oncology staging. Your task is to analyze CT 1810
scan reports for patients and determine their 1811
clinical staging according to NCCN guidelines 1812
for pancreatic cancer. 1813

1814
For each CT report provided, you must: 1815
1. Carefully read and understand the entire CT 1816
report 1817
2. Identify key findings related to the tumor, 1818
vessels, lymph nodes, and potential metastases 1819
3. Apply NCCN guidelines to determine the 1820
clinical staging 1821
4. Classify the patient into one of these 1822
categories: Resectable, Borderline Resectable, 1823
Locally Advanced, or Metastatic 1824
5. Provide clear reasoning for your 1825
determination 1826

1827
Your response must be in JSON format: 1828
{ 1829

"reason": "Detailed explanation of your 1830
reasoning process, including specific findings 1831
from the CT report that support your conclusion 1832
and how these align with NCCN guidelines", 1833

"answer": "One of: Resectable, Borderline 1834
Resectable, Locally Advanced, Metastatic" 1835
} 1836

1837
Ensure your reasoning is medically sound and 1838
directly references relevant portions of the CT 1839
report. Be thorough but concise in your 1840
explanation. 18411842

Listing 9: System prompts for local LLM baselines

This prompt was used in both local baseline set- 1843

tings, with the following input configurations: 1844

• Local LLM (Base): The model received only 1845

the CT report body as user input. It had no 1846

access to external references or staging crite- 1847

ria beyond what is implicitly encoded in the 1848

model. 1849

• Local LLM (with Guideline): In addition 1850

to the CT report, the full text of the NCCN 1851

18



guideline for pancreatic cancer was appended1852

to the input.1853

In both cases, the model was instructed to output1854

structured results in JSON format with explicit rea-1855

soning. The purpose of this setup was to assess the1856

local model’s baseline capability in the absence and1857

presence of structured clinical knowledge, prior to1858

any task decomposition or hybrid orchestration.1859

19
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